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Density of states 
 
 

The concentration of neutral impurities, ionized impurities, and free carriers in a doped 
semiconductor depends on a large number of parameters such as the impurity atom 
concentration, the free carrier mass, the bandgap energy, and the dielectric constant. The 
interdependences of the free majority and minority carrier concentration, the impurity 
concentration, impurity ionization energy as well as some other constants and materials 
parameters are given by semiconductor statistics. Semiconductor statistics describes the 
probabilities that a set of electronic states are either vacant or populated. 

Electronic states include localized impurity states as well as delocalized conduction and 
valence band states. In the simplest case, an impurity has a single state with no degeneracy 
(g0 = 1). However, an impurity may have a degenerate ground state (g0 > 1) as well as excited 
levels which may need to be considered. The states in the bands and their dependence on energy 
are described by the density of states. In semiconductor heterostructures, the free motion of 
carriers is restricted to two, one, or zero spatial dimensions. In order to apply semiconductor 
statistics to such systems of reduced dimensions, the density of states in quantum wells (two 
dimensions), quantum wires (one dimension), and quantum dots (zero dimensions), must be 
known. The density of states in such systems will also be calculated in this chapter. 
 

12.1 Density of states in bulk semiconductors (3D) 
Carriers occupy either localized impurity states or delocalized continuum states in the 
conduction band or valence band. In the simplest case, each impurity has a single, non-
degenerate state. Thus, the density of impurity states equals the concentration of impurities. The 
energy of the impurity states is the same for all impurities (of the same species) as long as the 
impurities are sufficiently far apart and do not couple. The density of continuum states is more 
complicated and will be calculated in the following sections. Several cases will be considered 
including (i) a spherical, single-valley band, (ii) an anisotropic band, (iii) a band with multiple 
valleys, and (iv) the density of states in a semiconductor with reduced degrees of freedom such 
as quantum wells, quantum wires, and quantum boxes. Finally the effective density of states will 
be calculated. 
 

Single-valley, spherical, and parabolic band 
The simplest band structure of a semiconductor consists of a single valley with an isotropic 
(i. e. spherical), parabolic dispersion relation. This situation is closely approximated by, for 
example, the conduction band of GaAs. The electronic density of states is defined as the number 
of electron states per unit volume and per unit energy. The finiteness of the density of states is a 
result of the Pauli principle, which states that only two electrons of opposite spin can occupy 
one volume element in phase space. The phase space is defined as a six-dimensional space 
composed of real space and momentum space. We now define a ‘volume’ element in phase space 
to consist of a range of positions and momenta of a particle, such that the position and 
momentum of the particle are distinguishable from the positions and momenta of other particles. 
In order to be distinguishable, the range of positions and momenta must be equal or exceed the 
range given by the uncertainty relation. The volume element in phase space is then given by 
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 3)2( hπ=∆∆∆∆∆∆ zyx pppzyx  . (12.1)  

The ‘volume’ element in phase space is (2π h )3. For systems with only one degree of freedom, 
Eq. (12.1) reduces to the one-dimensional Heisenberg uncertainty principle ∆x ∆px = 2π h. The 
Pauli principle states that two electrons of opposite spin occupy a ‘volume’ of (2π h)3 in phase 
space. Using the de Broglie relation (p = h k) the ‘volume’ of phase space can be written as 

 3)2( π=∆∆∆∆∆∆ zyx kkkzyx  . (12.2)  

The density of states per unit energy and per unit volume, which is denoted by ρDOS(E), allows 
us to determine the total number of states per unit volume in an energy band with energies E1 
(bottom of band) and E2 (top of band) according to 

 EEN
E
E
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2

1
ρ= ∫  . (12.3)  

Note that N is the total number of states per unit volume, and ρDOS(E) is the density of states per 
unit energy per unit volume. To obtain the density of states per unit energy dE, we have to 
determine how much unit-volumes of k-space is contained in the energy interval E and E + dE, 
since we already know that one unit volume of k-space can contain two electrons of opposite 
spin. 

