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The Concept of a Cross Section and Related Terms.

In, order to discuss how light or particle beams are attenuated in
passing through a material, it is convenient to introduce the concept of
an interaction cross section. In the simplest sense, the cross section is
just the projected area of a particle or atom of the material. For
example, if the material is modeled by a collection of hard spheres of
radius R, then the cross section of each sphere for scattering light rays,
imagined to be little beams of light, is just aR2. This cross—section is
often referred to as the total scattering cross—section. The light ray
could either be completely absorbed by the sphere, partially scattered
into some new direction, or reflected completely by some scattering
mechanism such as specular reflection.

Absorption Length

Consider a flux of radiation of intensity I, particles/area/time
impinging upon a container of atoms each with cross sectional area #R%, If
, the atoms have a density n per unit volume and are randomly distributed in
3 the volume then in a depth dx, there will be ndx atoms per unit area -
.» (ignore atoms that are cut into pieces by the ends of dx). The fraction
of a unit area covered by atoms will be nmR2dx. This area will be shadowed
by the atoms if we assume that they are all perfect absorbers. The
intensity after passing through dx will be less by an amount

31 )Q./ = —I nwR%dx.

To find the effect of a number of such thin absorbing layers, we can sum
up the intensity decreases by integrating with respect to x. This gives

LI(X)'# ='117‘R2f° xdx

If we now define
2 = 1/(naR32)
we can write
I(x)=I, exp(~x/2)

where { becomes the absorption length. We have ignored the shadowing of
one atom by another in going from one dx element to the next. Since dx is
arbitrarily small, this is justified so long as n is not infinitely large.
A more sophisticated approach would use the probability of absorption in
dx and treat each layer in a probablistic manner. Such a complication is
not needed at this point in our discussion.

The absorption length is sometimes referred to as optical depth for
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absorption, i.e., if we go into the material a distance £, we are at a
unit optical depth for absorption. If the atoms or absorbers are not
perfect, but can scatter the radiation as well as absorb it and there is
enough scattering to place a substantial amount of radiation back into the
original beam, then the problem is much more complicated and we must
develop a method of radiative transfer. For most of the applications in
this course, such a complication will not be required.

Differential Scattering Cross Section

In the above discussion we assumed that the atoms acted as perfect
absorbers and that the total projected area of each atom was all that was
important for the absorption process. In many applications it is necessary
to consider a more complicated situation, namely, that the radiation may
be scattered into a different direction without being absorbed (a mixture
of absorption and scattering is also possible, of course). A simple way
to treat the scattering problem for our example of a reflecting sphere
(something like a shiny ball bearing, for example) is to examine the
following diagram. Suppose a beam of radiation is incident upon our
sphere as shown.
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Let the beam be uniform in intensity such that the flux in
little ring is simply I2xbdb, where 2nbdb is the area of the ring,
centered about the ray passing through the center of the sphere. It is
straight forward to derive a relationship between the distance b
(sometimes called the "impact parameter") and the angles § and 6, namely
b=R sin # and 6=180-20. We can relate the area 2wrbdb
to R and § from geometry as

2xbdb = 2#R sin 6 cos 4 dé
for b < R.
At this point it is useful to introduce a new concept (to some
of you, perhaps), that of the solid angle.

As you can see from the above figure above, for a given b and
db, rays are scattered into a range of angles between 8 and 6+de, all
around the axis of symmetry through the center of the sphere. The angle
around the symmetry axis is usually called ¢. The unit of solid angle is



' : called the steradian. There are 4x steradians over the entire ‘sphere One
- way of thinking about the steradian is to consider the area of -a sphere of
unit radius. The area of such a sphere is then 4x area units. A

differential element of area on such a sphere is given in. the diagram
below.
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dA = (R sin fdyp) R4S
Now for R = 1 we have

dQ = sin 6dfde
and

=
f dQ=2f 2f”dq;s:i.n(?dﬁ=4,1:st:erad:ians
sphere 0 0

We now can introduce the concept of a differential cross section, o(Q) or
do/dQ as it is sometimes written in the literature, defined as:

o(Q)d0 = particles scattered into dQ per unit time

incident flux per unit area
For the case of our reflecting sphere we have
2nxbdb = 2#R2 sinf# cosf db
Using © = wn-26 this becomes
2 cosf sinf df = - cos(8/2) sin (8/2)de
or using 1/2 angle formulas |
o(Q)d0= (1/2)aR? sinBde

' (and noting that dQ = 2xsin® d6 for cylindrical symmetry)
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a(Q) = (1/4) R? da

This expression shows that o(2) is independent of angle, i.e. the shiney
ball scatters wuniformly. The total cross section is obtained by
integrating this expression over all angles, which gives 4, since the
integrand is independent of angle.

