
The hydrosphere 
 

Properties of water. 
Water is essential to the support of all life. Life, after all began in the oceans about 2600Myr ago. Many plants and animals can live 
only in water. Human bodies contain about 70% water. It is essential in the transfer of chemicals to and from living cells. 
 
Both the freezing point and  boiling point (1000C) of water are out of line compared with the rest of the periodic table. Both are 
unexpectedly high as can be seen from the data below. Moreover the range of temperatures in which liquid water exists is large. All 
this is due to extensive hydrogen bonding – an effect responsible for many of the unusual properties of water 
 
Compound Molecular Weight  Melting point (0C) Boiling point (0C) Range 

(0C) 
H2O 18 0 100 100 

H2S 34 -85 -60 25 
H2Se 81 -66 -41 25 
H2Te 129.6 -49 -2 47 
H2Po 212 decomposes decomposes - 
 
Even so, this range defines an ‘inhabitable ring’ in the solar system where water-based life can exist. Venus and Mercury are too hot; 
Jupiter, Saturn and so on are too cold.  
 
The density of water is at a maximum at 40C. Ice I (there are at least ten phases of ice) is an open structure, held together by hydrogen 
bonds, and is less dense than liquid water. This is useful since the oceans freeze from the top down, not the bottom up but there are 
minor disadvantages (burst pipes for example).  
 
The latent heat of fusion (i.e. the heat required to convert 1kg of ice to water without changing the temperature) is 0.334kJ/kg. The 
latent heat of vaporisation (i.e. the heat required to convert water to vapour without a change of temperature) is 2300kJ/kg. For dry 
air, CP  is about 1000JK-1kg-1. Note that the effect of the latent heat is equivalent to a rise in temperature of 2300K.  
 
The hydrosphere 
The total volume of water on the earth is about 310 million cubic miles (1284 million  cubic kilometres). 97% of this is in the oceans. 
If it were spread evenly over the earth, the planet would be covered to a depth of 2.8km. 2.25% is locked up in the polar ice-caps and 
in glaciers. About 0.75% is in soil, lakes and rivers. 0.035% is in the atmosphere. To give some idea of what this amount is; if all the 
water vapour in the atmosphere were instantly converted to rain, the total rainfall (averaged over the earth’s surface) would be about 
3cm. Yet the annual average rainfall here is 90-100cm. There is a hydrologic cycle.  
 
The hydrologic cycle 
Water is cycled between the oceans and the atmosphere. As always, the cycle is driven by the sun. Most of the water vapour in the 
atmosphere (84%) comes from the oceans. Transpiration from plant leaves accounts for most of the rest. The sun heats the water in the 
oceans (and on the land surface), giving evaporation. The warm, moist air rises, expands (under reduced pressure higher in the 
atmosphere) and cools. The water vapour condenses to form clouds. The winds then carry the clouds across the earth’s surface until 
the water is released as precipitation (rain, hail or snow) to fall on the earth for further recycling. Most of the precipitation falls into 
the oceans (75% of the surface of the planet being ocean). We rely on the rest. The rate of circulation of water within the hydrologic 
cycle is very rapid. Since the total mass of water in the atmosphere is constant, precipitation is balanced by evaporation. Thus, 
comparing throughputs shows that the average residence time of water molecules in the atmosphere is about 10 days.  
 
Water in the atmosphere 
Water greatly affects the behaviour of the atmosphere. The main areas are 
1. Thermodynamics (through condensation and evaporation) 
2. Cloud formation (and thus the planetary albedo as well as precipitation effects) 
3. Cleansing of the atmosphere by rainout (e.g. removal of substances within clouds  such as hygroscopic [water-absorbing] 

aerosols), washout (removal of aerosols and dissolution of soluble atmospheric gases through capture by falling raindrops) 
4. Chemistry of the atmosphere (as a solvent or participant in reactions) 
5. Absorption of radiation; water is a major greenhouse gas. 
 
