University College London

Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy

Suggested Solutions for Problem Sheet M1 (2003-2004)

1. Subtracting twice the first equation from the second shows that $x_{1}=y_{2}-2 y_{1}$. It then follows that $x_{2}=\frac{1}{2}\left(3 y_{1}-y_{2}\right)$.
In matrix form,

$$
\begin{gather*}
\underline{y}=\underline{A} \underline{x} \text { and } \underline{x}=\underline{B} \underline{y}, \\
\underline{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { and } \underline{B}=\left(\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right) . \tag{2}
\end{gather*}
$$

Multiplying the two together,

$$
\left(\begin{array}{ll}
1 & 2 \tag{2}\\
3 & 4
\end{array}\right)\left(\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
-2+3 & 1-1 \\
-6+6 & 3-2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Similarly

$$
\left(\begin{array}{rr}
-2 & 1 \tag{2}\\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
-2+3 & -4+4 \\
\frac{3}{2}-\frac{3}{2} & 3-2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Thus \underline{B} is the inverse matrix of \underline{A}.
2. Expanding by the first row,

$$
\begin{gathered}
\Delta=2\left|\begin{array}{lll}
0 & 3 & 2 \\
3 & 2 & 1 \\
2 & 1 & 0
\end{array}\right|-\left|\begin{array}{lll}
1 & 3 & 2 \\
0 & 2 & 1 \\
3 & 1 & 0
\end{array}\right|-3\left|\begin{array}{lll}
1 & 0 & 3 \\
0 & 3 & 2 \\
3 & 2 & 1
\end{array}\right| \\
=2[-3(-2)+2(3-4)]-[-1+3(-1)]-3[1(3-4)+3(-9)]=8+4+84=96 .
\end{gathered}
$$

Alternatively, subtracting $2 C_{2}$ from C_{1} and $3 C_{2}$ from C_{4} gives

$$
\Delta=\left|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 3 & 2 \\
-6 & 3 & 2 & -8 \\
-1 & 2 & 1 & -6
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 3 & 2 \\
-6 & 2 & -8 \\
-1 & 1 & -6
\end{array}\right|
$$

Now add R_{3} to R_{1} and subtract $6 R_{3}$ from R_{2} to give

$$
\Delta=-\left|\begin{array}{ccc}
0 & 4 & -4 \tag{5}\\
0 & -4 & 28 \\
-1 & 1 & -6
\end{array}\right|=112-16=96
$$

3.

$$
\begin{gather*}
\underline{C}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \tag{2}\\
\underline{D}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right)=\left(\begin{array}{rrr}
-11 & 6 & -1 \\
-22 & 12 & -2 \\
-11 & 6 & -1
\end{array}\right), \tag{2}
\end{gather*}
$$

Obviously $|\underline{C}|=0$ and $|\underline{D}|=0$ because the first and third rows are identical.
On the other hand, $|\underline{A}|=1(1)+1(-2)+1(-3+4)=0$, whereas $|\underline{B}|=0$ because two rows are again equal.
Hence $|\underline{C}|=|\underline{D}|=0=|\underline{A}| \times|\underline{C}|$.

The sums of the diagonal elements will be defined later in the course as the trace of the matrix.

$$
\begin{equation*}
\operatorname{Tr}(\underline{C})=0+0+0=0 ; \quad \operatorname{Tr}(\underline{D})=-11+12-1=0 . \tag{2}
\end{equation*}
$$

The two numbers are identical, as suggested in the question.

