University College London
 Department of Physics and Astronomy
 2B21 Mathematical Methods in Physics \& Astronomy
 Suggested Solutions for Problem Sheet M4 (2003-2004)

1. Rewrite the equations in matrix form,

$$
\frac{d^{2} \underline{x}}{d t^{2}}=\underline{A} \underline{x},
$$

where

$$
\underline{A}=\left(\begin{array}{rr}
-\frac{5}{2} & \frac{3}{2} \\
\frac{3}{2} & -\frac{5}{2}
\end{array}\right) .
$$

This has eigenvalues λ given by

$$
\left|\begin{array}{cc}
\left(-\frac{5}{2}-\lambda\right) & \frac{3}{2} \\
\frac{3}{2} & \left(-\frac{5}{2}-\lambda\right)
\end{array}\right|=0,
$$

which has solutions $\lambda_{1}=-1$ and $\lambda_{2}=-4$. The normal modes therefore satisfy the uncoupled equations

$$
\begin{align*}
& \frac{d^{2} y_{1}}{d t^{2}}+y_{1}=0 \\
& \frac{d^{2} y_{2}}{d t^{2}}+4 y_{2}=0 \tag{1}
\end{align*}
$$

To relate the normal modes to the original coordinates, we must find the rotation matrix \underline{R}, i.e. the eigenvectors of \underline{A}. For $\lambda_{1}=-1$, we require

$$
\left(\begin{array}{rr}
-\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & -\frac{3}{2}
\end{array}\right)\binom{r_{11}}{r_{21}}=\binom{0}{0} .
$$

By inspection, the (normalised) solution is

$$
\underline{r}_{1}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} .
$$

For the other eigenvalue of $\lambda_{2}=-4$, we require

$$
\left(\begin{array}{ll}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{array}\right)\binom{r_{12}}{r_{22}}=\binom{0}{0} .
$$

By inspection, the (normalised) solution is

$$
\underline{r}_{2}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}} .
$$

The rotation matrix

$$
\underline{R}=\left(\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \tag{1}\\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)
$$

and the two sets of coordinates are related by

$$
\begin{array}{ll}
x_{1}=\frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right) & : \quad y_{1}=\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right) \\
x_{2}=\frac{1}{\sqrt{2}}\left(y_{1}-y_{2}\right) \quad: \quad y_{2}=\frac{1}{\sqrt{2}}\left(x_{1}-x_{2}\right) \tag{1}
\end{array}
$$

The general solutions of the uncoupled differential equations are

$$
\begin{align*}
& y_{1}=\alpha_{1} \cos t+\beta_{1} \sin t \\
& y_{2}=\alpha_{2} \cos 2 t+\beta_{2} \sin 2 t . \tag{1}
\end{align*}
$$

At time $t=0, \dot{y}_{1}=\dot{y}_{2}=0, y_{1}=a \sqrt{2}$, and $y_{2}=-a \sqrt{2}$. At later times, therefore,

$$
\begin{aligned}
& y_{1}=a \sqrt{2} \cos t \\
& y_{2}=-a \sqrt{2} \cos 2 t
\end{aligned}
$$

Rotating back to the original coordinates,

$$
\begin{align*}
& x_{1}=a(\cos t-\cos 2 t), \\
& x_{2}=a(\cos t+\cos 2 t) . \tag{1}
\end{align*}
$$

Students can actually solve this simple two-degree-of-freedom problem by much easier methods. Adding and subtracting the two original equations gives

$$
\begin{aligned}
& 2 \frac{d^{2} x_{1}}{d t^{2}}+2 \frac{d^{2} x_{2}}{d t^{2}}=-2 x_{1}-2 x_{2} \\
& 2 \frac{d^{2} x_{1}}{d t^{2}}-2 \frac{d^{2} x_{2}}{d t^{2}}=-8 x_{1}-8 x_{2}
\end{aligned}
$$

We can see directly here the uncoupled equations in $x_{1} \pm x_{2}$ and all the subsequent manipulations should come out. However it does not use the matrix diagonalisation technique asked for. The maximum mark is therefore only 10/14.
2. For the matrix

$$
\underline{A}=\left(\begin{array}{rrr}
1 & i & 3 i \\
-i & 1 & -3 \\
-3 i & -3 & -3
\end{array}\right)
$$

the eigenvalue equation is

$$
\begin{gathered}
|\underline{A}-\lambda \mathbf{I}|=\left|\begin{array}{ccc}
1-\lambda & i & 3 i \\
-i & 1-\lambda & -3 \\
-3 i & -3 & -3-\lambda
\end{array}\right| \\
=(1-\lambda)[(1-\lambda)(-3-\lambda)-9]-i[-i(-3-\lambda)-9 i]+3 i[3 i+3 i(1-\lambda)] \\
=(1-\lambda)\left(\lambda^{2}+2 \lambda-12\right)+(\lambda-6)+3(3 \lambda-6)=0 .
\end{gathered}
$$