The amount of water vapour in the atmosphere is limited by the saturation vapour pressure. This is the partial pressure of water 
vapour in equilibrium with the condensed phase (i.e. the attempt to add any more vapour will cause condensation). Note that this is the 
partial pressure of the water; the total pressure of the atmosphere is irrelevant. This quantity can be obtained from the Clausius-
Clapeyron equation, a standard result of equilibrium thermodynamics. This states that, for a vapour in equilibrium with its condensed 
phase, the partial pressure, p, is given by 
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where L is the latent heat of evaporation (in kJ/mole). This is often given in J/kg, i.e. 
LS = 1000L / Mv  where LS is the latent heat in J/kg and Mv is the molecular weight (in grams). We can define a specific gas constant 
for water, ( ) vS MRR /1000OH 2 = . In the case of water, the partial pressure p is conventionally represented by the symbol e, and 
the saturated partial pressure by es.  Setting p = es, we  can easily integrate (1), to give  
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where es
0 is a constant (usually the saturated vapour pressure at S.T.P. [298.15K and one atmosphere pressure]) and T is the absolute 

temperature. Note that this equation shows that es is strongly dependent on temperature; warm air can contain much more water 
vapour than cold air. For example, in the tropics (air temperature 250C) the partial pressure of water vapour is 32mb; in the polar 
vortex (temperature –200C) the partial pressure is 1.2mb.  
 
There are two other ways of expressing the amount of water vapour in the atmosphere. The specific humidity, q, is defined as  
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The final equality follows from the fact that the volume is the case in both cases. We can use the standard equation of state for the 
water vapour and the air to give expressions for vρ  and ρ . This gives ( )TRe Sv OH/ 2=ρ  and TRP S/=ρ . Hence we have 
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It  is usually possible to ignore the effect of the water vapour on M  and so we can use the value of 28.96 used before. Obviously, we 

can define saturated specific humidity , MPMeq vss /= . Note that although the saturated vapour pressure does not depend on the 
atmospheric pressure, the saturated specific humidity does. 
 
The other measure is  the relative humidity, RH. This is the ratio of the partial pressure of water in the atmosphere to the saturated 
vapour pressure at that temperature, expressed as a percentage i.e. 

RH = 100e(T) / es(T)    (5) 
 
Measuring the amount of water vapour in the atmosphere. 
There are two standard measurements; the wet-bulb thermometer and the dew-point meter. A wet-bulb thermometer consists of a 
thermometer surrounded by a wick that is kept saturated with water. Water vapour both condenses onto the wick and evaporates from 
it. The excess of evaporation over condensation cools the thermometer and the temperature is measured. We will consider an idealised 
version of this. The wet-bulb temperature, Tw, is defined as the lowest temperature to which an air parcel can be cooled by evaporating 
water into it adiabatically and at constant pressure. If the initial temperature of the bulb is T, the net amount of water evaporated is 

vm∆ and the total mass of the air parcel is m then we have 

( )wPvS TTmCmL −=∆  

                                              ( ) SwPv LTTCmm // −=∆                                       (6) 
 

 ignoring the effect of the water on the heat capacity term. We can also write 
 

  
( ) ( ) ( ) ( ) ( ) ( )TqTqqq

m
m

m
m

m
m

ws
vvv −=−=−=

∆
initialfinal

initialfinal
 (7)  

 
The final equality comes from the fact that the air parcel at the wet-bulb temperature must be saturated. Thus we have 

 
                                                    ( ) ( ) ( ) SwPws LTTCTqTq /−−=         (8) 

 
qs(Tw) can be found from the Clausius-Clapeyron equation (or in practice looked up in tables) so we can obtain q(T). A properly set-up 
wet-bulb thermometer gives a reasonable approximation to Tw.  
 



A dew-point meter has of a cooled surface. The air in contact with this is cooled at constant pressure until it saturates and begins to 
deposit dew. This is the dew point, Td . Since the amount of vapour in the air has not changed until the dew point is reached and also 
the pressure has remained constant, the partial pressure of water must also be constant during the cooling process. Hence e(T ) = es 
(Td). This gives the relative humidity directly; RH = 100es(Td) / es (T ). Note that the dew-point depression is much greater (about 
twice) the wet-bulb depression; the dew-point experiment involves only condensation; the wet-bulb involves both evaporation and 
condensation and the effects of these processes act against each other.  
 