 

In order to obtain the volume of k-space included between two energies, the dispersion 
relation will be employed. A one-dimensional, parabolic dispersion relation E = E (kx) is shown 
in Fig. 12.1. For a given dE one can easily determine the corresponding length in k-space, as 
illustrated in Fig. 12.1. The k-space length associated with an energy interval dE is simply given 
by the slope of the dispersion relation. While the one-dimensional dispersion relations can be 
illustrated easily, the three-dimensional dispersion relation cannot be illustrated in three-
dimensional space. To circumvent this difficulty, surfaces of constant energy in k-space are 
frequently used to illustrate a three-dimensional dispersion relation. As an example, the constant 
energy surface in k-space is illustrated in Fig. 12.2 for a spherical, single-valley band. A large 
separation of the constant energy surfaces, i. e. a large ∆k for a given ∆E, indicates a weakly 
curved dispersion and a large effective mass. 
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In order to obtain the volume of k-space enclosed between two constant energy surfaces, 
which correspond to energies E and E + dE, we (first) determine dk associated with dE and 
(second) integrate over the entire constant energy surface. The ‘volume’ of k-space enclosed 
between the two constant energy surfaces shown in Fig. 12.3 is thus given by 

 s
kE
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= ∫−  (12.4)  

where ds is an area element of the constant energy surface. In a three-dimensional k-space we 
use gradk = (∂ / ∂kx, ∂ / dky, ∂ / ∂kz) and obtain 
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Since an electron requires a volume of 4π3 in phase space, the number of states per unit volume 
is given by 
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Finally, we obtain the density of states per unit energy and unit volume according to 
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In this equation, the surface element ds is always perpendicular to the vector gradk E (k). Note 
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that the surface element ds is in k-space and that ds has the dimension m–2. 
Next we apply the expression for the density of states to isotropic parabolic dispersion 

relations of a three-dimensional semiconductor. In this case the surface of constant energy is a 
sphere of area 4π k2 and the parabolic dispersion is E = h2

 k2
 / (2m*) + Epot where k is the wave 

vector. Insertion of the dispersion in Eq. (12.7) yields the density of states in a semiconductor 
with a single-valley, isotropic, and parabolic band 
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where Epot is a potential energy such as the conduction band edge or the valence band edge 
energy, EC or EV, respectively. 
 

Single-valley, anisotropic, parabolic band 
In an anisotropic single-valley band, the dispersion relation depends on the spatial direction. 
Such an anisotropic dispersion is found in III – V semiconductors in which the L - or X - point of 
the Brillouin zone is the lowest minimum, for example in GaP or AlAs. The surface of constant 
energy is then no longer a sphere, but an ellipsoid, as shown in Fig. 12.4. The three main axes of 
the ellipsoid may have different lengths, and thus the three dispersion relations are curved 
differently. If the main axes of the ellipsoid align with a cartesian coordinate system, the 
dispersion relation is 
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The vector gradk E is given by gradk E = (h2 kx / mx*, h2ky / my*, h2kz / mz*). Since the vector 
gradk E is perpendicular on the surface element, the absolute values of ds and gradk E can be 
taken for the integration. Integration of Eq. (12.7) with the dispersion relation of Eq. (12.9) 
yields the density of states in an anisotropic semiconductor with parabolic dispersion relations, 
i. e. 
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If the main axes of the constant-energy ellipsoid do not align with the kx, ky, and kz axes of the 
coordinate system then mx

*, my
*, and mz

* can be formally replaced by m1*, m2*, and m3*. 
Frequently, the constant energy surfaces are rotational ellipsoids, that is, two of the main 

axes of the ellipsoid are identical. The axes are then denoted as the transversal and the 
longitudinal axes for the short and long axes, respectively. Such a rotational ellipsoid is 
schematically shown in Fig. 12.4. A relatively light mass is associated with the (short) 
transversal axis, while a relatively heavy mass is associated with the (long) longitudinal axis. If 
the masses are denoted as mt

* and ml
* for the transversal and the longitudinal mass, respectively, 

Eq. (12.10) can be modified according to 
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The anisotropic masses mx*, my*, mz*, ml*, and mt* are frequently used to define a density-of-
states effective mass. This mass is given by 
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The density of states is then given by  

 pot
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 . (12.13) 

Note that for isotropic semiconductors the effective mass coincides with the density-of-states 
effective mass. 
 

