University College London Department of Physics and Astronomy 2246E Mathematical Methods III
 Coursework M3 (2007-2008)

Solutions to be handed in on Wednesday, December, 12th, 2007

1. The Legendre polynomials satisfy the recurrence relations

$$
\begin{aligned}
(2 n+1) x P_{n}(x) & =(n+1) P_{n+1}(x)+n P_{n-1}(x) \\
(2 n+1) P_{n}(x) & =P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)
\end{aligned}
$$

and are normalised such that

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}
$$

Use these results to evaluate

$$
\int_{-1}^{+1} P_{n+1}(x) x P_{n}(x) d x
$$

3 MARKS
and show that

$$
\int_{-1}^{+1} P_{n+1}^{\prime}(x) P_{n}(x) d x=2
$$

Using the Legendre polynomials from the lecture notes, verify both relations by explicitly integration for the case of $n=1$.
2. The odd function $\mathrm{f}(\mathrm{x})$ has the following properties
(a) $f(x)=-f(-x)$;
(b) $f(x)=f(x+2 \pi)$;
(c) $f(x)=\sin \left(\frac{1}{2} x\right)$, for $-\pi<x<+\pi$.
(d) $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$, where the Fourier coefficients are

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

Turn sheet over \rightarrow

Obtain the coefficients b_{n} and show that the Fourier series is

$$
f(x)=\frac{8}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{1-4 n^{2}} \sin n x
$$

6 MARKS
Evaluate the Fourier series at $x=\pi$ and comment on the answer.
State Parseval's theorem and use it to evaluate

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(4 n^{2}-1\right)^{2}} .
$$

6 MARKS
3. The Hermite polynomials $H_{n}(x)$ arise in the solution of the one-dimensional simple harmonic oscillator in quantum mechanics. They may be defined by the generating function

$$
g(x, t)=e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) t^{n} .
$$

By differentiating both sides either with respect to x or t, derive the recurrence relations

$$
\begin{gathered}
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x), \\
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) .
\end{gathered}
$$

3 marks

Given that $H_{0}(x)=1$, and $H_{1}(x)=2 x$, derive the form of $H_{2}(x) \quad 4$ marks from the second recurrence relation and show that it satisfies the first one.

University College London Department of Physics and Astronomy 2246 Mathematical Methods III
 Coursework M3 (2007-2008)

Model Answers

1. Solution to Problem 1

$$
\begin{align*}
&(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x), \tag{1}\\
&(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x), \tag{2}\\
& \int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m} . \tag{3}\\
& \int_{-1}^{+1} P_{n+1}(x) x P_{n}(x) d x=
\end{align*}
$$

from eqn. 1

$$
\begin{aligned}
& =\int_{-1}^{+1} P_{n+1}(x)\left[\frac{n+1}{2 n+1} P_{n+1}(x)+\frac{n}{2 n+1} P_{n-1}(x)\right] d x \\
& =\frac{n+1}{2 n+1} \frac{2}{2(n+1)+1} \\
& =\frac{n+1}{2 n+1} \frac{2}{2 n+3} \\
& \qquad \quad \int_{-1}^{+1} P_{n+1}^{\prime}(x) P_{n}(x) d x=
\end{aligned}
$$

NB: From eqn. 2

$$
P_{n+1}^{\prime}(x)=(2 n+1) P_{n}(x)+P_{n-1}^{\prime}(x)
$$

hence

$$
\begin{aligned}
& =\int_{-1}^{+1}\left[(2 n+1) P_{n}(x)+P_{n-1}^{\prime}(x)\right] P_{n}(x) d x \\
& =(2 n+1) \frac{2}{2 n+1}+\int_{-1}^{+1} P_{n-1}^{\prime}(x) P_{n}(x) d x \\
& =2+\int_{-1}^{+1} P_{n-3}(x) P_{n}(x) d x=\ldots=\left\{\begin{array}{cc}
2+\int_{-1}^{+1} P_{1}^{\prime}(x) P_{n}(x) d x & n \text { even, } n \neq 0 \\
2+\int_{-1}^{+1} P_{0}^{\prime}(x) P_{n}(x) d x & n \text { odd }
\end{array}\right.
\end{aligned}
$$

Since $P_{0}^{\prime}=0$ the n odd case is ' 2 ' and $P_{1}^{\prime}=1$ for n even we have to solve the integral

$$
\int_{-1}^{+1} P_{1}^{\prime}(x) P_{n}(x) d x=\int_{-1}^{+1} 1 \cdot P_{n}(x) d x=\int_{-1}^{+1} P_{0}(x) P_{n}(x) d x=0
$$

where the last equality follow from eqn. 3 for $n \neq 0$. So overall we obtain

$$
\int_{-1}^{+1} P_{n+1}^{\prime}(x) P_{n}(x) d x=2
$$

For $n=1$:

$$
\int_{-1}^{+1} P_{2}(x) x P_{1}(x) d x=\int_{-1}^{+1} \frac{1}{2}\left(3 x^{2}-1\right) x^{2} d x=\frac{4}{15}=\frac{2 \cdot 2}{3 \cdot 5} \sqrt{ }
$$

