University College London Department of Physics and Astronomy 2246E Mathematical Methods III
 Coursework M4 (2007-2008)

Solutions to be handed in on Wednesday, January, 9th, 2007

1. (a) Show that if for two matrices \underline{A} and \underline{B} the product $\underline{A B}$ is defined that

$$
(\underline{A B})^{T}=\underline{B}^{T} \underline{A}^{T}
$$

[2 mark]
(b) Given are the matrices

$$
\underline{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
2 & 0 & 2
\end{array}\right) \quad \underline{B}=\left(\begin{array}{cc}
-1 & 0 \\
4 & 2 \\
3 & -1
\end{array}\right) \quad \underline{C}=\left(\begin{array}{lll}
7 & -1 & 2
\end{array}\right)
$$

Give $\underline{A}^{T}, \underline{B}^{T}$ and \underline{C}^{T}.
[3 marks]
(c) Which of the following matrix products are possible? Evaluate the ones which are possible: $\underline{A B}, \underline{A B^{T}}, \underline{B A}, \underline{B}^{T} \underline{A}^{T}, \underline{A C}, \underline{C A}, \underline{C B}, \underline{B}^{T} \underline{C}^{T}, \underline{C C}$. [9 marks]
(d) Calculate \underline{A}^{-1}.
[6 marks]
2. The real quadratic form F in three dimensions is given by:

$$
F=2 x^{2}-8 x y+2 y^{2}+4 z^{2}=0
$$

(a) Write down the matrix \underline{A} so that F is given by

$$
F=\underline{v}^{T} \underline{A v}=0
$$

with $\underline{v}^{T}=\left(\begin{array}{lll}x & y & z\end{array}\right)$.
(b) Find the three different eigenvalues of \underline{A} by writing the characteristic equation in the form

$$
(p-\lambda)\left\{(q-\lambda)^{2}-r\right\}=0
$$

and calculating the values of p, q and r. Calculate the three corresponding normalized eigenvectors.
(c) Evaluate the transformation matrix \underline{S}, for which $\underline{S}^{T} \underline{A S}$ is diagonal.
Set $\underline{u}=\underline{S}^{T} \underline{v}$ and write the quadratic form F in the new variables $\underline{u}^{T}=\left(\begin{array}{lll}\tilde{x} & \tilde{y} & \tilde{z}\end{array}\right)$.
3. Solve

$$
2\left(x^{2}+x^{3}\right) \frac{d^{2} y}{d x^{2}}-\left(x-3 x^{2}\right) \frac{d y}{d x}+y=0,
$$

with a general series solution. Write the differential equation in the general form

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0 .
$$

Evaluate the singular points of the differential equation. The equation has a series solution of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}
$$

Write down the indicial equation and show that $k=\frac{1}{2}$ and $k=1$. Show that the recursion relations are given by

$$
a_{n+1}=-a_{n} .
$$

[8 marks]
Give the radius of convergence of these series. Calculate the first 4 terms of the series solution and show that the general solution can be written in the form

$$
y(x)=\frac{A x+B \sqrt{x}}{1+x} .
$$

4. The function $f(x)$ is defined on the intervall $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ with

$$
f(x)=2 \cos x
$$

(a) Is $f(x)$ and even or odd function?
(b) The Fourier expansion is given by

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

with $-L \leq x \leq L$. Show that the Fourier coefficients of $f(x)=$ $2 \cos x$ with $L=\frac{\pi}{4}$ are given by

$$
\begin{aligned}
& a_{n}=\frac{4}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \cos (4 n x) d x \\
& b_{n}=0
\end{aligned}
$$

[7 marks]
(c) Evaluate the coefficients a_{n} and show

$$
f(x)=\frac{4 \sqrt{2}}{\pi}+\frac{8 \sqrt{2}}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1-16 n^{2}} \cos 4 n x
$$

[8 marks]

