UNIVERSITY OF LONDON
(University College London)
PHYSICS 2B21: Mathematical Methods in Physics and Astronomy xx-MAY-03

Answer FIVE questions only.

Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. State Stokes' theorem in integral form.

In plane polar coordinates, where the Cartesian components are given by $x=r \cos \theta$ and $y=r \sin \theta$, show that the unit vector in the θ direction is

$$
\underline{\underline{\hat{e}}}_{\theta}=-\sin \theta \underline{e}_{x}+\cos \theta \hat{\underline{e}}_{y} .
$$

Calculate the line integral $I=\oint_{\gamma} \underline{W} \cdot \underline{d s}$ of the vector

$$
\underline{W}=(x+y) \underline{\hat{e}}_{x}+x y^{2} \underline{\hat{e}}_{y}+x^{2} \underline{\hat{e}}_{z}
$$

anticlockwise around the figure shown in the plane $z=0$. This consists (a) of the axis $y=0$, (b) a quarter-circle of radius 1 , with its centre at the origin, and (c) the axis $x=0$.

Evaluate curl $\underline{W}=\underline{\nabla} \times \underline{W}$ and hence verify Stokes' theorem by integrating curl \underline{W} over the area of the quarter-circle in the $x-y$ plane.

Note that the surface element in plane polar coordinates is

$$
d S=r d r d \theta
$$

2. (a) In spherical polar coordinates $(x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, $z=r \cos \theta$), the line element is given by

$$
d \underline{r}=d r \underline{\hat{e}}_{r}+r d \theta \underline{\hat{e}}_{\theta}+r \sin \theta d \phi \underline{\hat{e}}_{\phi},
$$

where $\hat{e}_{r}, \hat{e}_{\theta}$, and $\underline{\underline{e}}_{\phi}$ are basis vectors in the directions of increasing r, θ and ϕ respectively. Show that in these coordinates

$$
\underline{\nabla} f=\left(\frac{\partial f}{\partial r}\right) \underline{\hat{e}}_{r}+\frac{1}{r}\left(\frac{\partial f}{\partial \theta}\right) \underline{\hat{e}}_{\theta}+\frac{1}{r \sin \theta}\left(\frac{\partial f}{\partial \phi}\right) \underline{\hat{e}}_{\phi} .
$$

If $f=x^{2}+y^{2}-2 z^{2}$, evaluate $\underline{\nabla} f$ in both Cartesian and spherical polar coordinates and show that they are equal.

Note that the relation between the basis vectors in spherical polar and Cartesian coordinates is:

$$
\begin{aligned}
\underline{\hat{e}}_{r} & =\sin \theta \cos \phi \hat{e}_{x}+\sin \theta \sin \phi \hat{e}_{y}+\cos \theta \underline{\hat{e}}_{z}, \\
\hat{e}_{\theta} & =\cos \theta \cos \phi \phi \hat{e}_{x}+\cos \theta \sin \phi \underline{\underline{e}}_{y}-\sin \theta \\
\hat{e}_{e} & =-\sin \phi \hat{e}_{x}+\cos \phi \underline{\underline{e}}_{y} .
\end{aligned}
$$

(b) The potential $V(r, \theta)$ in plane polar coordinates satisfies the equation

$$
\underline{\nabla}^{2} V(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} V(r, \theta)\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} V(r, \theta)=0 .
$$

By searching for a solution in the separable form, $V(r, \theta)=R(r) \times \Theta(\theta)$ show that the general solution in the region $0 \leq \theta \leq 2 \pi$ is

$$
V(r, \theta)=A+B \ell n r+\sum_{n=1}^{\infty}\left(C_{n} r^{n}+\frac{D_{n}}{r^{n}}\right)\left(E_{n} \cos n \theta+F_{n} \sin n \theta\right) .
$$

If the potential on the ring $r=a$ is given by $V(a, \theta)=V_{0} \cos \theta$, evaluate the potential in the regions $0 \leq r \leq a$ and $a \leq r<\infty$.
3. (a) The matrices $\underline{A}, \underline{B}$, and \underline{D} are related by $\underline{D}=\underline{A} \underline{B}$. Given that

$$
\underline{A}=\left(\begin{array}{lll}
1 & 3 & 1 \\
1 & 1 & 2 \\
3 & 3 & 2
\end{array}\right) \quad \text { and } \quad \underline{D}=\left(\begin{array}{rrr}
10 & -6 & 6 \\
9 & -6 & 5 \\
15 & -10 & 11
\end{array}\right)
$$

