
Ethan Acklin
806 683-3694
eacklin@live.com

SKILLS Languages

C/C++, Objective-C, HLSL, PHP, HTML
SDKs

DirectX, FMOD, WinSock, OpenGL ES, UIKit, Quartz 2D

Integrated Development Environment
Microsoft Visual Studio 2005,2008, 2010
Xcode 4

EDUCATION DeVry University
Bachelor of Science in Game and Simulation Programming

PROJECTS Brick Breaker App
2D iPhone application based on the original Brick Breaker game.

• Utilized personal 2D game engine for the base of the framework.
• Managed memory using an image cache.

Texas Hold’em Client
Multithreaded network based 3d game which utilized the Winsock and DirectX
APIs.

• Dedicated two separate threads for receiving and sending data.
• Made use of critical sections to control synchronization of data.
• Optimizing data packets was handled through bit encoding.
• Used personal rendering engine interfaced with DirectX9.

Guns ‘N’ Grit

Designed and implemented an audio and physics core for a 3D racing game. Both
cores were designed around the concepts of being plug and playable as well as
being reusable, testable, and maintainable. These core architectures were achieved
by using a modular design and other design patterns such as builder, singleton,
façade, adapter, mediator, and chain of responsibility.
Audio Core

• Abstract class design using polymorphism provides for any 3rd party audio
API, currently interfaced with FMOD.

• Support and full control for 2D or 3D sounds.
• Capable of playing long streams or short sounds.

Physics Core
• Resources are set up in a property centric design to be cache friendly.
• Realistic unconstrained motion was successfully simulated using a Runge-

Kutta fourth order solver.
• Thrust, drag, and explosive forces allowed for a more dynamic and

interactive experience.
• Spatial subdivision is managed through a hybrid setup of a grid and

multiple octrees.
• Shape casting and line segment intersection allowed for predictive collision

detection.
• The Separating Axes Theorem was used for nonintersection queries

between spheres, axis aligned bounding boxes, oriented bounding boxes,
and triangles.

• Implementing the Ritter Iterative Sphere algorithm produced a tight fitting
bounding sphere from a mesh.

• Bounding boxes were obtained from a mesh through a brute force method
of projecting all vertices.

• To handle terrain and other odd shapes, polysoups are used.
 