We must consider three major processes in the atmosphere: 
• cooling (or warming) at constant pressure – in most cases this implies constant height.  
• expansion / compression (i.e. the effect of moving parcels of air up or down) 
• mixing of hot and cold air at different pressures (again moving parcels of air up or down) 
 
Thermodynamics of air and clouds (Adiabatic expansion with condensation) 
We return to the thermodynamics of air parcels. When we considered the dry adiabatic lapse rate, we derived the equation 

δQ =  CPdT - (1/ρ) dP     (9) 
where we consider a unit mass of air and so replace the volume V  by  (1/ρ). This ignores the possibility that water vapour in the air 
can evaporate (or condense). This releases (requires) the latent heat. The effect of this (for detailed – and non-examinable – proof see 
below) is that the lapse rate in wet air is much less than in dry air. The temperature does not fall so fast with height because the latent 
heat released as the water vapour condenses out warms the air up. The  temperature/height curve changes shape as it passes through a 
cloud. The regions where the temperature is nearly constant as the height rises are due to the heating effect of the condensation of 
water vapour in the cloud 
 
To prove this, we must  reconsider the enthalpy balance (9) including the latent heat effects where water evaporates or condenses. This 
can occur only when the air is saturated with water vapour. This gives 
 

dH = CP dT. + LS dmV + (1/ρ)  dP     (10) 
  

mV is the mass of water vapour present in a unit mass of air (and is therefore the ratio of the density of water vapour to the density of 

air, (ρv / ρ). We can use the equation of state for a gas, TRP S ρ=  and set MPeMm vV /=  using the definition of specific 
humidity, but remembering that everything is referred to unit mass of air. Hence, at constant pressure,  
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If the air is saturated, we can set e = es and use the Clausius-Clapeyron equation  
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and so, substituting this into the equation above,   
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which can be substituted into the enthalpy equation to give a relationship entirely in terms of the atmospheric variables (T, P). If we 
consider the system to be adiabatic as before, we have the amended heat equation 
 

δQ = CP dT – (1/ρ)  dP + LS dmv  = 0    (14)  
 
Again, we use the simple gas law TRP S ρ=   to substitute for the density,  
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Using equation (13) to substitute for dmV  gives (after some manipulation) 
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The extra terms increase dP/dT since ( ) 1OH/ 2 >TRL SS . But we know that the lapse rate dT/dz = dP/dz (dT/dP).  dP/dz, the 
pressure variation with height, is not much affected by water vapour. So an increase in dP/dT will decrease the lapse rate dT/dz. 
 



Cooling in the atmosphere 
Dew and frost form as a result of condensation or sublimation of water vapour on solid surfaces (in particular the ground). These 
radiate heat during the night, cooling themselves (and the air immediately above them) to temperatures below the saturation vapour 
pressure. Cooling occurs at constant partial pressure of water vapour until the point where the saturation vapour pressure is reached. 
There are two important cases. First, the air will become saturated with respect to ice and this temperature is the frost point ( Tf ). 
Freezing may not occur; this process requires appropriate surfaces for ice to form. Cooling may continue until the air becomes 
saturated with respect to water. This temperature is the dew point (Td ). 
 
Condensation occurs as microscopic droplets formed on condensation nuclei (for example on aerosols in the atmosphere). This results 
in fog. As droplets form, they themselves can radiate heat (they act as black bodies). However, the air is heated up by the latent heat of 
fusion being produced. The effect is that the cooling rate below the dew-point is slower than above the dew-point.  
 
The argument is essentially the same as the argument for lapse rates above. The heat that must be lost by the atmosphere below the 
dew-point is  
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since the pressure is constant. This is greater than before the dew-point and, even with the extra mechanisms of heat loss now present, 
cannot be removed as fast as before. 
 
