Spacetime and Gravity: Assignment 2

In what follows, unless otherwise stated, we will use units such that the speed of light, $\mathrm{c}=1$.

1

In Kings I 7:23, in describing Solomon's temple there is a desription of a circular "sea of cast bronze". It is described as follows: It was round in shape, the diameter from rim to rim being ten cubits and it took a line thirty cubits long to go around it.

Assume the bible is correct and explain the seemly incorrect value of the ratio of the circumference to the diameter of a circle by postulating that it was built on the surface of a sphere of radius a.

Find the radius of this sphere a, in cubits to two decimel place. You may use:

$$
\begin{equation*}
c=2 \pi a \sin \left(\frac{r}{a}\right) . \tag{1}
\end{equation*}
$$

Hint, expand the above formula for $r<a$.

2

Define,

$$
\begin{equation*}
z=x+\tau y \tag{2}
\end{equation*}
$$

with τ a complex number given by, $\tau=\tau_{1}+i \tau_{2}$ where τ_{1} and τ_{2} are real. What is the line element:

$$
\begin{equation*}
d s^{2}=d z \bar{d} z \tag{3}
\end{equation*}
$$

in terms of $d x, d y, \tau_{1} \tau_{2}$ (where $\bar{d} z$ is the complex conjugate of dz.)

3

Carry out the following coordinate transformations on the flat space line element,

$$
\begin{gather*}
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}, \tag{4}\\
x=r \sin (\theta) \cos (\phi) \quad y=r \sin (\theta) \sin (\phi) \quad z=r \cos (\theta), \tag{5}
\end{gather*}
$$

to get the line element in terms of the coordinates t, r, θ, ϕ. These are 3 d spherical polars. Now, do anyother coordinate transformation to express the metric in terms of u, v, θ, ϕ where

$$
\begin{equation*}
u=t-r \quad v=t+r \tag{6}
\end{equation*}
$$

u, v are called light cone coordinates. Why?