evaluate \underline{A}^{-1}.
Hence derive the value of \underline{B}.
(b) Find the eigenvalues of the matrix

$$
\underline{A}=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) .
$$

Show that $\underline{A}^{2}=\underline{I}+2 \underline{A}$ and hence evaluate \underline{A}^{4}.
If t_{n} is defined in terms of the trace of a matrix through

$$
t_{n}=\left[\operatorname{tr}\left(\underline{A}^{n}\right)\right]^{1 / n},
$$

show that $t_{2} \approx 2.4495$ and $t_{4} \approx 2.4147$.
Why does $t_{n} \rightarrow \sqrt{2}+1$ as $n \rightarrow \infty$?
4. By writing a square matrix \underline{A} in terms of its matrix of eigenvalues $\underline{\Lambda}$ through $\underline{A}=\underline{R}^{-1} \underline{\Lambda} \underline{R}$, show that the trace of \underline{A} is equal to the sum of the eigenvalues:

$$
\operatorname{tr}\{\underline{A}\}=\sum_{i} A_{i i}=\sum_{i} \lambda_{i} .
$$

Demonstrate that the eigenvalues λ of the Hermitian matrix

$$
\underline{A}=\left(\begin{array}{rrr}
1 & i & 3 i \\
-i & 1 & -3 \\
-3 i & -3 & -3
\end{array}\right)
$$

satisfy the characteristic equation

$$
\lambda^{3}+\lambda^{2}-24 \lambda+36=0
$$

Prove that one eigenvalue is $\lambda_{1}=2$ and find the other two solutions.
Find the three (complex) eigenvectors \underline{x}_{i}, normalised to have unit length, $\underline{x}_{i}^{\dagger} \underline{x}_{i}=1$, where the \dagger denotes Hermitian conjugation.

Prove that the eigenvectors are orthogonal,

$$
\underline{x}_{i}^{\dagger} \underline{x}_{j}=0 \text { for } i \neq j .
$$

5. Show that the second order differential equation

$$
\left(2 x+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}-p^{2} y=0
$$

has two solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

with $k=0$ or $k=\frac{1}{2}$.

Derive the recurrence relation

$$
\frac{a_{n+1}}{a_{n}}=-\frac{(n+k)^{2}-p^{2}}{(n+k+1)(2 n+2 k+1)} .
$$

Use the d'Alembert ratio test to determine the range of values of x for which the series converges.

In the special case where p is a positive integer, show that the $k=0$ series terminates at $n=p$.

Denote the resulting polynomial by $T_{p}(x)$. If $T_{p}(0)=1$, show that to order x the polynomials satisfy

$$
2 T_{p}(x) T_{q}(x)=T_{p+q}(x)+T_{p-q}(x),
$$

where q is another positive integer with $p \geq q$.
6. The function $f(x)$ is periodic with period 2π. In the interval $-\pi<x<+\pi$, it is given by

$$
f(x)=\sinh x
$$

Is $f(x)$ even or odd?
If $f(x)$ has a Fourier series expansion of the form

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

show, by quoting the orthogonality of the sine and cosine functions, that the Fourier coefficients are given by

$$
\begin{aligned}
a_{n} & =0 \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

By using integration by parts twice, or otherwise, show that

$$
\int \sin n x \sinh x d x=\frac{1}{1+n^{2}}[\cosh x \sin n x-n \cos n x \sinh x]+C
$$

For the particular case of $f(x)=\sinh x$, obtain the coefficients b_{n} and show that its Fourier series is

$$
f(x)=\frac{2}{\pi} \sinh \pi \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1} \sin n x
$$

State Parseval's theorem and use it to evaluate

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}
$$

You may find the following identity useful:

$$
\sinh ^{2} x=\frac{1}{2}(\cosh 2 x-1) .
$$

7. Starting from the differential equation for the Legendre polynomial $P_{n}(x)$,

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} P_{n}(x)\right]+n(n+1) P_{n}(x)=0
$$

show that the definite integral

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=0
$$

if n and m are non-negative integers with $n \neq m$.

Given that $P_{0}(x)=1, P_{1}(x)=x$, and $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, show by explicit integration that the above orthogonality relation is satisfied for $n, m \leq 2$.

Assuming that for $n=3$

$$
P_{3}(x)=a\left[x^{3}+b x^{2}+c x+d\right]
$$

use the orthogonality relation to find the coefficients b, c and d.
How can the coefficient a be determined?
Show that $a=\frac{5}{2}$.

