Spacetime and Gravity: Assignment 3 Solutions

Gianni Tallarita

February 12, 2009

In what follows, unless otherwise stated, we will use units such that the speed of light, $c=1$.
1.

We are given the 2 tensor

$$
F^{\mu \nu}=\left(\begin{array}{rrrr}
0 & -E_{x} & -E_{y} & -E_{z} \tag{1}\\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

and the vector

$$
j^{\mu}=\left(\begin{array}{c}
Q \tag{2}\\
j_{x} \\
j_{y} \\
j_{z}
\end{array}\right)
$$

and we are asked to calculate

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=j^{\nu} \tag{3}
\end{equation*}
$$

So we make use of the summation convention and expand the equation in terms of components of the tensor

$$
\begin{equation*}
\partial_{0} F^{0 \nu}+\partial_{1} F^{1 \nu}+\partial_{2} F^{2 \nu}+\partial_{3} F^{3 \nu}=j^{\nu} \tag{4}
\end{equation*}
$$

Now we pick ν manually. Pick $\nu=0$ first,

$$
\begin{align*}
\partial_{0} F^{00}+\partial_{1} F^{10}+\partial_{2} F^{20}+\partial_{3} F^{30} & =j^{0} \tag{5}\\
\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z} & =Q \tag{6}\\
\Rightarrow \nabla \cdot E & =Q \tag{7}
\end{align*}
$$

Now pick $\nu=1,2,3$ in turn. For $\nu=1$:

$$
\begin{align*}
\partial_{0} F^{01}+\partial_{2} F^{21}+\partial_{3} F^{31} & =j^{1} \tag{8}\\
-\partial_{t} E_{x}+\partial_{y} B_{z}-\partial_{z} B_{y} & =j_{x} \tag{9}
\end{align*}
$$

Similarly, $\nu=2$

$$
\begin{align*}
\partial_{0} F^{02}+\partial_{1} F^{12}+\partial_{3} F^{32} & =j^{2} \tag{11}\\
-\partial_{t} E_{y}-\partial_{x} B_{z}+\partial_{z} B_{x} & =j_{y} \tag{12}
\end{align*}
$$

and $\nu=3$,

$$
\begin{align*}
\partial_{0} F^{03}+\partial_{1} F^{13}+\partial_{2} F^{23} & =j^{3} \tag{14}\\
-\partial_{t} E_{z}+\partial_{x} B_{y}-\partial_{y} B_{x} & =j_{z} \tag{15}
\end{align*}
$$

Adding the last three relations together we obtain

$$
\begin{equation*}
-\partial_{t} \tilde{E}+\nabla \times \tilde{B}=\tilde{j} \tag{17}
\end{equation*}
$$

We have obtained Maxwell's equations! This means that we can recast the whole of Electromagnetism in a special relativistic form, thus making lorentz covariance explicit.
2.

We are given the line element of the unit 2-sphere:

$$
\begin{equation*}
d s^{2}=d \theta^{2}+\sin ^{2}(\theta) d \phi^{2} \tag{18}
\end{equation*}
$$

¿From which we can extract the metric:

$$
g_{\mu \nu}=\left(\begin{array}{rr}
1 & 0 \tag{19}\\
0 & \sin ^{2}(\theta)
\end{array}\right)
$$

The inverse metric is then

$$
g^{\mu \nu}=\left(\begin{array}{cc}
1 & 0 \tag{20}\\
0 & \frac{1}{\sin ^{2}(\theta)}
\end{array}\right)
$$

Using the following relation

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \delta}\left(\partial_{\gamma} g_{\delta \beta}+\partial_{\beta} g_{\delta \gamma}-\partial_{\delta} g_{\beta \gamma}\right) \tag{21}
\end{equation*}
$$