$P_{2}^{\prime}(x)=3 x$, hence

$$
\int_{-1}^{+1} 3 x \cdot x d x=2 \sqrt{ }
$$

2. Solution to Problem 2

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin \frac{1}{2} x \sin n x d x
$$

We solve the integral by integrating by parts twice

$$
\begin{gathered}
u^{\prime}=\sin \frac{1}{2} x \quad v=\sin n x \\
u=-2 \cos \frac{1}{2} x \quad v^{\prime}=n \cos n x \\
I_{n}=\int_{0}^{\pi} \sin \frac{1}{2} x \sin n x d x=-\left.2 \cos \frac{1}{2} x \sin n x\right|_{0} ^{\pi}+2 n \int_{0}^{\pi} \cos \frac{1}{2} x \cos n x d x \\
I_{n}=2 n \int_{0}^{\pi} \cos \frac{1}{2} x \cos n x d x \\
u^{\prime}=\cos \frac{1}{2} x \\
u=2 \sin \frac{1}{2} x \\
I_{n}=2 n\left[\left.2 \sin \frac{1}{2} x \cos n x\right|_{0} ^{\pi}+2 n \int_{0}^{\pi} \sin \frac{1}{2} x \sin n x d x\right]
\end{gathered}
$$

$$
I_{n}=4(-1)^{n}+4 n^{2} I_{n}
$$

hence

$$
I_{n}=\frac{4 n(-1)^{n}}{1-4 n^{2}}
$$

and

$$
b_{n}=\frac{8}{\pi} \frac{n(-1)^{n}}{1-4 n^{2}}
$$

For $x=\pi$ the function is discontinous and jumps from +1 to -1 . The Fourier series results in

$$
\frac{8}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{1-4 n^{2}} \cdot 0=0
$$

hence the Fourier serious results in the mean: $\frac{1}{2} \lim _{\varepsilon \rightarrow 0}[f(\pi-\varepsilon)+f(\pi+\varepsilon)]$. Parseval's equality

$$
\left\langle f^{2}(x)\right\rangle=\frac{a_{0}^{2}}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Here:

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \sin ^{2} \frac{1}{2} x d x=\frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}} \\
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \sin ^{2} \frac{1}{2} x d x=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \frac{1-\cos x}{2} d x=\frac{1}{2 \pi}\left[\frac{1}{2} x-\left.\frac{1}{2} \sin x\right|_{-\pi} ^{+\pi}\right]=\frac{1}{2}
\end{gathered}
$$

and hence

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}}{64}
$$

3. Solutions to Problem 3.

$$
\begin{aligned}
g(x, t)=e^{2 x t-t^{2}}= & \sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) t^{n} \\
\frac{\partial g}{\partial x} & =2 t g=\sum_{n=0}^{\infty} H_{n}^{\prime}(x) t^{n} \\
2 t \sum_{n=0}^{\infty} H_{n}(x) t^{n} & =\sum_{n=0}^{\infty} H_{n}^{\prime}(x) t^{n}
\end{aligned}
$$

$$
\begin{aligned}
2 \sum_{n=0}^{\infty} H_{n}(x) t^{n+1} & =\sum_{n=0}^{\infty} H_{n}^{\prime}(x) t^{n} \\
2 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} H_{n-1}(x) t^{n} & =\sum_{n=0}^{\infty} H_{n}^{\prime}(x) t^{n}
\end{aligned}
$$

Hence we obtain for $n \geq 1$:

$$
\frac{2}{(n-1)!)} H_{n-1}(x)=\frac{1}{n!} H_{n}^{\prime}(x)
$$

and

$$
2 n H_{n-1}(x)=H_{n}^{\prime}(x)
$$

Also we have:

$$
\begin{aligned}
\frac{\partial g}{\partial t}=(2 x-2 t) g & =\sum_{n=1} \frac{n}{n!} H_{n}(x) t^{n-1} \\
2(x-t) g & =\sum_{n-1}^{\infty} \frac{1}{n!} H_{n+1} t^{n} \\
2 x \sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) t^{n}-2 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} H_{n-1}(x) t^{n} & =\sum_{n=-1} \frac{1}{n!} H_{n+1}(x) t^{n}
\end{aligned}
$$

hence for $n \geq 1$:

$$
\frac{2 x}{n!} H_{n}(x)-2 H_{n-1}(x) \frac{1}{(n-1)!}=\frac{1}{n!} H_{n+1}(x)
$$

and then

$$
2 x H_{n}(x)-2 n H_{n-1}(x)=H_{n+1}(x)
$$

With $H_{0}(x)=1$ and $H_{1}(x)=2 x$ we obtain

$$
H_{2}(x)=4 x^{2}-2
$$