Hints:
$\int \cos a x \cos b x d x=\frac{1}{2}\left(\frac{\sin (a-b) x}{a-b}+\frac{\sin (a+b) x}{a+b}\right)$
and
$\sin (a+b)=\sin a \cos b+\cos a \sin b$.
(d) By considering $f(x)$ at $x=\pi / 4$ calculate the value of the series

$$
\sum_{n=1}^{\infty} \frac{1}{16 n^{2}-1}
$$

[4 marks]

CONTINUED

5. (a) Use

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x$ to calculate $P_{2}(x)$ and $P_{3}(x)$. Then express
i. $3 x^{2}+x-1$
ii. $x-x^{3}$
in terms of a finite series of Legendre polynomials.
[6 marks]
(b) The generating function $g(x, t)$ is related to the Legendre polynomials via

$$
\begin{equation*}
g(x, t)=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} t^{n} P_{n}(x) . \tag{1}
\end{equation*}
$$

Show

$$
\begin{equation*}
(x-t) \frac{\partial g}{\partial x}=t \frac{\partial g}{\partial t} \tag{2}
\end{equation*}
$$

(c) By substituting the series from equation (1) into equation (2) show that

$$
\begin{equation*}
x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x) \tag{3}
\end{equation*}
$$

where the prime denotes the derivative with respect to x.
(d) Differentiate

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)
$$

with respect to x and eliminate P_{n-1}^{\prime} with the help of equation (3). What is the resulting equation?
6. The Schrödinger equation for a particle of mass m in a one dimensional potential $V(x)$ is given by

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

(a) If you write $\Psi(x, t)=F(x) \times T(t)$ show that the solution of the differential equation is of the form

$$
T(t)=C e^{-i E t / \hbar}
$$

(b) Show, that for zero potential $(V(x) \equiv 0)$, the solution is given by

$$
\begin{equation*}
\Psi(x, t)=\{A \cos k x+B \sin k x\} e^{-i E t / \hbar} \tag{4}
\end{equation*}
$$

Further show that k and E are related by

$$
k^{2}=\frac{2 m}{\hbar^{2}} E
$$

(c) Assume now that $V=0$ for $0 \leq x \leq l$ and $\Psi(x, t)=0$ at $x=0$ and $x=l$ for all times t. Show that the general solution fullfilling these boundary conditions is

$$
\Psi(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{l} e^{-i E_{n} t / \hbar}
$$

Give E_{n} as a function of n.
[8 marks]
(d) $|\Psi|^{2}$ is the probability of finding a particle at position x. Show that in order to to ensure

$$
\int_{0}^{l}|\Psi|^{2} d x=1
$$

the coefficients B_{n} have to obey

$$
\sum_{n=0}^{\infty}\left|B_{n}\right|^{2}=\frac{2}{l}
$$

Hint: $\int_{-\pi}^{\pi} \sin m x \sin n x d x=\pi \delta_{n m}$.
HAPPY HOLIDAYS !!!!!

University College London Department of Physics and Astronomy 2246 Mathematical Methods III
 Coursework M4 (2007-2008)

Model Answers

1. (a) Define $\underline{C}=\underline{A B}$, hence

$$
c_{i j}=\sum_{k} a_{i k} b_{k j}
$$

and then

$$
\left.\left(C^{T}\right)\right)_{j i}=c_{i j}=\sum_{k} a_{i k} b_{k j}=\sum_{k}\left(A^{T}\right)_{k i}\left(B^{T}\right)_{j k}=\sum_{k}\left(B^{T}\right)_{j k}\left(A^{T}\right)_{k i}=\left(B^{T} A^{T}\right)_{j i}
$$

hence the expression given is proven.
Note that this is entirely book work.
(b)

$$
\begin{aligned}
\underline{A}^{T} & =\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 2 & 0 \\
1 & 1 & 2
\end{array}\right) \\
\underline{B}^{T} & =\left(\begin{array}{ccc}
-1 & 4 & 3 \\
0 & 2 & -1
\end{array}\right) \\
\underline{C}^{T} & =\left(\begin{array}{c}
7 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

