UNIVERSITY OF LONDON
(University College London)
PHYSICS 2B21: Mathematical Methods in Physics and Astronomy
Mid-Sessional Examination
Friday 12 December 2003: 10.30 to 12.30

## Answer FOUR questions only.

1. (a) If $\phi$ is a scalar function, $\underline{S}$ a vector function, and $\underline{C}$ a constant vector, show by writing out both sides explicitly in Cartesian coordinates that

$$
\begin{aligned}
& \underline{\nabla} \cdot(\phi \underline{S})=\phi(\underline{\nabla} \cdot \underline{S})+(\underline{\nabla} \phi) \cdot \underline{S} \\
& \underline{\nabla} \times(\phi \underline{S})=\underline{\nabla} \phi \times \underline{S}+\phi(\underline{\nabla} \times \underline{S})
\end{aligned}
$$

and also that

$$
\underline{C} \times(\underline{\nabla} \times \underline{S})=\underline{\nabla}(\underline{C} \cdot \underline{S})-(\underline{C} \cdot \underline{\nabla}) \underline{S} .
$$

(b) In spherical polar coordinates $(x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, $z=r \cos \theta$ ), the line element is given by

$$
d \underline{r}=d r \underline{\hat{e}}_{r}+r d \theta \underline{\hat{e}}_{\theta}+r \sin \theta d \phi \underline{\hat{e}}_{\phi},
$$

where the basis vectors are

$$
\begin{aligned}
& \underline{\underline{\hat{e}}}_{r}=\sin \theta \cos \phi \hat{e}_{x}+\sin \theta \sin \phi \hat{e}_{y}+\cos \theta \hat{e}_{z}, \\
& \underline{\underline{e}}_{\theta}=\cos \theta \cos \phi \phi \underline{\underline{e}}_{x}+\cos \theta \sin \phi \underline{\underline{e}}_{y}-\sin \theta \underline{\underline{e}}_{z}, \\
& \underline{\underline{e}}_{\phi}=-\sin \phi \underline{e}_{x}+\cos \phi \underline{\hat{e}}_{y} .
\end{aligned}
$$

Show that in these coordinates

$$
\underline{\nabla} f=\left(\frac{\partial f}{\partial r}\right) \underline{\hat{e}}_{r}+\frac{1}{r}\left(\frac{\partial f}{\partial \theta}\right) \underline{\hat{e}}_{\theta}+\frac{1}{r \sin \theta}\left(\frac{\partial f}{\partial \phi}\right) \underline{\hat{e}}_{\phi} .
$$

If $f=x^{2}+y^{2}$, evaluate $\underline{\nabla} f$ in both Cartesian and spherical polar coordinates and show that they are equal in magnitude and direction.
2. (a) The matrices $\underline{A}, \underline{B}$, and $\underline{D}$ are related by $\underline{D}=\underline{B} \underline{A}$. Given that

$$
\underline{A}=\left(\begin{array}{rrr}
3 & 1 & -3 \\
1 & 4 & 2 \\
-3 & 2 & 5
\end{array}\right) \quad \text { and } \quad \underline{D}=\left(\begin{array}{rrr}
-2 & 12 & 11 \\
14 & 17 & -3 \\
-5 & 16 & 19
\end{array}\right)
$$

evaluate $\underline{A}^{-1}$.
Hence derive the value of $\underline{B}$.
(b) The Pauli matrices

$$
\underline{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \underline{\sigma}_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \quad \underline{\sigma}_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are of great importance in the description of spin- $\frac{1}{2}$ particles in quantum mechanics. What special property do these matrices have in common?
Show that for $i=1,2,3$

$$
\underline{\sigma}_{i} \underline{\sigma}_{i}=\underline{I}
$$

where $\underline{I}$ is the $2 \times 2$ unit matrix.

Evaluate $\underline{\sigma}_{1} \underline{\sigma}_{2}$ and $\underline{\sigma}_{2} \underline{\sigma}_{1}$ in terms of $\underline{\sigma}_{3}$.