Multiple valleys 
At several points of the Brillouin zone, several equivalent minima occur. For example, eight 
equivalent minima occur at the L-point as schematically shown in Fig. 12.5. Each of the valleys 
can accommodate carriers, since the minima occur at different kx, ky, and kz values, i. e. the Pauli 
principle is not violated. The density of states is thus obtained by multiplication with the number 
of equivalent minima, that is 
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where Mc is the number of equivalent minima and m1*, m2*, and m3* are the effective masses for 
motion along the three main axes of the ellipsoid. 
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12.2 Density of states in semiconductors with reduced dimensionality (2D, 1D, 0D) 
Semiconductor heterostructure allows one to change the band energies in a controlled way and 
confine charge carriers to two (2D), one (1D), or zero (0D) spatial dimensions. Due to the 
confinement of carriers, the dispersion relation along the confinement direction is changed. The 
change in dispersion relation results in a change in the density of states. 

Confinement of a carrier in one spatial dimension, e. g. the z-direction results in the 
formation of quantum states for motion along this direction. Consider the ground state in a 
quantum well of width Lz with infinitely high walls. The ground-state energy is obtained from 
the solution of Schrödinger’s equation and is given by 
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The particle in the quantum well can assume a range of momenta in the z-direction; the range is 
given by the uncertainty principle, i. e. 
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The dispersion relation for motion along the confinement (z-) direction is thus given by 

 0EE =  for the entire range of kz . (12.17) 

The dispersion is flat, i. e. constant for all values of kz. The z-component of the vector gradk E 
(see Eq. 12.7) is therefore zero and need not be considered. 

We next consider the x- and y- direction and recall that the Schrödinger equation is separable 
for the three spatial dimensions. Thus, the kinetic energy in the x y - plane is given by 
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for a parabolic dispersion. 
The surface of constant energy for the dispersion relation given by Eq. (12.18) is shown in 
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Fig. 12.6, and is a circle around kx = ky = 0. The density of states of such a 2D electron system is 
obtained by similar considerations as for the 3D case. The reduced phase space now consists 
only of the x y -plane and the kx and ky coordinates. Correspondingly, the two-dimensional 
density of states is the number of states per unit-area and unit-energy. The volume of k-space 
between the circles of constant energy is given by Eq. (12.5). The equation is evaluated most 
conveniently in polar coordinates in which kr = (kx

2 + ky
2)1/2 is the radial component of the k-

vector. The surface integral reduces to a line integral and the total length of the circular line is 
2π kr. The volume of k-space then obtained is 
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Since two (one) electrons of opposite spin require a volume element of (2π)2 in phase space, the 
density of states of a 2D electron system is given by 

 2
D2

DOS
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where E0 is the ground state of the quantum well system. For energies E ≥ E0, the 2D density of 
states is a constant and does not depend on energy. If the 2D semiconductor has more than one 
quantum state, each quantum state has a state density of Eq. (12.20). The total density of states 
can be written as 
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 (12.21) 

where En are the energies of quantized states and σ(E – En) is the step function. 

 

We next consider a one-dimensional (1D) system, the quantum wire, in which only one 
direction of motion is allowed, e. g. along the x-direction. The dispersion relation is then given 
by E = h2

 kx
2

 / (2m*). The ‘volume’ (i. e. length-unit) in k-space is obtained in analogy to the 
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three-dimensional and two-dimensional case according to Eq. (12.5). The ‘surface’ integral 
reduces to a single point in k-space, i. e. the point k = kx. Thus, the volume of k-space is given by 
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The volume in phase space of two electrons with opposite spin is given by 2π and thus the 1D 
density of states is given by  
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Note that the density of states in a 3-, 2- and 1-dimensional system has a functional dependence 
on energy according to E1/2, E0, and E – 1/2, respectively. For more than one quantized state, the 
1D density of states is given by 
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where En are the energies of the quantized states of the wire. 

 

Finally, we consider the density of states in a zero-dimensional (0D) system, the quantum 
box. No free motion is possible in such a quantum box, since the electron is confined in all three 
spatial dimensions. Consequently, there is no k-space available which could be filled up with 
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electrons. Each quantum state of a 0D system can therefore be occupied by only two electrons. 
The density of states is therefore described by a δ-function. 

 )(2)( 0
D0

DOS EEE −δ=ρ  (12.25) 

For more than one quantum state, the density of states is given by 

 )(2)(D0
DOS nn EEE −δ=ρ ∑  . (12.26) 

The densities of states for one quantized level for a 3D, 2D, 1D, and 0D electron system are 
schematically illustrated in Fig. 12.7.  
 