(c) $\frac{A}{M_{3,1}} \in M_{3,3}, \underline{B} \in M_{3,2}, \underline{C} \in M_{1,3}, \underline{A}^{T} \in M_{3,3}, \underline{B}^{T} \in M_{2,3}, \underline{C}^{T} \in$

$$
\underline{A B}=\left(\begin{array}{cc}
6 & 1 \\
11 & 3 \\
4 & -2
\end{array}\right)
$$

$\underline{A B}^{T}$ not possible.
$\underline{B A}$ not possible.

$$
\underline{B}^{T} \underline{A}^{T}=\left(\begin{array}{ccc}
6 & 11 & 4 \\
1 & 3 & -2
\end{array}\right)
$$

$\underline{A C}$ not possible.

$$
\begin{gathered}
\underline{C A}=\left(\begin{array}{lll}
11 & 5 & 10
\end{array}\right) \\
\underline{C B}=\left(\begin{array}{ll}
-5 & -4
\end{array}\right) \\
\underline{B}^{T} \underline{C}^{T}=\binom{-5}{-4}
\end{gathered}
$$

$\underline{C C}$ not possible.
(d)

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
2 & 0 & 2 & 0 & 0 & 1
\end{array}\right)
$$

Multiply first row by two and subtract from last row

$$
\sim\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
0 & -2 & 0 & -2 & 0 & 1
\end{array}\right)
$$

Add last row to second row

$$
\sim\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 1 \\
0 & -2 & 0 & -2 & 0 & 1
\end{array}\right)
$$

Divide last row by -2 and exchange 2 nd and 3rd row

$$
\sim\left(\begin{array}{ccc:ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 / 2 \\
0 & 0 & 1 & -2 & 1 & 1
\end{array}\right)
$$

Subtract 2nd and 3rd row from 1st

$$
\begin{gathered}
\sim\left(\begin{array}{lll|ccc}
1 & 0 & 0 & \left.\left.\begin{array}{ccc}
2 & -1 & -1 / 2 \\
0 & 1 & 0 \\
1 & 0 & -1 / 2 \\
0 & 0 & 1
\end{array} \right\rvert\, \begin{array}{crc}
-2 & 1 & 1
\end{array}\right) \\
\underline{A}^{-1}=\left(\begin{array}{rrr}
2 & -1 & -1 / 2 \\
1 & 0 & -1 / 2 \\
-2 & 1 & 1
\end{array}\right)
\end{array} .\right.
\end{gathered}
$$

Of course the students can also solve this by using adjoints.
2. (a)

$$
\underline{A}=\left(\begin{array}{rrr}
2 & -4 & 0 \\
-4 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

(b)

$$
\begin{aligned}
& |\underline{A}-\lambda \underline{I}|=0 \\
& \Leftrightarrow\left|\begin{array}{rrr}
2-\lambda & -4 & 0 \\
-4 & 2-\lambda & 0 \\
0 & 0 & 4-\lambda
\end{array}\right| \\
& =(4-\lambda)\left|\begin{array}{rr}
2-\lambda & -4 \\
-4 & 2-\lambda
\end{array}\right| \\
& =(4-\lambda)\left\{(2-\lambda)^{2}-16\right\}=0 \\
& \lambda_{1}=4 \quad \vee \quad(2-\lambda)^{2}=16 \\
& 2-\lambda= \pm 4 \\
& \lambda_{2,3}=2 \pm 4 \\
& \Rightarrow \lambda_{2}=6 \\
& \lambda_{3}=-2
\end{aligned}
$$

Eigenvectors for $\lambda_{1}=4$:

$$
\begin{gathered}
\\
\Leftrightarrow \\
\left.\Rightarrow \begin{array}{rrr}
-2 & -4 & 0 \\
-4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
-2 x-4 y=0 \\
-4 x-2 y=0 \\
\Rightarrow \\
\Rightarrow-2 y=4 x \\
\Rightarrow \quad y=-2 x \\
\Rightarrow
\end{gathered}
$$

$$
\begin{array}{ll}
\Rightarrow & x=0 \\
\Rightarrow & y=0 \quad z \text { arbitrary } \\
& \underline{v}_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