Mean Free Path

In terms of the attenuation of a beam as mentioned before, the absorption
length ¢ is related to the absorption cross section o, by

£ = 1/(noy)

For molecules or atoms in a gas there is an analogous expression for the
mean distance they travel between collisions that is very close to this
expression,

1.e.; lpy = (1/4)Jx/2 (1/(no;)), where the (1/4)]1/2 comes from averages
taken over Maxwellian velocity distributions for the atoms which are
moving, and the fact that the beam atoms have a cross sectional area of oy
as well as the target atoms.

Photoelectron Absorption Cross section

In the x-ray band of the spectrum, atoms absorb x-rays
primarily by photoelectric absorption of the =x-ray photon with the
subsequent emission of an electron from the atom leaving an ion and an
excited atom, which ultimately de-excites with the emission of a photon of
energy characteristic of the atomic energy levels. A simple energy diagram-
of an atom might look like the figure below
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The levels in an atom are referred to as shells in x-ray literature
and are denoted as above. The famous Einstein equation applies to this
interaction, namely

hv - ¢-Ekemax

where hv is the incoming photon energy, ¢ is the binding energy of the
electron in the atom which is ejected and E,, ,,, is the maximim kinetic
energy of the emitted electron. The most probable electron to be ejected
is the one deepest in the atoms potential well consistent with energy
conservation. The kinetic energy of the emitted electron is exactly
determined in the case of an isolated atom. The photo-electric equation
given above is more general in that it allows the electron to be
scattered before leaving a substance, in which case it could lose some
energy before reaching a detector. The L-K energy photon emitted when hv
is greater than the K shell binding energy, is the most likely photon
emitted. Higher energy photons will occasionally be emitted (M-K energy)
as well as further filling of holes until the ion reaches its ground state
energy.

The calculation of the cross section for this process is a standard
quantum mechanics problem (see L. Schiff, Quantum Mechanics). Essentially
the atom is treated by perturbation theory. Usually a hydrogenic ion is
assumed, so that the wave functions for the atom can be expressed in a
simple form. We will only us the results of the calculation at this time,
as well as mesured data. A good source for absorption cross sections is W.
J. Veigeli - 1973 Atomic Data Vol. 5 p52, or Henke et al. 1982 Atomic Data
Tables 27, 1.

In general, the photo-electric cross section is strongly energy
dependent and depends on the atomic charge of the atom. For hydrogenic
atoms, o,, ~ Z°/E’/2 . For neutral atoms o,, goes more like Z* and E8/3,
A typical cross section as a function of energy is shown below.
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The K-edge is produced when the photon energy falls below the binding

energy ofthe K-shell electrons in the atom. At this energy only L-shell
electrons can be ejected, and since the photon energy is much larger than
the L shell energies the interaction is not as strong as it was just at
the K-shell energies where a resonance occurs. The cross section is
usually given in units of barns, which are units of 1072* cm?. This is a
small unit for atoms and a large unit for nuclear collisioms.
If a gas is made up of several kinds of atoms, each one acts independent-
lyof the others for absorbing x-rays. The total absorption is obtained by
simply adding up each species with its absorbing cross section and
density.

The subsequent de-excitation of the atom deserves some comment.
There are actually two ways that the de-excitation takes place: a) by the
emission of a photon or b) by the emission of an Auger ( pronounced 0-jay)
electron. The relative probability of these two effects depends upon the
Z of the atom and the energy levels involved. Case a) is sometimes called
the fluorescent yield of an atom. For L to K-shell transitions the
fraction of atoms de-exciting by the emission of a photon is empirically
given as

C, = Z*/(Z* + 109%)

This shows that for high Z, mostly fluorescent photons are emitted
(photons characteristic of the material being excited) and for low Z
mostly Auger electrons are emitted. The atomic diagram for Auger electron
emission looks like the following ;
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There can be a whole cascade of Auger electrons as the atom adjusts
back to its ground state energy of the final ionic species.

Absorption by Interstellar Gas.

Most of the gas in the galaxy 1is atomic hydrogen. Because the
photoelectric cross section increases so rapidly with increasing atomic
charge, however, the less abundant elements such as helium, carbon and
oxygen play a significant role in absorbing x-rays as they travel through
the gas. Several workers have computed the absorbing power of the
interstellar material. These are:

Brown and Gould 1970 Phvs. Rev. DI, 2252
Cruddace et al 1974 Ap.J. 187, 497

Ride and Walker 1977 A. & A. 61, 339
Morrison and McCammon 1983 Ap. J 270, 119.