Mixing in the air 
• Horizontal mixing. If two adjacent air masses of low humidity mix the process occurs at constant pressure. If no condensation 

occurs, the result is air with a temperature which is the average of that of the two air masses. If condensation occurs (as it will if 
one of the masses is hot and humid and the other one is cold) then supersaturation and condensation will occur giving a mixing 
fog. An example of this is the tail of a jet aircraft; hot, humid air emerges from the combustion chamber into the cold, dry, air 
outside. 

• Vertical mixing. In unstable regions of the atmosphere, convection may ensure vertical motion. This will give a thorough mixing 
of a whole layer. If condensation occurs, the process of cloud formation can begin 

 
Clouds 
There is a general classification of clouds summarised in the list below. Terms can either be nouns (the –us form) or qualifiers (the –o 
form).  
• Cirrus (cirro) A cloud containing ice-crystals -  therefore high altitude 
• Stratus (strato) A layer cloud. This may be continuous or show structure 
•             (alto ) A middle-height cloud 
• Cumulus (cumulo) indicates vertical circulation within the cloud, this gives the ‘fluffy’ shape and is quite different from the 

stratus form 
• Nimbus (nimbo) Cloud producing precipitation (rain., snow, hail) 
Not all the possible combinations can occur even in principle, but many do. For example a cumulonimbus cloud is a cloud with large 
vertical movement of air producing (usually a lot of) rain – it is a thunderstorm cloud.  
 
Let is consider an average cumulus cloud. The shape is (crudely) cylindrical – this is good enough for a rough estimate. A typical 
cloud will be about 2km in diameter and 2km in depth. Hence the volume is about πd2H / 4 = 6.28 x 109 m3. A cloud contains of the 
order of 50-500 million water droplets per cubic metre. Each of these droplets is about 10 microns in radius. Thus the volume of  a 
single droplet is 4πr3/3 i.e.  
4.2 x 10-15m3. Given the density of water, 1000kg/m3, the mass of the droplet is about 
4.2 x 10-12 kg. Thus the mass of the cloud (at the lowest reasonable density of droplets) is about 1.3 x 106 kg – about 1300 tonnes. 
This seems a lot, but if all the water in this cloud fell at once, the depth of water would be (Volume of water)/(area of cloud base); 
which for the figures we gave above is 4.2 x 10-4 m  - 0.42mm which is not a lot. During a storm therefore, lots of ‘clouds’ must pass 
over you.  
 
Cloud formation. Clouds are formed as hot humid air rises and cools by adiabatic expansion. When air reaches saturation, excess 
water vapour condenses onto small particles called cloud condensation nuclei. The partial vapour pressure required to produce 
condensation is higher  than the thermodynamic vapour pressure because the surface of a drop is curved. On the other hand, the effect 
of dissolving material into the drop decreases the vapour pressure. Both effects depend on the drop radius, r but act in the opposite 
relation as shown below (for a proof see the appendix) 
 

( )
( ) 31

pureflat,
droplet

r
mB

rT
A

p
p

−+=         (18) 

 



where A and B are constants and m is the mass of dissolved solute. The solute nuclei come from natural sources such as dust from 
wind erosion, sea salt etc. (see the list of aerosol sources given earlier). They can also arise from industrial products (sulphate 
particles, coal dust). About 100 such particles per cm3 are needed to form a cloud. Since there are 103 particles /cm3 over the sea, 104 
particles /cm3 over land and 105 particles /cm3 over cities, forming clouds should not, on the face of it, be a problem. However, 
matters are not quite so simple. 

 
Growing droplets in clouds 
 
Growth by condensation: Consider a water drop at rest. Water 
vapour condenses onto the surface of the droplet, releasing 
latent heat. The temperature of the droplet rises, altering the 
vapour pressure, e. Eventually a steady state is reached. There is 
a gradient of the partial pressure of the water vapour driving a 
flux of water vapour towards the drop. Also the  rate of heat 
loss is equal to the heat gained by the drop from the latent heat 
of the water. This gives an equation of the form for the growth 
rate of the radius r of the drop  