Eigenvector for $\lambda_{2}=6$:

$$
\begin{aligned}
& \left.\qquad \begin{array}{rrr}
-4 & -4 & 0 \\
-4 & -4 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow \\
& 4 x+4 y=0 \\
& 2 z=0 \\
& \Rightarrow \quad z=0 \text { and } \\
& \begin{array}{l}
\Rightarrow=-x \\
\Rightarrow \\
\underline{v}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{array}
\end{aligned}
$$

Eigenvector for $\lambda_{3}=-2$:

$$
\begin{gathered}
\\
\Rightarrow \quad\left(\begin{array}{rrr}
4 & -4 & 0 \\
-4 & 4 & 0 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\Rightarrow \quad 4=0 \\
\Rightarrow \quad x=y \\
\Rightarrow \quad 4 x-4 y=0 \\
\\
\underline{v}_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

(c)

$$
\underline{S}=\left(\begin{array}{rrr}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2} \\
1 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \Rightarrow \\
& \quad \underline{D}=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

(d)

$$
\begin{gathered}
F=\underline{u}^{T} \underline{D u}=0 \\
\Rightarrow \quad\left(\begin{array}{ccc}
\tilde{x} & \tilde{y} & \tilde{z}
\end{array}\right)\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right)=0 \\
4 \tilde{x}^{2}+6 \tilde{y}^{2}-2 \tilde{z}^{2}=0
\end{gathered}
$$

3.

$$
p(x)=-\frac{x-3 x^{2}}{2\left(x^{2}+x^{3}\right)} ; \quad q(x)=\frac{1}{2\left(x^{2}+x^{3}\right)}
$$

Singular points

$$
\begin{gathered}
x^{2}+x^{3}=0 \Leftrightarrow x^{2}(1+x)=0 \quad \Leftrightarrow \quad x_{1,2}=0 \quad \wedge \quad x_{3}=-1 \\
p_{0}=\lim _{x \rightarrow 0} x p(x)=-\lim _{x \rightarrow 0}\left[\frac{x^{2}-3 x^{3}}{2\left(x^{2}+x^{3}\right)}\right]=-\lim _{x \rightarrow 0} \frac{1-3 x}{2(1+x)}=-\frac{1}{2} \\
q_{0}=\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} \frac{x^{2}}{2\left(x^{2}+x^{3}\right)}=\lim _{x \rightarrow 0} \frac{1}{2(1+x)}=\frac{1}{2}
\end{gathered}
$$

indicial equation

$$
\begin{aligned}
& k(k-1)+p_{0} k+q_{0}=k(k-1)-\frac{k}{2}+\frac{1}{2} \stackrel{!}{=} 0 \\
& \Leftrightarrow\left(k-\frac{3}{4}\right)^{2}+\frac{1}{2}-\frac{9}{16}=\left(k-\frac{3}{4}\right)^{2}-\frac{1}{16} \stackrel{!}{=} 0 \\
& k-\frac{3}{4}= \pm \frac{1}{4} \quad \Leftrightarrow \quad k_{1,2}=\frac{3}{4} \pm \frac{1}{4} \\
& k_{1}=1 \quad ; \quad k_{2}=\frac{1}{2}
\end{aligned}
$$

