EXERCISE 4.1

If $\Omega = \Omega(\mathbf{r}_{c})$, a scalar function $\mathbf{f} = \mathbf{f}(\mathbf{r}_{c})$ exists such that $\mathbf{r}_{c}\Omega^{2} = \mathbf{d}\mathbf{f}/\mathbf{d}\mathbf{r}_{c}$. We then have $\mathbf{\hat{r}_{c}r_{c}\Omega^{2}} = \nabla \mathbf{f}$. If there exists a scalar function $\mathbf{f}(\mathbf{r})$ such that $\nabla \mathbf{f} = \mathbf{\hat{r}_{c}r_{c}\Omega^{2}}$, this function depends on Γ_{c} only (it is constant on cylinders), because its gradient is directed along Γ_{c} (gradient is always orthogonal to surfaces of $\mathbf{f} = \mathbf{const}$). But then, the absolute value of $\nabla \mathbf{f}$ also depends on Γ_{c} only. This absolute value is $\Gamma_{c}\Omega^{2}$, hence $\Omega_{depends}$ on Γ_{c} only.