Spacetime and Gravity: Assignment 3

In what follows, unless otherwise stated, we will use units such that the speed of light, $\mathrm{c}=1$ (and for this weeks exercises the permeablity of free space is also one).

1
Take the following 2 tensor:

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \tag{1}\\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

and the following vector:

$$
j^{\mu}=\left(\begin{array}{c}
Q \tag{2}\\
j_{x} \\
j_{y} \\
j_{z}
\end{array}\right)
$$

Now calculate:

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=j^{\nu} \tag{3}
\end{equation*}
$$

in terms of the vectors: $\mathbf{E}=\left(E_{x}, E_{y}, E_{z}\right), \mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right), \mathbf{j}=\left(j_{x}, j_{y}, j_{z}\right)$ and the scalar Q.

Do you recognise these equations? (The answer yes or no will not do).
(Hint, write out the components of curlB.)

2

The line element on a unit 2-sphere is:

$$
\begin{equation*}
d s^{2}=d \theta^{2}+\sin (\theta)^{2} d \phi^{2} \tag{4}
\end{equation*}
$$

What is the metric?
What is the inverse metric?
What are the Christoffel symbols?
You will need

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \delta}\left(\partial_{\gamma} g_{\delta \beta}+\partial_{\beta} g_{\delta \gamma}-\partial_{\delta} g_{\beta \gamma}\right) \tag{5}
\end{equation*}
$$