Use ansatz:

$$
\begin{aligned}
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+k} \\
& y^{\prime}(x)=\sum_{n=0}^{\infty}(n+k) a_{n} x^{n+k-1} \\
& y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+k)(n+k-1) a_{n} x^{n+k-2} \\
& 2\left(x^{2}+x^{3}\right) \sum_{n=0}^{\infty}(n+k)(n+k-1) a_{n} x^{n+k-2}-\left(x-3 x^{2}\right) \sum_{n=0}^{\infty}(n+k) a_{n} x^{n+k-1}+\sum_{n=0}^{\infty} a_{n} x^{n+k}=0
\end{aligned}
$$

$$
\Leftrightarrow
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} x^{n+k}[2(n+k)(n+k-1)-(n+k)-1] \\
+\quad & \sum_{n=0}^{\infty} a_{n} x^{n+k+1}[2(n+k)(n+k-1)+3(n+k)]=0
\end{aligned}
$$

In the second sum replace $n+1 \rightarrow n$

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n} x^{n+k}[2(n+k)(n+k-1)-(n+k)-1] \\
+\quad \sum_{n=1}^{\infty} a_{n-1} x^{n+k}[2(n+k-1)(n+k-2)+3(n+k-1)]=0
\end{gathered}
$$

$n=0$ equation is fullfilled due to indicial equation and for $n \geq 1$ we obtain

$$
\begin{aligned}
& a_{n}[(n+k)(2 n+2 k-3)+1]+a_{n-1}[(n+k-1)(2 n+2 k-1)]=0 \\
& \Leftrightarrow \\
& \left(2 n^{2}+4 n k-3 n+2 k^{2}-3 k+1\right) a_{n}+\left(2 n^{2}+4 k n-n+2 k^{2}-k-2 n-2 k+1\right) a_{n-1}=0 \\
& \Leftrightarrow \\
& \text { or } \\
& \qquad a_{n}=-a_{n-1} \\
& a_{n+1}=-a_{n}
\end{aligned}
$$

Since the next singularity is reached for $x=-1$ the radius of convergence is $|x|<1$.
Set $a_{0}=1$, then obtain general solution

$$
y(x)=x^{k} \sum_{n=0}^{\infty} a_{n} x^{n}=x^{k}\left(1-x+x^{2}-x^{3}+\ldots\right)
$$

This is the progression of

$$
y(x)=\frac{x^{k}}{1+x}
$$

with $|x|<1$.

Hence the general solution is

$$
y(x)=\frac{A \sqrt{x}+B x}{1+x}
$$

Note that we might consider giving an extra point for those who notice that the actual general solution should be

$$
y(x)=\frac{A \sqrt{|x|}+B x}{1+x}
$$

4. (a) We notice that $f(x)$ is an even function.
(b)

$$
f(x)=2 \cos x
$$

We multiply equation (4b) on both sides with $\sin (4 m x)$ and integrate over x from $-\frac{p i}{4}$ to $+\frac{\pi}{4}$. Since $f(x)$ is even and $\sin (4 m x)$ is odd, the left hand side is zero. And we obtain

$$
0=\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}\left(\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (4 n x)\right) \sin (4 m x) d x+\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}\left(\sum_{n=1}^{\infty} b_{n} \sin (4 n x)\right) \sin (4 m x) d x
$$

Due to the orthogonality of the sine and cosine function we obtain

$$
0=\sum_{n=1}^{\infty} b_{n} \frac{\pi}{4} \delta_{m n}=\frac{\pi}{4} b_{m}
$$

and hence $b_{m}=0$. We now proceed with multiplying equation (4b) on both sides with $\cos (4 m x)$ and integrate over x from $-\frac{\pi}{4}$ to $+\frac{\pi}{4}$. Now the left hand side does not vanish and we obtain

$$
\begin{aligned}
\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}} f(x) \cos (4 m x) d x= & \int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}\left(\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (4 n x)\right) \cos (4 m x) d x \\
& +\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}\left(\sum_{n=1}^{\infty} b_{n} \sin (4 n x)\right) \cos (4 m x) d x
\end{aligned}
$$

