Spacetime and Gravity: Assignment 1

In what follows, unless otherwise stated, we will use units such that the speed of light, $\mathrm{c}=1$.

1

The Lorentz transformations are given by:

$$
\begin{equation*}
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2}}} \quad t^{\prime}=\frac{t-v x}{\sqrt{1-v^{2}}} \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
-t^{\prime 2}+x^{\prime 2}=-t^{2}+x^{2} \tag{2}
\end{equation*}
$$

Set $v=\tanh (\theta)$ and substitute into the Lorentz transformations (1) to find the Lorentz transformations in terms of θ given by:

$$
\begin{equation*}
t^{\prime}=t \cosh (\theta)-x \sinh (\theta) \quad x^{\prime}=x \cosh (\theta)-t \sinh (\theta) . \tag{3}
\end{equation*}
$$

You will need the identity for hyperbolic trigonomtery that:

$$
\begin{equation*}
\frac{1}{\sqrt{1-\tanh ^{2}(\theta)}}=\cosh (\theta) \tag{4}
\end{equation*}
$$

Now again show that

$$
\begin{equation*}
-t^{\prime 2}+x^{\prime 2}=-t^{2}+x^{2} \tag{5}
\end{equation*}
$$

using the Lorentz transformations (3).

2

Energy,E and momentum,p also transform under Lorentz transformations as follows:

$$
\begin{equation*}
E^{\prime}=\frac{E-v p}{\sqrt{1-v^{2}}} \quad p^{\prime}=\frac{p-v E}{\sqrt{1-v^{2}}} . \tag{6}
\end{equation*}
$$

Show

$$
\begin{equation*}
-E^{2}+p^{2} \tag{7}
\end{equation*}
$$

is the quantity that is left invariant by these transformations? Define this invariant quantity to be $-m^{2}$. In the frame where $\mathrm{p}=0$ and putting back in the factors of c what famous equation have you derived?

3

Extract the metric, $g_{\mu \nu}$ from the following line element:

$$
\begin{equation*}
d s^{2}=-f(y) d t^{2}+2 f(y) \gamma d x d t+f(y) d x^{2}+d y^{2}+d z^{2} \tag{8}
\end{equation*}
$$

with γ a constant. What is $g^{\mu \nu}$? Show that in the new coordinates ($\mathrm{T}, \mathrm{X}, \mathrm{y}, \mathrm{z}$) given by

$$
\begin{equation*}
T=\sqrt{1+\gamma^{2}} t \quad X=x+\gamma t \tag{9}
\end{equation*}
$$

the metric is diagonal. Hint: calculate $-d T^{2}+d X^{2}$.

4

For two dimensions take with coordinates, $x^{\mu}=(t, x)$ Take the line element to be:

$$
\begin{equation*}
d s^{2}=-f(t, x) d t^{2}+2 g(t, x) d t d x+h(t, x) d x^{2} \tag{10}
\end{equation*}
$$

Write out the metric. Then simply write out the full expressions for

$$
\begin{equation*}
x^{\mu} x_{\mu} \tag{11}
\end{equation*}
$$

Given vector, $E^{\mu}=(E, p)$ What is:

$$
\begin{equation*}
E_{\mu} \quad E_{\mu} x^{\mu} \quad E^{\nu} E_{\nu} \quad x^{\mu} E_{\nu} x^{\nu} E_{\mu} \quad x^{\mu} E^{\nu} x_{\mu} E_{\nu} \tag{12}
\end{equation*}
$$