12.3 Effective density of states in 3D, 2D, 1D, and 0D semiconductors 
The effective density of states is introduced in order to simplify the calculation of the population 
of the conduction and valence band. The basic simplification made is that all band states are 
assumed to be located directly at the band edge. This situation is illustrated in Fig. 12.8 for the 
conduction band. The 3D density of states has square-root dependence on energy. The effective 
density of states is δ-function-like and occurs at the bottom of the conduction band. 

 

An electronic state can be either occupied by an electron or unoccupied. Quantum mechanics 
allows us to attribute to the state a probability of occupation. The total electron concentration in 
a band is then obtained by integration over the product of state density and the probability that 
the state is occupied, that is 

 dEEfEn
E
E

)()(DOS
top

bottom
ρ= ∫  (12.27) 

where f(E) is the (dimensionless) probability that a state of energy E is populated (see Sect. on 
semiconductor statistics). The limits of the integration are the bottom and the top energy of the 
band, since the electron concentration in the entire band is of interest. 

As will be shown in a subsequent section, the probability of occupation, f(E), is given by the 
Maxwell – Boltzmann distribution (see Sect. on Maxwell – Boltzmann distribution). The 
Maxwell – Boltzmann distribution, also frequently referred to as the Boltzmann distribution, is 
given by 
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where EF is the Fermi energy (for a definition of the Fermi energy the reader is again referred to 
the next section). Using Eq. (12.27), the electron concentration can be determined by evaluating 
the integral. 

The effective density of states at the bottom of the conduction band is now defined as the 
density of states which yields, with the Boltzmann distribution, the same electron concentration 
as the true density of states, that is 
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where Nc is the effective density of states at the bottom of the conduction band and EC is the 
energy of the bottom of this band. Strictly speaking, the effective density of states has no 
physical meaning but is simply a mathematical tool to facilitate calculations. For completeness, 
Eqs. (12.27) and (12.29) are now given explicitly using the Boltzmann distribution and the 
density of states of an isotropic three-dimensional semiconductor: 
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The upper limit of the integration can be taken to be infinity without loss of accuracy due to the 
strongly converging Boltzmann factor. Evaluation of the integral in Eq. (12.30) and comparison 
with Eq. (12.31) yields the effective density of states 
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Note that the effective density of states given by Eq. (12.32) applies to one minimum in the 
conduction band. If there are a number of Mc equivalent minima in the conduction band, the 
corresponding density of states must be multiplied by Mc. Furthermore, if the band structure is 
anisotropic, the effective mass m* must be replaced by the density-of-states effective mass 
mDOS*. For a degenerate valence band with heavy and light holes, the effective density of states 
is the sum of both effective state densities, that is 
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The effective density of states in a two-dimensional system (i. e. a system with two degrees of 
freedom) is obtained by the identical procedure as the three-dimensional effective density of 
states. The equations analogue to Eqs. (12.30) and (12.31) then read  
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where Nc
2D is the two-dimensional effective density of states. The carrier concentration n2D 

represents the number of electrons per unit-area and is also referred to as the 2D density. 
Evaluation of the integral yields 
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Finally, the effective density of states of a one-dimensional (1D) system is obtained in a similar 
way. The 1D density, i. e. the number of carriers per unit length is given by 

 E
EE

mn kTEE
E

de
)(2

*1 /)(

C

D1 F
C

−−∞

−π
= ∫ h

 , (12.37) 

 kTEENn /)(D1
c

D1 FCe −−=  . (12.38) 

The one-dimensional effective density of states is obtained as 
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The evaluation of a zero-dimensional density of states does not yield a simplification of the 
carrier-density calculation, since the zero-dimensional density of states is δ-function like. 
Table 12.1 summarizes the dispersion relation, the density of states, and the effective density of 
states of semiconductors with various degrees of freedom. 
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Degrees of Dispersion Density of states Effective density 
freedom (kinetic energy)  of states 
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Table 12.1 Density of states for semiconductor with 3, 2, 1, and 0 degrees of freedom for 
propagation of electrons. The dispersion relations are assumed to be parabolic. The formulas can 
be applied to anisotropic semiconductors if the effective mass m* is replaced by the density-of-
states effective mass mDOS*. If the semiconductor has a number of Mc equivalent minima, the 
corresponding density of states must be multiplied by Mc. The bottom of the band is denoted as 
EC and σ(E) is the step-function. 

 