By expanding the left hand side in a power series, prove that

$$
\exp \left[i \alpha \underline{\sigma}_{2}\right]=\underline{I} \cos \alpha+i \underline{\sigma}_{2} \sin \alpha,
$$

where $\alpha$ is a real angle.
3. The matrix $\underline{A}$ is given by

$$
\underline{A}=\left(\begin{array}{rrr}
1 & 1 & 2 \\
1 & -2 & -1 \\
2 & -1 & 1
\end{array}\right)
$$

Verify that one of the eigenvalues is $\lambda_{1}=0$ and that the corresponding normalised eigenvector is $\underline{v}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$.

Find the other two eigenvalues $\lambda_{2}$ and $\lambda_{3}$ and the associated normalised eigenvectors $\underline{v}_{2}$ and $\underline{v}_{3}$.

Show that these eigenvectors are mutually orthogonal and that, up to a possible overall sign,

$$
\underline{v}_{3}= \pm\left(\underline{v}_{1} \times \underline{v}_{2}\right)
$$

4. The variable $y$ satisfies the second order differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-y=0 .
$$

If $y$ is expanded as the power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

show that there are two solutions of the indicial equation with $k=0$ and $k=1$.

$$
y=\cosh (\arcsin x)
$$

is a solution of the original differential equation.

Hence explain why the range of convergence deduced using the ratio test is not unexpected.

$$
\left[\text { Note that } \frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}} \cdot\right]
$$

5. The function $f(x)$, which is periodic with period $2 \pi$, has a Fourier series expansion of the form

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x .
$$

Show, by quoting the orthogonality of the sine and cosine functions, that the Fourier coefficients are given by

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

In the interval $-\pi<x<+\pi$, the function is given by

$$
f(x)=e^{\lambda x},
$$

where $\lambda$ is a real constant.

Show, by writing $e^{i n x}=\cos n x+i \sin n x$, or by integration by parts twice, that

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{\lambda x} \cos n x d x & =2(-1)^{n} \sinh \lambda \pi \frac{\lambda}{\lambda^{2}+n^{2}} \\
\int_{-\pi}^{\pi} e^{\lambda x} \sin n x d x & =-2(-1)^{n} \sinh \lambda \pi \frac{n}{\lambda^{2}+n^{2}},
\end{aligned}
$$

where $n$ is an integer.

Hence write down the Fourier series for this function.

State Parseval's theorem for a real Fourier series and use it with this function to evaluate

$$
\sum_{n=1}^{\infty} \frac{\lambda^{2}}{n^{2}+\lambda^{2}}
$$

6. (a) A drumhead consists of a circular membrane attached to a rigid support along the circumference $r=a$. The vibrations are governed by the equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial Z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} Z}{\partial \theta^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} Z}{\partial t^{2}},
$$

where $Z$ is the displacement from equilibrium at polar coordinate $(r, \theta)$ and time $t$, and $v$ is a constant. By assuming a solution of the form

$$
Z(r, \theta, t)=R(r) \times \Theta(\theta) \times T(t),
$$

derive ordinary differential equations for $R(r), \Theta(\theta)$, and $T(t)$.
Show that solutions which have $Z=0$ at $t=0$ are of the form

$$
Z=R_{n}(k r) \sin (k v t)\left[a_{n} \cos n \theta+b_{n} \sin n \theta\right],
$$

where $n$ is an integer.
How can one find information on the possible values of $k$ ?
(b) The definite integral of two Legendre polynomials

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=\frac{2}{(2 n+1)} \delta_{n m}
$$

Use the recurrence relations

$$
\begin{aligned}
(2 n+1) x P_{n}(x) & =(n+1) P_{n+1}(x)+n P_{n-1}(x), \\
(2 n+1) P_{n}(x) & =P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)
\end{aligned}
$$

together with the above definite integral, to show that

$$
\int_{-1}^{+1} P_{n+1}(x) x P_{n}(x) d x=\frac{2(n+1)}{(2 n+1)(2 n+3)}
$$

and

$$
\int_{-1}^{+1} P_{n+1}^{\prime}(x) P_{n}(x) d x=2
$$

Verify both relations by explicit integration for the case of $n=1$.

You may assume that

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) .
$$