For rough calculations an approximate analytic expression for the cross
section is

Ope = 2x10722 (E/1keV)™®3 cm? /atom of hydrogen.

This does not take account of absorption edges, however, only the edge at
532 eV for oxygen is significant compared to most detector energy
resolution properties. For sources that have a spectral energy distribu-
tion that can safely be extrapolated to lower energies, the absorption of
the x-rays together with an estimate of the mean density of hydrogen along
the line of sight to the source can be used to estimate the distance to
the source. Conversely, if the distance is known by some other means, the
absorption provides information about the amount of matter between the
earth and the source. Binary x-ray sources may have a substantial amount .
of gas in the vicinity of the stars, which can lead to a high estimate for
the distance or density of matter in the interstellar medium.

The absorption for the insterstellar medium is shown below from the
Cruddace et al. reference.
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Non Relativistic Bremsstrahlung and Thermal Bremsstrahlung

A very hot plasma with a temperature of over a million degrees is
largely ionized. The radiation from such a plasma is composed of three
components; radiation from the electrons when they collide with ions in
the plasma, radiation from free electrons when they are captured by an
ion, and radiation from ions that are not completely stripped of their
electrons when they collide with free electrons. In a typical high
temperature plasma that is in equilibrium, the electrons are moving much
faster than the ions since they are much lighter but share the ions energy
through the equipartition of energy, i.e. kT per degree of freedom where
k is Boltzmann’s constant and T the temperature. To obtain a
rough estimate of the radiated power in a collision between an ion of
charge Z and an electron with impact parameter b, the projected distance
of closest approach of the electron to the ion, use the maximum
acceleration times an effective collision time, i.e.,

Amax = Zez/mebz and Teo11, = b/V .

The radiation emitted will then be

_g_[._I:Ee_zaz
dt 3 3
au
U(b) ~—==) Teon

where use has been made of the general radiation formula for a non
relativistic electron undergoing acceleration a.

For most of the situations of interest to x-ray astronomy we will be
interested in how much power emerges from a unit volume of hot plasma,
rather than the radiative loss of electron energy in a single collision.
Let the plasma be composed of ions of number density N, and electrons of
number density N, > N, . In thermal equilibrium the electrons will move
much faster than the ions, so we only need to consider their motion. They
will have a Maxwellian velocity distribution f£(v) in thermal equilibrium.
For the moment only consider electrons of speed v selected from the
distribution. The power radiated by these electrons will be

dpP(v) _ Bpax
L _Ne,szfbun U(b) 2nbdb

The value for b,,, is much greater than b,;;, in general, which means
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the upper limit can be set to infinity. The rule is that b should be of
order of the Debye length in the plasma ~ (kT/4aN,e2)%. This is the
distance in a plasma that is required for the charges in a plasma to
adjust their distribution to cancel out the effects of a localized charge
i.e. the the plasma is polarizable somewhat like a dielectric material.
The value of b,;, is the size of the uncertainty wave packet for the
electron characteristic of its motion, i.e., bpin ~ h/m,v. The velocities
need to be greater then about Zac, or the electron will be captured by the
ion.
Using this value for by,

dP(v) AT 2.2 _» m,v e?
—_—=——2Z%r e CNgN s I =
av 3 ¥ 4 h # m_c?

The effective cross section for this process is defined as

o=(%(VL))/NzNGVE, E=Yam_v?

That is to say, the cross section is the power radiated by particles
of energy E and velocity v into all directions, divided by the flux of
energy incident (N,vE) on targets of density N,. Writing this out,

o=%ﬁzzr§ezc/hmevz

and using a=e?/#ic, #=h/2w,

=0

ey Z2rie (c/v)?

and substituting A =fi/m,v

a=—§izza3).29

where the value of A, ~ by, .

An exact calculation using quantum mechanics gives

. 167
3/3

¢ Z3PA g, (v )

where gz(v,v) is called the Gaunt factor after the man who first calculated
this correction factor.
The Gaunt factor is given by



v, _a =270y V;+V
gB(V,v)=A/3_ Zi|l-e log| —2—£|, hv=Yem (vi-v}), v,=v
T\ Ve) g 250y Vi-Ve

where v; and v; are the initial and final velocities of the electron,
and n; and n; are Ze?/#v; and Ze%/hv; respectively.

