University College London Department of Physics and Astronomy 2246E Mathematical Methods III
 Coursework M2 (2007-2008)

Solutions to be handed in on Wednesday, November 21st, 2007

1. Three particles of equal masses, attached to a light spring, can move in a straight line, as illustrated in the diagram.

The equations pf motion may be written in matrix form

$$
\frac{d^{2} \underline{x}}{d t^{2}}=\underline{A} \underline{x}
$$

where \underline{x} is a column vector of the displacements x_{i} and

$$
\underline{A}=\left(\begin{array}{ccc}
-3 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -3
\end{array}\right) .
$$

Show that the eigenvalues of \underline{A} are $\lambda_{1}=-1, \lambda_{2}=-3$ and $\lambda_{3}=-4 . \quad 5$ MARKS
Find the corresponding normalized eigenvectors.
2. A drumhead consists of a circular membrane attached to a rigid support along the circumference $r=a$. The vibrations are governed by the equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial Z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} Z}{\partial \theta^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} Z}{\partial t^{2}}
$$

where Z is the displacement from the equilibrium at polar coordinate (r, θ) and time t, and v is a constant. By assuming a solution of the form

Turn sheet over \rightarrow

$$
Z(r, \theta, t)=R(r) \times \Theta(\theta) \times T(t),
$$

derive ordinary differential equations $R(r), \Theta(\theta)$, and $T(t)$.
5 marks
Show that solutions with $Z=0$ at $t=0$ are of the form

$$
Z=R_{n}(k r) \sin (k v t)\left[a_{n} \cos n \theta+b_{n} \sin n \theta\right],
$$

where n is an integer.
8 MARKS
How can one find information on the possible values of k ?
3. Prove that the second order differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+2 x^{2} \frac{d y}{d x}-2 y=0,
$$

has a regular singular point at $x=0$ and hence has two solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

with $k=-1$ or $k=2$.
5 MARKS
By explicitly substituting the series expansion into the differential equation, show that for both series the ratio of neighbouring terms is given by

$$
\frac{a_{n+1}}{a_{n}}=-\frac{2(n+k)}{(n+k+2)(n+k-1)} .
$$

Show that the series expansion for $k=-1$ solution terminates at $n=1$ and verify explicitly that the resultant expression does satisfy the differential equation.
Show that the $k=2$ series converges for all values of x,
and that the first two terms are proportional to the series expansion of

$$
y=\left(1+\frac{1}{x}\right) e^{-2 x}+\left(1-\frac{1}{x}\right) .
$$

University College London
 Department of Physics and Astronomy 2246 Mathematical Methods III
 Coursework M2 (2007-2008)

Model Answers

1. Solution to Problem 1

$$
\begin{aligned}
& \underline{A}=\left(\begin{array}{ccc}
-3 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -3
\end{array}\right) \\
&|\underline{A}-\lambda \underline{I}|=\left|\begin{array}{ccc}
-3-\lambda & 1 & 0 \\
1 & -2-\lambda & 1 \\
0 & 1 & -3-\lambda
\end{array}\right| \\
&=-\left|\begin{array}{cc}
-(3+\lambda) & 0 \\
1 & 1
\end{array}\right|-(3+\lambda)\left|\begin{array}{cc}
-(3+\lambda) & 1 \\
1 & -(2+\lambda)
\end{array}\right| \\
&=(3+\lambda)\{1-[(3+\lambda)(2+\lambda)-1]\} \\
&=(3+\lambda)\left[1-\left(6+5 \lambda+\lambda^{2}-1\right)\right] \\
&=(3+\lambda)\left[-4-5 \lambda-\lambda^{2}\right] \\
&=-(3+\lambda)\left[\left(\lambda+\frac{5}{2}\right)^{2}-\frac{9}{4}\right]=0
\end{aligned}
$$

hence

$$
\lambda_{1}=-3, \quad \lambda_{2}=-1, \quad \lambda_{3}=-4
$$

For $\lambda_{1}=-3$:

$$
\left(\underline{A}-\lambda_{1} \underline{I}\right) \underline{x}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\underline{0}
$$

hence

$$
\begin{aligned}
& x_{2}=0 \\
& x_{3}=-x_{1}
\end{aligned}
$$

hence

$$
\underline{v}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

For $\lambda_{2}=-1$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
-2 x_{1}+x_{2}=0 \\
x_{2}-2 x_{3}=0
\end{gathered}
$$

hence

$$
\begin{aligned}
& x_{2}=2 x_{1} \\
& x_{3}=x_{1}
\end{aligned}
$$

and therefore

$$
\underline{v}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

For $\lambda_{3}=-4$:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\underline{0}
$$

therefore

$$
\begin{aligned}
& x_{1}+x_{2}=0 \\
& x_{2}+x_{3}=0
\end{aligned}
$$

hence

$$
\begin{aligned}
x_{2} & =-x_{1} \\
x_{1} & =x_{3}
\end{aligned}
$$

hence

$$
\underline{v}_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

2. Solution to Problem 2

$$
\frac{1}{r} \partial_{r}\left(r \partial_{r} Z\right)+\frac{1}{r^{2}} \partial_{\theta}^{2} Z=\frac{1}{v^{2}} \partial_{t}^{2} Z
$$