The characteristic equation is therefore

$$
\begin{equation*}
\lambda^{3}+\lambda^{2}-24 \lambda+36=0 \tag{3}
\end{equation*}
$$

By inspection, $\lambda=2$ is one solution and, factorising this out,

$$
(\lambda-2)\left(\lambda^{2}+3 \lambda-18\right)=(\lambda-2)(\lambda-3)(\lambda+6)=0,
$$

and hence the eigenvalues are $\lambda_{1}=2, \lambda_{2}=3$, and $\lambda_{3}=-6$.
(i) The sum of the eigenvalues is $2+3-6=-1$, whereas the trace is $1+1-3=$ -1 , as expected.
(ii) The product of the eigenvalues is $2 \times 3 \times-6=-36$. The determinant

$$
|\underline{A}|=\left|\begin{array}{rrr}
1 & i & 3 i \\
-i & 1 & -3 \\
-3 i & -3 & -3
\end{array}\right|=\left|\begin{array}{rrr}
1 & i & 3 i \\
0 & 0 & -6 \\
-3 i & -3 & -3
\end{array}\right|=-36 \text {, }
$$

as predicted.
The eigenvector equation in the case of $\lambda=2$ is

$$
\left(\begin{array}{rrr}
1-\lambda & i & 3 i \\
-i & 1-\lambda & -3 \\
-3 i & -3 & -3-\lambda
\end{array}\right)\left(\begin{array}{l}
u_{11} \\
u_{21} \\
u_{31}
\end{array}\right)=\left(\begin{array}{rrr}
-1 & i & 3 i \\
-i & -1 & -3 \\
-3 i & -3 & -5
\end{array}\right)\left(\begin{array}{l}
u_{11} \\
u_{21} \\
u_{31}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
$$

leading to the two independent equations

$$
\begin{aligned}
-u_{11}+i u_{21}+3 i u_{31} & =0 \\
-3 i u_{11}-3 u_{21}-5 u_{31} & =0
\end{aligned}
$$

This has solution

$$
\underline{u}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
i \tag{3}\\
1 \\
0
\end{array}\right)
$$

where the factor in front has been inserted to ensure that the eigenvector
is normalised, $\underline{u}_{1}^{\dagger} \underline{u}_{1}=1$. Note that this involves complex conjugation and students might forget this point.

For $\lambda=3$,

$$
\left(\begin{array}{rrr}
-2 & i & 3 i \\
-i & -2 & -3 \\
-3 i & -3 & -6
\end{array}\right)\left(\begin{array}{l}
u_{12} \\
u_{22} \\
u_{32}
\end{array}\right)=0 .
$$

This requires

$$
\begin{aligned}
-2 u_{12}+i u_{22}+3 i u_{32} & =0 \\
-i u_{12}-u_{22}-2 u_{32} & =0,
\end{aligned}
$$

from which

$$
\underline{u}_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
i \tag{3}\\
-1 \\
1
\end{array}\right)
$$

Finally, for $\lambda=-6$,

$$
\left(\begin{array}{rrr}
7 & i & 3 i \\
-i & 7 & -3 \\
-3 i & -3 & 3
\end{array}\right)\left(\begin{array}{l}
u_{13} \\
u_{23} \\
u_{33}
\end{array}\right)=0 .
$$

Hence

$$
\begin{aligned}
-i u_{13}+7 u_{23}-3 u_{33} & =0 \\
-3 i u_{13}-3 u_{23}+3 u_{33} & =0
\end{aligned}
$$

This has solution

$$
\underline{u}_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-i \tag{3}\\
1 \\
2
\end{array}\right) .
$$

Taking the scalar products,

$$
\begin{align*}
\underline{u}_{2}^{\dagger} \underline{u}_{1} & \propto-i \times i-1 \times 1+1 \times 0=0, \\
\underline{u}_{3}^{\dagger} \underline{u}_{2} & \propto i \times i+1 \times(-1)+2 \times 1=0, \\
\underline{u}_{1}^{\dagger} \underline{u}_{3} & \propto-i \times(-i)+1 \times 1+0 \times 2=0 . \tag{3}
\end{align*}
$$

Hence the eigenvectors are orthogonal to each other.

