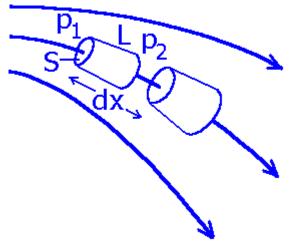
THE BERNOULLI'S THEOREM



Consider a small cylidrical fluid element with crossection $s_{and length} L$, with mass m_{and} volume V.

Choose the coordinate X along the velocity \mathbf{U} of the fluid element.

Let $\mathbf{d}\mathbf{X}_{be}$ a small displacement along \mathbf{X}_{during} the motion.

The ammount of work done by the outer pressure forces is

$$dA = (p_1 - p_2)S dx = -\frac{dp}{dx}LS dx = -V dp$$
$$= -\frac{m}{\rho}dp = -mdh.$$

This work goes to the increase of the total mechanical (kinetic plus potential) energy of the fluid element,

$$-m dh = d\left(\frac{1}{2}mu^{2}\right) + d(m\psi).$$

We observe that $u^2 / 2 + \psi + h_{remains constant during the motion of the fluid element (along the streamline).$

EXERCISE 3.2

From the mass conservation equation $\rho uA = const_{(3.16)}$, we have

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0 \,. \label{eq:phi}$$

We now substract the equation (3.18) to eliminate $d\rho / \rho$, getting

$$\frac{\mathrm{d} \mathrm{u}}{\mathrm{u}} + \frac{\mathrm{d} \mathrm{A}}{\mathrm{A}} = \mathcal{M}^2 \, \frac{\mathrm{d} \mathrm{u}}{\mathrm{u}} \, ,$$

which gives (3.19).

EXERCISE 3.3

Equations (3.27, 3.28) follow directly from (3.20, 3.21) when you substitute

r, u, p, M measured in dimensionless quantities X, V, d, λ specified by (3.25, 3.26).

Equations (3.29, 3.30) is just the differential form of (3.27, 3.28).

When you substract (3.30) from (3.29) to eliminate da/a, you arrive to (3.31).