Now the second term vanishes and we obtain with the orthogonality relation and we obtain

$$
\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}} f(x) \cos (4 m x) d x=\sum_{n=1}^{\infty} a_{n} \int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}} \cos (4 n x) \cos (4 m x) d x=\sum_{n=1}^{\infty} a_{n} \frac{\pi}{4} \delta_{m n}=a_{m} \frac{\pi}{4}
$$

for $m \neq 0$ and

$$
\int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}} f(x) d x=\frac{a_{0}}{2} 2 \frac{\pi}{4}
$$

for $m=0$, and hence the overall relation given.
Note that this is entirely book work with $L=\frac{\pi}{4}$
(c) Use $L=\pi / 4$

$$
a_{n}=\frac{4}{\pi} \int_{-\pi / 4}^{\pi / 4} 2 \cos x \cos (4 n x) d x=\frac{16}{\pi} \int_{0}^{\pi / 4} \cos x \cos (4 n x) d x
$$

Use the given integral
$a_{n}=\left.\frac{8}{\pi}\left[\frac{\sin (1-4 n) x}{1-4 n}+\frac{\sin (1+4 n) x}{1+4 n}\right]\right|_{0} ^{\pi / 4}=\frac{8}{\pi}\left\{\frac{\sin \left(\frac{\pi}{4}-n \pi\right)}{1-4 n}+\frac{\sin \left(\frac{\pi}{4}+n \pi\right)}{1+4 n}\right\}$

Now we use the given trigonometrical identity and obtain

$$
\sin \left(\frac{\pi}{4}-n \pi\right)=\sin \frac{\pi}{4} \cos n \pi-\cos \frac{\pi}{4} \sin n \pi=\frac{1}{2} \sqrt{2}(-1)^{n}
$$

and

$$
\sin \left(\frac{\pi}{4}+n \pi\right)=\sin \frac{\pi}{4} \cos n \pi+\cos \frac{\pi}{4} \sin n \pi=\frac{1}{2} \sqrt{2}(-1)^{n}
$$

so we obtain

$$
a_{n}=\frac{4}{\pi} \sqrt{2}(-1)^{n}\left[\frac{1}{1-4 n}+\frac{1}{1+4 n}\right]=\frac{8 \sqrt{2}}{\pi}(-1)^{n} \frac{1}{1-16 n^{2}}
$$

and finally

$$
a_{0}=2 \frac{8}{\pi} \int_{0}^{\pi / 4} \cos x d x=\frac{16}{\pi} \sin \frac{\pi}{4}=\frac{8}{\pi} \sqrt{2}
$$

and we obtain

$$
f(x)=\frac{4 \sqrt{2}}{\pi}+\frac{8 \sqrt{2}}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1-16 n^{2}} \cos 4 n x .
$$

(d) The given function at $x=\pi / 4$ is

$$
f\left(\frac{\pi}{4}\right)=2 \cos \frac{\pi}{4}=\sqrt{2}
$$

the Fourier expansion at this point is

$$
f\left(\frac{\pi}{4}\right)=\frac{4 \sqrt{2}}{\pi}+\sum_{n=1}^{\infty} \frac{8 \sqrt{2}}{\pi}(-1)^{n} \frac{1}{1-16 n^{2}} \underbrace{\cos (n \pi)}_{(-1)^{n}} \stackrel{!}{=} \sqrt{2}
$$

we obtain

$$
\frac{\pi}{8}-\frac{1}{2}=\sum_{n=1}^{\infty} \frac{1}{1-16 n^{2}}
$$

and hence

$$
\frac{1}{2}-\frac{\pi}{8}=\sum_{n=1}^{\infty} \frac{1}{16 n^{2}-1}
$$

5. (a)