C
dt
drr =  where C is a constant. This integrates to give r2 = 

r0
2 + 2Ct where r0 is the initial droplet size. The diagram above 

shows the behaviour expected. The problem is that detailed 
calculation shows that it would take 1-4 hours for a drop to 
grow from 2 to 30 microns. Yet in a typical cloud there are 
many droplets larger than 10 microns although the lifetime of a cloud can be as short as ten minutes.. One final problem, as the cloud 
rises, the temperature falls and so the saturated vapour pressure falls. Thus the supersaturation in the cloud must rise. This means that 
more and more nuclei are capable of acting as condensation nuclei for water droplets. More of the water vapour is removed and 
eventually an equilibrium is reached again. How then does the cloud grow? Clearly condensation is not enough to explain cloud 
growth 
 
Another possible growth mechanism is coalescence -  two droplets collide to make a larger droplet. The probability of coalescence 
depends on (i) the size of the droplets (i.e. their cross-section) and their relative velocity. The velocity of droplets depends on a 
balance between gravity and frictional forces. For reasonably small particles (less than 30 microns in diameter), the terminal velocity 
is given by Stokes Law; 

Fv =  6πηrv     (18) 

where Fv is the drag force i.e. the force exerted by the viscous forces on the particle that act against the force pushing the particle 
through the medium (in this case gravity). η is the viscosity of the medium (air in this case) and r is the radius of the particle.  

Droplet diameter (mm) Terminal velocity (m/sec) 
0.01 0.003 
0.1 0.025 
1.0 4.03 
5.0 9.09 

When these forces are in equilibrium the droplet reaches terminal velocity. This obviously depends on the droplet size. Typical values 
are given in the table above. 
The expression controlling the rate of growth 
takes the form  
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where E is the collection efficiency taking  
account of the fact that the drop is not a sphere,  
w is the volume swept out by the falling droplet, V is the droplet velocity and  ρ is the 
density of water. Combining the two modes of   
growth we get an overall growth rate curve of  
the form shown on the right. It is clear that  
there is a ‘barrier’ to growth at the 20 micron 
size where neither process is efficient. The    
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mechanism that overcomes this barrier is still 
not understood. Possibilities include increasing  
the efficiency of collisions by including the effect of turbulence, invoking droplet-droplet interactions by electrical forces.  When the 
droplet reaches a diameter of 2-3mm they are broken apart by collisions rather than built up. Above 6mm the droplet becomes 
unstable anyway; the surface tension cannot hold it together.  
 
Once the drops grow to a size beyond the ability of the updraughts in the cloud to maintain them, they begin to fall. Below the cloud, 
they are in unsaturated air and begin to evaporate again. Rain falling from a cloud need not reach the ground This can sometimes be 
seen as a tapering veil beneath a cloud; the virga. Only the larger drops; those that have swept up their neighbours by coalescence, can 
reach the ground as rain. In the case of colder clouds, the precipitation often begins as ice or hail which melts on the way down. 
Sometimes, of course, it doesn’t 
 
Thunderstorms. 
One of the most dramatic events in the weather; pictures of thunderstorms have been found in cave paintings. Thunderstorms occur 
when moist, warm air near the ground becomes  buoyant and rises to form small cumulus clouds. These clouds grow and surge 
upwards to combine and form cumulonimbus; anvil-shaped clouds. These main extend half a mile into the stratosphere. Within these 
clouds there is vigorous movement; updrafts and downdrafts at tens of metres per second. Such movements lead to a separation of 
electrical charges within the cloud; Positive charge gets carried to the top and negative charge to the bottom. The charge carriers are 
electrons, molecules, aerosol dust, hailstones and snowflakes. The process of charging is unclear but may include frictional contact, 
freezing, melting, and break-up of water droplets. Once charge separation has occurred, an electric field is established. The air may 
then become ionised. Thus a small region of the atmosphere is changed from being a good insulator to a highly conducting path. Thus 
there can be (and is) an electrical discharge. This is lightning – which is simply a high-voltage spark. The average lightning discharge 
involves the flow of  ten coulombs of charge across a potential difference of about 100 million volts. Thus the energy is about 109J 
(about 280Kwatt-hours). This is enough to run an air conditioner for two weeks.  
 