Set $Z=R(r) \Theta(\theta) T(t):$

$$
\frac{1}{r} \Theta T \partial_{r}\left(r \partial_{r} R\right)+\frac{1}{r^{2}} R T \frac{\partial_{\theta}^{2} \Theta}{\Theta}=\frac{1}{v^{2}} R \Theta \frac{\partial_{t}^{2} T}{T}
$$

divide equation bt $Z($ theta, $r, t)$:

$$
\underbrace{\frac{1}{r R} \partial_{r}\left(r \partial_{r} R\right)+\frac{1}{r^{2}} \frac{\partial_{\theta}^{2} \Theta}{\Theta}}_{-k^{2}}=\underbrace{\frac{1}{v^{2}} \frac{\partial_{t}^{2} T}{T}}_{-k^{2}}
$$

therefore:

$$
\partial_{t}^{2}=-k^{2} v^{2} T
$$

and

$$
T(t)=A \cos (k v t)+B \sin (k v t)
$$

$Z=0$ at $t=0$, hence $A=0$
into left hand side:

$$
\underbrace{\frac{r}{R} \partial_{r}\left(r \partial_{r} R\right)+k^{2} r^{2}}_{n^{2}}+\underbrace{\frac{\partial_{\theta} \Theta}{\Theta}}_{-n^{2}}=0
$$

hence

$$
\partial_{\theta}^{2} \Theta=-n^{2} \Theta
$$

and

$$
\Theta=A \cos n \theta+B \sin n \theta
$$

but: $\Theta($ theta $)=\Theta(\theta+2 \pi)$, therefore: n is integer! Finally

$$
\frac{r}{R} \partial_{r}\left(r \partial_{r} R\right)+k^{2} r^{2}=n^{2}
$$

reparameterize $r \rightarrow k r$ or $\tilde{r}=k r$ then

$$
\frac{\tilde{r}}{R} \partial_{\tilde{r}}\left(\tilde{r} \partial_{\tilde{r}} R\right)+\tilde{r}^{2}=n^{2}
$$

and therefore $R_{n}(k r)$ solution! In summary:

$$
R_{n}(k r) \sin (k v t)\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

Boundary condition: $R_{n}(k a)=0$.
3. Solution to Problem 3

$$
x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0
$$

or

$$
y^{\prime \prime}+2 y^{\prime}-\frac{2}{x^{2}} y=0
$$

and

$$
\begin{aligned}
p(x) & =2 \\
q(x) & ==-\frac{2}{x^{2}}
\end{aligned}
$$

therefore

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow 0} x p(x)=0 \\
& q_{0} \lim _{x \rightarrow 0} x^{2} q(x)=-2
\end{aligned}
$$

hence em regular singular point at $x=0$.
Indicial equation $k(k-1)+p_{0} k+q_{0}=0$:

$$
\begin{aligned}
k(k-1)-2 & =0 \\
k^{2}-k-2 & =0 \\
\left(k-\frac{1}{2}\right)^{2} & =\frac{9}{4}
\end{aligned}
$$

and therefore $k_{1}=2$ and $k_{2}=-1$.

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+k} \\
y^{\prime}(x) & =\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1} \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty} a_{n}(n+k)(n+k-1) x^{n+k-2}
\end{aligned}
$$

Hence

$$
\sum_{n=0}^{\infty} a_{n}(n+k)(n+k-1) x^{n+k}+2 \sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k+1}-2 \sum_{n=0}^{\infty} a_{n} x^{n+k}=0
$$

In the second term replace $n+1 \rightarrow n$ and obtain:

$$
\sum_{n=0}^{\infty} x^{n+k} a_{n}[(n+k)(n+k-1)-2]+2 \sum_{n=1}^{\infty} a_{n-1}(n+k-1) x^{n+k}
$$

for $n=0$:

$$
k(k-1)-2=0 \sqrt{ }
$$

is fullfilled from indicial equation.
Remaining terms

$$
\sum_{n=1}^{\infty} x^{n+k}\left\{a_{n}[(n+k)(n+k-1)-2]+2 a_{n-1}(n+k-1)\right\}=0
$$

and we obtain

$$
a_{n}[(n+1+k)(n+k)-2]=-2 a_{n-1}(n+k-1)
$$

Replace $n \rightarrow n+1$:

$$
a_{n+1}=-2 \frac{2(n+k)}{(n+k+2)(n+k-1)} a_{n}
$$

For $k=-1$ we obtain

$$
a_{n+1}=-\frac{2(n-1)}{(n+1)(n-2)} a_{n}
$$

For $n=0: a_{1}=-a_{0}$
For $n=1: a_{2}=0$ and all other $a_{n}=0$.
Hence

$$
y=x^{-1}\left[a_{0}-a_{0} x\right]=a_{0}\left[x^{-1}-1\right]
$$

Hence

$$
\begin{aligned}
y^{\prime} & =a_{0} \frac{-1}{x^{2}} \\
y^{\prime \prime} & =2 a_{0} \frac{1}{x^{3}}
\end{aligned}
$$

in DEQN:

$$
\frac{2 a_{0}}{x}-2 a_{0}-2 \frac{a_{0}}{x}+2 a_{0}=0 \sqrt{ }
$$

For $k=2$:

$$
\frac{a_{n+1}}{a_{n}}=-\frac{2(n+2)}{(n+4)(n+1)}
$$

Radius of convergence:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{x_{n} x^{n}}\right|=x^{2} \lim _{n \rightarrow \infty} \frac{n+2}{(n+4)(n+1)} \rightarrow 0<1
$$

so convergence for all x.
For two terms: $a_{1}=-a_{0}$ and $a_{2}=6 a_{0} / 10$. Hence

$$
y \approx x^{2} a_{0}\left[1-x+\frac{6}{10} x^{2}\right]
$$

From
$y=\left(1+\frac{1}{x}\right) e^{-2 x}+1-\frac{1}{x} \approx\left(1+\frac{1}{x}\right)\left[1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{16}{3} x^{4}\right]+1-\frac{1}{x}=\frac{2}{3} x^{2}-\frac{2}{3} x^{3}$
which is the same as $a_{0} x^{2}(1-x)$ for $a_{0}=2 / 3$.