In order to compute the power radiated by a unit volume of plasma
with a Maxwellian distribution of velocities, we must define the velocity
distribution.

S DV
e 32kT y2gy

3 _myv?
21tkT)

N(v) dV=41tN,( Mo

The energy radiated by the plasma per unit volume and time is then

J(v,T) =NZIW(Vi)va (v, v) vdv,

64T [ez) 2 [ ¢ }— -
= NN,Z3 =— |rsd —= [g,(v, TV & *T
33 Nz = ec( Vth) ££

by
=6.8x1072%Z2N N, T %g..(v,T) e *Tergs/cmisecHz

where v, = (2 kT/ﬁrm,,)"x and _gff(u,T) is the temperature averaged Gaunt
factor. This factor has been computed by Karzas and Latter, 1961, Ap.J.
Suppl. 6, 167. For the region of temperature and frequencies that we will

study gee(v,T) ~ (kT/hv)%* to sufficient accuracy.

In the interstellar medium, the gas is composed of a small fraction
of higher Z elements compared to hydrogen. If the plasma in an object is
assumed to be composed of "cosmic abundance"” of elements then we can
compute the emission j(v) for the sum of all these elements. Since the
emission goes as N,N;, and almost all N; will be completely ionized at the
higher temperatures of x-ray sources, we will get Z electrons from a
species N;. Letting

5=Y" Z*N N,
Z

= 1.4 N2 for T > 10° °K.



Total Emission

The total emission from a region emitting by thermal bremsstrahlung

is just the integral of j(v) over frequency. This integration including
the Gaunt factor is

. 32 2 C

J(T) = or —)kTg (T) NN, Z2
3\/3_ e iy £f eNz

=1.4 x 10727 ™ S g, (T) ergs/cm® sec.

The Gaunt factor is 1.2 for temperatures greater than 10° °K. Using S for
cosmic abundance

J(T) = 2.4 x 107%7 T* N,2 ergs/cm® sec.

This emission dominates line emission and recombination radiation for
temperatures above 107 °K. The energy content of the plasma is

E = 3 N, kT (electron plus ions)
so that the time scale for cooling is
Tets = 3 No KT/j(T)
=1.8 x 10! T%/N, sec.

Free-free Absorption

If there is a sufficient flux of photons in a plasma, it is possible
for an electron to absorb a photon as it passes a nucleus rather than.
emitting a photon. This process is called free-free absorption, and the
electron gains energy in the ollision. The calculation of this process
is carried out most easily by developing the equations of radiative
transfer and requiring that the emission from a region does not exceed the
emission from a blackbody at the same temperature and frequency. The
results of such a computation is an expression for the free-free
absorption.

hv
u(v)=( zgia)m T_1) (j (v, T) /4m)

-hv
=3.7x10% v (1l-e ¥T) T-Y2N N,g. (v, T) / (v3T-3/2) cp~1
In most x-ray sources this is important only for frequencies hv<<kT

so that

B (v)=0.018Z2N_N,gr(V, T)v2T3/2 cm-1



The effect of this factor is to modify the free-free emission spectrum as
shown below
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If a cloud of plasma is of radius R, then where u(v) R becomes of
order 1, the effect of free-free absorption will be to modify the spectrum
to force it to equal or fall below the blackbody spectrum of the cloud if
it were optically thick and emitting like a blackbody.

Emission Integral and Emission Measure

For media transparent to their own radiation field, the total
emission from a hot cloud of gas will be proportional to the integral of
N, over the cloud.

i.e.

<nZv>= N2dv
cloud
which is called the emission integral.
The surface brightness of a cloud of gas that can be resolved, or a
cloud that surrounds the earth will be proportional to

dI)dQ f N2r2drdQ
dQ cloud dr?

cLoud
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since from a point 0 the emission is proportional to the elements of
volume and the intensity reaching 0 will be the emitted flux divided by
4nr? if it is emitted isotropically. If we assume a uniform density in the
cloud then the surface brightness is just

dr _ NaR
daQ 4w

The quantity N,2R is the emission measure of the source.

Radiative Recombination

For electrons moving with v < Zac, the probability of capture by the ion
is significant and this capture cross section must be included to obtain
the emission from the hot plasma. The diagram of the interaction is shown
below
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Energy conservation provides

hV=Ei-Iz_1'n

where I, , is the ionization energy of the ion with charge Z-1, after
capture, and the principal quantum number n, is for the captured
electron. The potential well that the electron falls into for
hydrogenic ions has a depth AE, = Z2 I,/n?, where I, is the ionization.
energy of hydrogen to the ground state (n =1, I, = 13.6 eV).