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

with

$$
P_{0}(x)=1 \quad ; \quad P_{1}(x)=x
$$

Therefore

$$
P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}
$$

and

$$
\begin{gathered}
3 P_{3}(x)=5 x\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)-2 x=\frac{15}{2} x^{3}-\frac{9}{2} x \\
\Rightarrow \quad P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x
\end{gathered}
$$

hence

$$
2 P_{2}(x)=3 x^{2}-1=3 x^{2}-P_{0}(x)
$$

and

$$
x^{2}=\frac{2}{3} P_{2}(x)+\frac{1}{3} P_{0}(x)
$$

and further

$$
\begin{array}{ll}
& 2 P_{3}(x)=5 x^{3}-3 x \\
\Rightarrow & 2 P_{3}(x)+3 P_{1}(x)=5 x^{3} \\
\Rightarrow & x^{3}=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x) \\
\Rightarrow & \\
& \\
& \\
& 3 x^{2}+x-1=3\left(\frac{2}{3} P_{2}(x)+\frac{1}{3} P_{0}(x)\right)+P_{1}(x)-P_{0}(x)=2 P_{2}(x)+P_{1}(x)
\end{array}
$$

ii.

$$
x-x^{3}=P_{1}(x)-\frac{2}{5} P_{3}(x)-\frac{3}{5} P_{1}(x)=\frac{2}{5}\left(P_{1}(x)-P_{3}(x)\right)
$$

(b)

$$
\begin{gathered}
g(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2} \\
\frac{\partial g(x, t)}{\partial x}=(-2 t)\left(-\frac{1}{2}\right) \frac{1}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\frac{t}{\left(1-2 x t+t^{2}\right)^{3 / 2}} \\
\frac{\partial g(x, t)}{\partial t}=(-2 x+2 t)\left(-\frac{1}{2}\right) \frac{1}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\frac{x-t}{\left(1-2 x t+t^{2}\right)^{3 / 2}} \\
\Rightarrow \quad(x-t) \frac{\partial g(x, t)}{\partial x}=\frac{t(x-t)}{\left(1-2 x t+t^{2}\right)^{3 / 2}} \\
t \frac{\partial g(x, t)}{\partial t}=\frac{t(x-t)}{\left(1-2 x t+t^{2}\right)^{3 / 2}} \\
\Rightarrow \quad(x-t) \frac{\partial g(x, t)}{\partial x}=t \frac{\partial g(x, t)}{\partial t}
\end{gathered}
$$

(c)

$$
\begin{aligned}
& (x-t) \sum_{n=0}^{\infty} t^{n} P_{n}^{\prime}(x) \stackrel{!}{=} t \sum_{n=0}^{\infty} n t^{n-1} P_{n}(x)=\sum_{n=0}^{\infty} n t^{n} P_{n}(x) \\
& \sum_{n=0}^{\infty} t^{n}\left[x P_{n}^{\prime}(x)-n P_{n}(x)\right]=\sum_{n=0}^{\infty} t^{n+1} P_{n}^{\prime}(x)
\end{aligned}
$$

on the right hand side substitute $n \rightarrow n-1$

$$
\sum_{n=0}^{\infty} t^{n}\left[x P_{n}^{\prime}(x)-n P_{n}(x)\right]=\sum_{n=1}^{\infty} t^{n} P_{n-1}^{\prime}(x)
$$

and we obtain for $n \geq 1$

$$
x P_{n}^{\prime}(x)-n P_{n}(x)=P_{n-1}^{\prime}(x)
$$

(d)

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)
$$

Differentiate wrt x

$$
-2 x P_{n}^{\prime}(x)+\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)=n P_{n-1}^{\prime}(x)-n P_{n}(x)-n x P_{n}^{\prime}(x)
$$

from equation (3):

$$
\begin{aligned}
& \quad P_{n-1}^{\prime}(x)=x P_{n}^{\prime}(x)-n P_{n}(x) \\
& \Rightarrow \\
& -2 x P_{n}^{\prime}(x)+\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)=n\left[x P_{n}^{\prime}(x)-n P_{n}(x)\right]-n P_{n}(x)-n x P_{n}^{\prime}(x) \\
& \Leftrightarrow \\
& \\
& \quad\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
\end{aligned}
$$

