EXERCISE 6.1

With $\partial \mathbf{u} / \partial \mathbf{t}=\partial^{2} \bar{\delta} \mathbf{r} / \partial \mathrm{t}^{2}=-\omega^{2} \bar{\delta} \mathbf{r}{ }_{\text {, and }}$
$\nabla p^{\prime}=\hat{\mathbf{r}} \frac{\partial}{\partial r} \mathrm{p}^{\prime}+\frac{1}{\mathrm{r}} \nabla_{1} \mathrm{p}^{\prime},{ }_{\text {and }}, \nabla \Psi_{0}=\hat{\mathbf{r}} g_{0}$, the radial component of the momentum equation (6.7a) reduces to (6.9a), and its horizontal component - to (6.9b).

With

$$
\nabla \cdot\left(\rho_{0} \mathbf{u}\right)=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \rho_{0} u_{r}\right)+\frac{1}{r} \nabla_{1} \cdot\left(\rho_{0} \mathbf{u}\right)
$$

$$
\nabla_{1} \cdot\left(\rho_{0} \mathbf{u}\right)=\rho_{0} \nabla_{1} \cdot \mathbf{u}=\mathrm{i} \omega \rho_{0} \nabla_{1} \cdot \delta \mathbf{r}
$$

$$
=\mathrm{i} \omega \rho_{0} \vee \nabla_{1}^{2} \mathrm{Y}_{\ell \mathrm{m}}=-\mathrm{i} \omega \ell(\ell+1) \rho_{0} \vee \mathrm{Y}_{\ell \mathrm{m}}
$$

the continuity equation (6.7b) gives (6.9c). With

$$
\nabla \mathrm{p}_{0}=\hat{\mathbf{r}} \frac{\mathrm{dp}_{0}}{\mathrm{dr}}
$$

$$
\nabla \rho_{0}=\hat{\mathbf{r}} \frac{\mathrm{d} \rho_{0}}{\mathrm{dr}}
$$

$$
\mathrm{dr} \text {, the adiabatic energy equation (6.7c) gives (6.9d). }
$$

Now express $\rho_{1 \text { in terms of }} P_{1 \text { and }} U_{\text {from the equation (6.9d): }}$

$$
\rho_{1}=\frac{1}{c^{2}} p_{1}-\left(\frac{d \rho_{0}}{d r}-\frac{1}{c^{2}} \frac{d p_{0}}{d r}\right) U=\frac{1}{c^{2}} p_{1}+\frac{\rho_{0}}{g_{0}} N^{2} U
$$

and $V=p_{1} /\left(\rho_{0} \omega^{2}\right)_{\text {from the equation (6.9b), and substitute into (6.9a,c) to }}$ eliminate $\rho_{1_{\text {and }}} V_{\text {and to get }}(6.10 \mathrm{~b}, \mathrm{a})$.

EXERCISE 6.2

We need to prove that the equation
$F(\widetilde{W})=\int_{r_{1}}^{R}\left(\frac{r^{2}}{c^{2}}-\widetilde{W}^{2}\right)^{1 / 2} \frac{d r}{r}$,
when considered as an integral equation with function $F(\widetilde{W})_{\text {specified, has a solution }}$

$$
\begin{equation*}
\ln \frac{r_{1}}{R}=\frac{2}{\Pi_{r_{1}} / c_{1}} \int_{c_{s}}^{c_{1}}\left(\widetilde{w}^{2}-\frac{r_{1}^{2}}{c_{1}^{2}}\right)^{-1 / 2} \frac{d F}{d \widetilde{w}} d \widetilde{w} \tag{6.22}
\end{equation*}
$$

which allows to infer Γ_{1} as function of Γ_{1} / C_{1}, and hence $C_{\text {as function of }} \Gamma$.
Take the derivative of the both sides of (6.20) with respect to \widetilde{W}, considered as a parameter in the integral:

and substitute the result into (6.22):
$\ln \frac{r_{1}}{R}=-\frac{2}{\pi} \int_{\frac{r_{1}}{c_{1}}}^{\frac{R}{c_{s}}}\left(\tilde{w}^{2}-\frac{r_{1}^{2}}{c_{1}^{2}}\right) d \widetilde{w} \cdot \widetilde{w} \int_{r_{1}^{\prime}}^{R}\left(\frac{r^{2}}{c^{2}}-\tilde{w}^{2}\right)^{-\frac{1}{2}} \frac{d r}{r}$,

where ${ }^{\prime}{ }^{\prime}$ is such that $r_{1}{ }^{\prime} / C\left(r_{1}{ }^{\prime}\right)=\widetilde{W}$.

Now change the order of integration, using $2 \widetilde{W} d \widetilde{W}=d\left(\widetilde{W}^{2}\right)$:
$\ln \frac{r_{1}}{R}=-\frac{1}{\Pi} \int_{r_{1}}^{R} \frac{d r}{r} \int_{\frac{r_{1}^{2}}{c_{1}^{2}}}^{\frac{r^{2}}{c^{2}}}\left(\widetilde{w}^{2}-\frac{r_{1}^{2}}{c_{1}^{2}}\right)^{-\frac{1}{2}}\left(\frac{r^{2}}{c^{2}}-\widetilde{w}^{2}\right)^{-\frac{1}{2}} d\left(\tilde{w}^{2}\right)$.
To evaluate the inner integral, simplify it by using new variable t (just linear rescaling of \widetilde{W}^{2}) as
$\mathrm{t}=2 \frac{\tilde{\mathrm{w}}^{2}-\mathrm{r}_{1}^{2} / \mathrm{c}_{1}^{2}}{\mathrm{r}^{2} / \mathrm{c}^{2}-\mathrm{r}_{1}^{2} / \mathrm{c}_{1}^{2}}-1$,
so that
$\tilde{w}^{2}-\frac{r_{1}^{2}}{\mathrm{c}_{1}^{2}}=\frac{\mathrm{r}^{2} / \mathrm{c}^{2}-\mathrm{r}_{1}^{2} / \mathrm{c}_{1}^{2}}{2}(1+\mathrm{t})$,
$\frac{r^{2}}{\mathrm{c}^{2}}-\widetilde{w}^{2}=\frac{\mathrm{r}^{2} / \mathrm{c}^{2}-\mathrm{r}_{1}^{2} / \mathrm{c}_{1}^{2}}{2}(1-\mathrm{t})$,
$\mathrm{d}\left(\tilde{w}^{2}\right)=\frac{\mathrm{r}^{2} / \mathrm{c}^{2}-\mathrm{r}_{1}^{2} / \mathrm{c}_{1}^{2}}{2} \mathrm{dt}$.
We thus have
$\ln \frac{r_{1}}{R}=-\frac{1}{\Pi} \int_{r_{1}}^{R} \frac{d r}{r} \int_{-1}^{1} \frac{d t}{\left(1-t^{2}\right)^{1 / 2}}$.
With substitution $\mathrm{t}=\sin (\theta)$, the inner integral is
$\int_{-1}^{1} \frac{d t}{\left(1-t^{2}\right)^{1 / 2}}=\int_{-\pi / 2}^{\pi / 2} \theta d \theta=\pi$,
and we arrive to the identity
$\ln \frac{r_{1}}{R}=-\int_{r_{1}}^{R} \frac{d r}{r}$.