The cross section is quite similar to the bremsstrahlung cross
section, except for a term which takes account of the final state of the
electron - i.e., it is bound.

: 2
0 o(n) =—32—“Zza3).25(ﬁ)g,z(n) /n?
3V/3 hv
For low electron energies E; < < Z; I /n? , hv is nearly equal to ZZ I,/nZ,
so ogx(n) ~n"l. In a thermal plasma E; = kT, so for ions with kT << Z2I,,
og(n)~n"1. The Gaunt factor is 1.0 to about ten percent for plasmas we
will study.

Total Recombination Coefficient

In determining the 1ionization structure of a plasma, i.e., the
concentration of different ionic species, it is often useful to compute a
quantity called the recombination coefficient. This quantity, when

multiplied by the electron and ion density of the plasma will provide a
measure of the rate at which recombination is taking place.
The total recombination rate is

@, =Y <o (n)w
n

where the average is over the wvelocity distribution of the plasma
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electrons. Carrying out this sum and averaging yields

%

64T 3_2 2kT —

¢ =——aa| —| yd(y)g
5 3/3 o(”me)

=2 x 1071 72 T ¢(y) cm® sec?
where y=2? I,/kT and a, is the Bohr radius, #2/me?.

¢(J’)=0.5(1.735+Qny+6—:§’-), y21
=y(-1.2020ny-0.298), y<l
At temperatures for which kT >> 72 I,

-3
@ ~Z4T 2 (kT/Z%T,) ,

showing that recombination falls rapidly when the electron energy becomes
large compared to the binding energy of the ion.

Continuum Spectrum from Recombination
The spectrum of recombination radiation is given by
jR(v)=NZhvoR(n)j; N, (v) vdv
= 1.8 x 107% T7%/2 n™3 N, N, 2% exp((I,-; , - hv)/kT) ergs/cm® sec Hz

which will look like

Loy 7e”
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Line Radiation

Line radiation occurs following the excitation of an atom or ion
either by an electron collision or the absorption of a photon of the line
energy. Since the latter process does not yield new photons to the
radiation field unless a cascade process follows the excitation, t h e
collision process will be evaluated here to determine the emission of
energy from the plasma.

In the case of line radiation, an electron must transfer a precise
energy to the atomic electron. As a function of impact parameter this
energy can be evaluated using an impulse approximation as we have done for
free-free emission.
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2m, b?v3m,
which corresponds to the line energy. This give a value for b of

m,v2AE E/AE

where AE will be related to the line energy. The cross section is then of
order (less than actually, since only a narrow range of b's will transmit
the correct energy)

o(AE) = nb? .
Now if we introduce the Bohr radius

a, = #2/m, e? and the ionization potential of hydrogen I, = e2/2a,,
we can write the cross section as '

o(AE) = 4 x a2 1,2/(E, AE).
The correct quantum mechanical calculation gives

V3 EAEzlm/

for a hydrogenic atom of charge Z, where n and n’' are the principal

quantum numbers of the transition, f£(Z,n,n’) the dipole oscillator

strength and g(Z,n,n’',E;), the effective Gaunt factor (~0.2 for hydrogen).
The emission of lines from a Maxwellian plasma is then

dp,

—£=NNAE[ 0 (v) vE(v) dv

0 (AE, )=

Z,n,n'yg(Z:n,n' , B,)

2 3
32n2 ' 2kT\3
) ‘/32 aﬁ( kg‘) kT( nme) “IgNNzexp (-AE;, , /KT)

AE /

Z,n,n

=2 .3x10'15T""?§NaNze- kI ergs/cm?® sec.

If we sum over all lines for a plasma of cosmic abundance composition,
then the total radiative power and separate components of the power for

the three emission processes are shown below

For a plasma with a
cosmic abundance of elements, the plasma emission is shown for three
temperatures in the following diagram. These figures are from Giacconi
and Gursky, X-ray Astronomy.




~log P/Ng" lerg em® /sec)

b-zz

0724

T C T rrriy T T T TTTT

Ll

1 011141

1

(#), redistive recomblastion (), and
continnom

— g /0® (o clrvee by

RENNEN

3

processs

\wo-photon emislon (27) are thowe. Deshed Eoz yepreseatn
eminion (O ¢} Va3 x HFK; () T = 18% 10K (7 w06 « 10°K;
D7 =3 x K.

wEmee
Jremm, o