We calculate the Christoffel symbols

$$
\begin{align*}
\Gamma_{\beta \gamma}^{\alpha}= & \frac{1}{2} g^{\alpha \delta}\left(\partial_{\gamma} g_{\delta \beta}+\partial_{\beta} g_{\delta \gamma}-\partial_{\delta} g_{\beta \gamma}\right) \tag{22}\\
= & \frac{1}{2} g^{\alpha 1}\left(\partial_{\gamma} g_{1 \beta}+\partial_{\beta} g_{1 \gamma}-\partial_{1} g_{\beta \gamma}\right) \tag{23}\\
& +\frac{1}{2} g^{\alpha 2}\left(\partial_{\gamma} g_{2 \beta}+\partial_{\beta} g_{2 \gamma}-\partial_{2} g_{\beta \gamma}\right) \tag{24}\\
\Gamma_{\beta \gamma}^{1}= & \frac{1}{2} g^{11}\left(\partial_{\gamma} g_{1 \beta}+\partial_{\beta} g_{1 \gamma}-\partial_{1} g_{\beta \gamma}\right) \tag{25}
\end{align*}
$$

$$
\begin{align*}
\Rightarrow \Gamma_{11}^{1} & =\frac{1}{2} g^{11}\left(\partial_{1} g_{11}+\partial_{1} g_{11}-\partial_{1} g_{11}\right) \tag{26}\\
& =\frac{1}{2}\left(\frac{\partial(1)}{\partial \theta}\right) \tag{27}\\
& =0 \tag{28}\\
\Rightarrow \Gamma_{22}^{1} & =\frac{1}{2} g^{11}\left(-\partial_{1} g_{22}\right) \tag{29}\\
& =-\frac{1}{2}\left(\frac{\partial\left(\sin ^{2}(\theta)\right)}{\partial \theta}\right) \tag{30}\\
& =-\sin (\theta) \cos (\theta) \tag{31}\\
\Rightarrow \Gamma_{12}^{1} & =\frac{1}{2} g^{11}\left(\partial_{2} g_{11}+\partial_{1} g_{12}-\partial_{2} g_{12}\right) \tag{32}\\
& =0=\Gamma_{21}^{1} \tag{33}
\end{align*}
$$

And

$$
\begin{align*}
\Gamma_{\beta \gamma}^{2} & =\frac{1}{2} g^{22}\left(\partial_{\gamma} g_{2 \beta}+\partial_{\beta} g_{2 \gamma}-\partial 2 g_{\beta \gamma}\right) \tag{34}\\
\Rightarrow \Gamma_{22}^{2} & =\frac{1}{2} g^{22}\left(\partial_{2} g_{22}+\partial_{2} g_{22}-\partial_{2} g_{22}\right) \tag{35}\\
& =0 \tag{36}\\
\Rightarrow \Gamma_{11}^{2} & =\frac{1}{2} g^{22}\left(\partial_{1} g_{21}+\partial_{1} g_{21}-\partial_{2} g_{11}\right) \tag{37}\\
& =0 \tag{38}\\
\Rightarrow \Gamma_{21}^{2} & =\frac{1}{2} g^{22}\left(\partial_{1} g_{22}+\partial_{2} g_{21}-\partial_{2} g_{21}\right) \tag{39}\\
& =\frac{1}{2 \sin ^{2}(\theta)}\left(\frac{\partial\left(\sin ^{2}(\theta)\right)}{\partial \theta}\right) \tag{40}\\
& =\frac{1}{2 \sin ^{2}(\theta)} 2 \sin (\theta) \cos (\theta) \tag{41}\\
& =\frac{\cos (\theta)}{\sin (\theta)} \tag{42}\\
& =\cot (\theta)=\Gamma_{12}^{2} \tag{43}
\end{align*}
$$

These are the Christoffel symbols of our space.

1 Summary of important concepts

1.We can re-express a classical theory such as Electromagnetism in a form such that its special relativistic nature is manifest. To do this one makes use of the 4 -vector notation.
2.Even though in our case we found that the Christoffel symbols are symmetric under exchange of the lower indices:

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha} \tag{44}
\end{equation*}
$$

this is only true in the case of vanishing torsion.

