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Solutions to be handed in on Wednesday, December, 12th, 2007
1. The Legendre polynomials satisfy the recurrence relations

2n+1)zP,(x) = (n+1)Py1(x) +nPp_q(z),
2n+1)Py(z) = Poy(x) = Py(2),

and are normalised such that

+1 )

Use these results to evaluate

+1
/ Poi1(x)xP,(z)dx
-1
3 MARKS
and show that
+1
P (z)Py(z)dz =2 .
-1
3 MARKS
Using the Legendre polynomials from the lecture notes, verify both
relations by explicitly integration for the case of n = 1. 4 MARKS

2. The odd function f(x) has the following properties

(a) f(z) = —f(==);

(b) f(x) = f(z + 2m);

(c) f(z) =sin(3z), for -7 <z < +.
(d) f(z)=> 7" bysinnz,

where the Fourier coefficients are
2 ™
by, = —/ f(x)sinnx dx .
™Jo

Turn sheet over —



Obtain the coefficients b,, and show that the Fourier series is

8 n
T) = — —1)Y*——sinnz .
n=1
6 MARKS
Evaluate the Fourier series at £ = m and comment on the answer. 2 MARKS
State Parseval’s theorem and use it to evaluate
>
3 -
= (4n? 1)
6 MARKS

. The Hermite polynomials H,,(x) arise in the solution of the one-dimensional
simple harmonic oscillator in quantum mechanics. They may be de-
fined by the generating function

[ee)

1
g(x’ t) = e2$t_t2 = Z E Hn(x) t".

n=0

By differentiating both sides either with respect to x or t, derive the
recurrence relations

d
. H,(z)=2nH, 1(z),
x

3 MARKS
Hyi1(x) =22 Hy(x) —2nHp—1(z) .

Given that Hy(x) = 1, and Hi(x) = 2z, derive the form of Ha(z) 4 MARKS
from the second recurrence relation and show that it satisfies the first
one. 3 MARKS
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. Solution to Problem 1

2n+1DzP,(z) = (n+1)Pyi(x) +nPypi(x),
2n+1)P(x) = Poya(@) = Pp(2),
+1 9
/ Pe)Pul@de = GG
+1
/1 Poi1(x)xP,(z)dx =

from eqn. 1

+1
n+1 n
= P —P, +—P,_ d

n+1 2
2n+12(n+1)+1
n+1 2
2n+12n+3

+1
| Pls@Pua)de -

NB: From eqn. 2
Phi(z) = 2n+ 1)Py(z) + Py (2)

hence

+1
B /_1 [2n + 1) Pa(@) + P ()] Pa() da

+1
= (2n+ 1)2n—|—1 +/1 P! (2)P,(7)dz
41 2+ fj—ll P/(z)P,(x)dx
= 2 —l—/ P, _3(x)Py(z)dx = ... =
- 2+ [ Pi(w)Po(a) do

neven, n # 0

n odd



Since P} = 0 the n odd case is 2’ and P{ = 1 for n even we have to
solve the integral

+1 +1 +1
/ Pl(x)P,(z)dz = / 1-Py(z)de = / Py(z)Py(z)dx =0
-1 -1 -1

where the last equality follow from eqn. 3 for n # 0. So overall we

obtain
+1

Pl (2)Pa(w) d = 2
-1

For n =1:

+ R P ) 4 2-2
P P = — —1 = — = —
/_1 o ()2 Py () do /_1 5 (3 ) x*da T3 V

Pj(x) = 3x, hence
+1
/ 3r-xdr =2,/

-1

. Solution to Problem 2

2 [T 1
b, = —/ sin —x sinnx dx
™ Jo 2
We solve the integral by integrating by parts twice
/ 1 .
u = sin 5:5 v = sinnx
1 /
u:—2cos§m v = N Ccosnr
s 1 ™ ™ 1
I, = / sin —x sinnz dr = —2cos —x sinnx +2n/ cos —x cosnx dx
0 2 2 0 0 2

g 1
I, = 2n/ cos —x cosnx dx
0 2

Ul = COS 51} vV = cosnx

u:2sin§1‘ v = —nsinnz

™

1 i 1
I, =2n [2 sin 5:6 cosnx| -+ Qn/ sin 53: sinnx dx
0

0

4



I, = 4(—-1)" 4+ 4n’I,

hence dn(—1)
n(— n
I, = ————
1 —4n?
and
_ 8n(=1)"

n = 2
Tl —4n
For x = 7 the function is discontinous and jumps from+1 to —1. The
Fourier series results in

_Z 1—4n2'0:0

hence the Fourier serious results in the mean: 3 ;1_1)% [f(m—e)+ f(m+¢)l.

Parseval’s equality

(12 >
(P =04 23 (@2 +82)
n=1

Here: -
I | 32 n?
— sin“ —zxdr = — —_—
27 J_, 2 2 Z:; (1 —4n?)?
L[ el Tl-cosz 11 R R B
7 sin 2:5 T = 5 33—27T 2:5 25111:5_7T =3
and hence
o 2
R
n:l (1-— 4n2 64
3. Solutions to Problem 3.
2 > 1
gle,t) = A = 37 S (e
n=0

9 o=

ox
%imwnzimwn
n=0 n=0



n=0 n=0
- 1 n - ! n
2y G @ = > Hy (o)t
n=1 ’ n=0
Hence we obtain for n > 1:
2 1
mﬂm(ﬂ:) = i (@)

and
2nH,_1(z) = H),(x)

Also we have:

89 n n—1
5 =(u=2)g = Zan(z‘)t

o) 1.
20z —t)g = Z ﬁHnHt"
n—1""

0 ()
1 1 1
n=0 n=1 n=—1
hence for n > 1:
2x 1 1
mHn(x) - Qanl(x) (n — 1)| = _|Hn+1(x)

and then
2eH,(z) — 2nH,_1(z) = Hpy1(2)

With Ho(z) =1 and H;(z) = 2z we obtain

Hy(z) = 42? — 2