The  main types of lightning are 
1. Ground discharges [thunderbolts, forked lightning]. These occur between the cloud and the ground. They consist of a ‘leader 

stroke’ establishing an ionised path to the ground up which a ‘return stroke’ passes.  
2. Cloud lightning [sheet lightning, heat lightning] occurs within the cloud. It gives a diffuse illumination without a distinct channel 

being seen. If there are distant thunderstorms on the horizon, the sheet lightning is what will be seen 
3. Air discharges [streak lightning] passes from cloud to cloud or cloud to air but does not reach the ground (i.e. no return stroke). 
4. Ball lightning Unusual and still not fully explained. Usually small balls (but reported diameters up to 1m) of electrical discharge. 

Move slowly in the air or along the ground; usually disappear with a violent explosion.  
Although lightning is the most spectacular effect of a thunderstorm, it is only a small part of the total energy budget of the storm 
 
Thunder is the sound wave produced by a lightning stroke. The sudden rise in pressure in the lightning channel produces an intense 
sound wave as in an explosion. Sound travels at 310-340m/sec so the sound follows behind the lightning flash. Hence counting the 
interval between the flash and the thunder gives a rough estimate of the distance of a storm (about 1km for every three seconds but 
there may be echoes which confuse matters). 



Appendix: Initial problems of condensation, Thomson relations and Raoult’s Law 
 
It is harder to make water condense onto a curved surface than onto a planar surface because there is a pressure difference P∆  across 
a curved surface.  This is because work has to be done against the surface tension to increase the area. Try to expand a bubble (or a 
droplet) by a volume dV, causing a change in area dA. Then we have  
 

dAdVP γ=∆ .          (A1) 
where γ is the surface tension. Then, for a sphere, 
 

( )[ ] drrrdrrdrrP γπππγπ 8444. 222 =−+=∆     (A2)   
giving rP /2γ=∆ . Note that since the work is done against the surface tension, this must be provided by the pressure difference – 
the pressure difference gets less as the bubble or droplet expands.  
 
For a molecule in a gas outside the surface, but in equilibrium with that surface, the change in energy due to curvature is PΩ∆  where 
Ω  is the molar volume of the gas. This is the change in the chemical potential of the gas (with reference to a flat surface) i.e. 
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applying the perfect gas law to both cases. Hence, rewriting and expanding the resulting exponential 

( ) ( ) ( ) ( ) 





 Ω
+≈Ω=

rRT
rRT γργρρ 21flat/2expflatcurved     (A4) 

 
A second effect on the pressue of the water vapour outside the droplet comes from Raoult’s Law which states that the partial vapour 

pressure of a component of a solution is proportional to the mole fraction present in the solution iii xpp 0= . If we put solute into a 

solvent, giving a mole fraction xc of solute, then the vapour pressure of the solvent is given by )1(0
cii xpp −= . If a water droplet, 

mass mv has a mass m of solute dissolved in it, then the number of moles of solvent is given by )/1000(3
3
4

wwv MrN ρπ=  where 

wρ is the density of water. The number of moles of solute is )/1000( ss MmN =  and so the mole fraction of solvent is  

( ) 









−=−≈+=

sw

w
vssvvv M

M
r
mNNNNNx

πρ3
431/1/    (A5) 

 
Since the effects of curvature and Raoult’s law are independent to first order, and since TRp Sii ρ= , we can combine (A4) and 
(A5) to obtain 
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where the constants A and B are obtained from the equations above. This shows that vapour pressure required to condense water 
droplets has two terms. For very small droplets,  the second (Raoult law) term will dominate. In that case, it will be easier to condense 
water onto a droplet than onto a flat surface. As the droplet grows, the Thomson term will dominate (as the droplet grows,  rTA /  

gets smaller much more slowly than TrBm 3/ ). It will be come harder to condense water onto a droplet than onto a flat surface. At 

ABmTr /32 = , the  unfavorable effect is at a maximum (for drops of a few microns diameter). Thereafter, it becomes easier to 
condense water onto the drop as the drop grows larger, and the drop can grow freely. 
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