This is the Legendre equation.
6. (a) Seperation Ansatz

$$
\begin{gathered}
\Psi=F(x) T(t) \\
-\frac{\hbar^{2}}{2 m} T \partial_{x}^{2} F+V F T=i \hbar F \partial_{t} T
\end{gathered}
$$

divide by $F T$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial_{x}^{2} F}{F}+V=i \hbar \frac{\partial_{t} T}{T} \equiv E
$$

both sides of the equation are set to E, which is constant. Temporal equation

$$
\Rightarrow \quad \begin{gathered}
i \hbar \frac{\partial_{t} T}{T}=E \\
T=C \exp \left(-i \frac{E t}{\hbar}\right)
\end{gathered}
$$

(b) $V \equiv 0$

$$
\begin{array}{lc}
\Rightarrow & -\frac{\hbar^{2}}{2 m} \frac{\partial_{x}^{2} F}{F}=E \\
\Rightarrow & \partial_{x}^{2} F=-\frac{2 m}{\hbar^{2}} E F \\
\Rightarrow & F(x)=A \cos k x+B \sin k x
\end{array}
$$

with $k^{2}=\frac{2 m}{\hbar^{2}} E$.
(c) General solution

$$
F(x)=\sum_{k} A_{k} \cos k x+B_{k} \sin k x
$$

hence $\Psi(0, t)=0 \quad \Rightarrow$ only $\sin k x$.

$$
\begin{array}{cc}
& \Psi(l, t)=\sum_{k} B_{k} \sin k l \exp (-i E t / \hbar) \stackrel{!}{=} 0 \\
\Rightarrow & k l=n \pi \quad \Rightarrow \quad k=\frac{n \pi}{l} \\
\Rightarrow \quad \frac{n^{2} \pi^{2}}{l^{2}}=\frac{2 m E_{n}}{\hbar^{2}}
\end{array}
$$

$$
\begin{gathered}
E_{n}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 m l^{2}} \\
\Rightarrow \quad \Psi(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{l} e^{-\frac{i E_{n} t}{\hbar}}
\end{gathered}
$$

(d)

$$
\begin{aligned}
& |\Psi|^{2}=\Psi \Psi^{*}=\left[\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{l} e^{-i \frac{E_{n} t}{\hbar}}\right]\left[\sum_{m=1}^{\infty} B_{m}^{*} \sin \frac{m \pi x}{l} e^{i \frac{E_{m} t}{\hbar}}\right] \\
& \Rightarrow \\
& \quad \int|\Psi|^{2} d x=\sum_{n, m=1}^{\infty} B_{n} B_{m}^{*} e^{-i \frac{t}{\hbar}\left(E_{n}-E_{m}\right)} \int_{0}^{l} \sin \frac{n \pi x}{l} \sin \frac{m \pi x}{l} d x \\
& \quad=\frac{1}{2} \sum_{n, m=1}^{\infty} B_{n} B_{m}^{*} e^{-i \frac{t}{\hbar}\left(E_{n}-E_{m}\right)} \int_{-l}^{l} \sin \frac{n \pi x}{l} \sin \frac{m \pi x}{l} d x
\end{aligned}
$$

Substitute $u=\frac{\pi x}{l}$

$$
\begin{gathered}
=\frac{l}{2 \pi} \sum_{n, m=1}^{\infty} B_{n} B_{m}^{*} e^{-i \frac{t}{\hbar}\left(E_{n}-E_{m}\right)} \underbrace{\int_{-\pi}^{\pi} \sin n u \sin m u d u}_{\pi \delta_{m n}} \\
=\frac{l}{2} \sum_{n, m=1}^{\infty} B_{n} B_{m}^{*} e^{-i \frac{t}{\hbar}\left(E_{n}-E_{m}\right)} \delta_{m n} \\
=\frac{l}{2} \sum_{n=1}^{\infty}\left|B_{n}\right|^{2} \stackrel{!}{=} 1 \\
\Rightarrow \\
\frac{2}{l}=\sum_{n=1}^{\infty}\left|B_{n}\right|^{2}
\end{gathered}
$$

Note that here Parseval's theorem could be exploited as well.

