Spacetime and Gravity: Assignment 4

In what follows, unless otherwise stated, we will use units such that the speed of light, $\mathrm{c}=1$.

1
The line element of a two dimensional hyperbolic space is given by:

$$
\begin{equation*}
d s^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) \tag{1}
\end{equation*}
$$

What is the metric, $g_{\mu \nu}$ and its inverse $g^{\mu \nu}$.
Calculate all the Christofell Symbols for this space? You may use:

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \tau}\left(\partial_{\beta} g_{\tau \gamma}+\partial_{\gamma} g_{\tau \beta}-\partial_{\tau} g_{\beta \gamma}\right) \tag{2}
\end{equation*}
$$

Write our the geodesic equations for the hyperbolic space described above.
Calculate the Riemannian curvature of this space. Recall, that only $R_{x y x y}=-R_{y x x y}=$ $-R_{x y y x}=R_{y x y x}$ is non zero.

Calculate the Ricci tensor of this space and show that it solves the equation:

$$
\begin{equation*}
R_{\mu \nu}=-g_{\mu \nu} \tag{3}
\end{equation*}
$$

You can use:

$$
\begin{equation*}
R^{\epsilon}{ }_{\mu \nu \sigma}=-\partial_{\sigma} \Gamma^{\epsilon}{ }_{\mu \nu}+\partial_{\nu} \Gamma^{\epsilon}{ }_{\mu \sigma}+\Gamma^{\alpha}{ }_{\mu \sigma} \Gamma^{\epsilon}{ }_{\alpha \nu}-\Gamma^{\alpha}{ }_{\mu \nu} \Gamma^{\epsilon}{ }_{\alpha \sigma} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\mu \nu}=R^{\alpha}{ }_{\mu \alpha \nu} \tag{5}
\end{equation*}
$$

