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1 Mathematics and Physics

Physics is a science which relates measurements and measurable quantities to a
few fundamental laws or principles.

It is a quantitative science, and as such the relationships are mathematical.
The laws or principles of physics must be able to be formulated as mathematical
statements.

If physical laws are to be fundamental they must be few in number and must
be able to be stated in ways which are independent of any arbitrary choices.
In particular, a physical law must be able to be stated in a way which is in-
dependent of the choice of reference frame in which the measurements are made.

The laws or principles of physics are usually formulated as differential equa-
tions, as they relate changes. The laws must be invariant under the choice of
coordinate system. Therefore, one needs to express the differentials in ways
which are invariant under coordinate transformations, or at least have definite
and easily calculable transformation properties.

It is useful to start by formulating the laws in fixed Cartesian coordinate
systems, and then consider invariance under:-
(i) Translations
(ii) Rotations
(iii) Boosts to Inertial Reference Frames
(iv) Boosts to Accelerating Reference Frames

Quantities such as scalars and vectors have definite transformation proper-
ties under translations and rotations.

Scalars are invariant under rotations.

Vectors transform in the same way as a displacement under rotations.



2 Vector Analysis

2.1 Vectors

Consider the displacement vector, in a Cartesian coordinate system it can be
expressed as
T o=é,a + by + 6,z (1)

where é;, é, and é,, are three orthogonal unit vectors, with fixed directions.
The components of the displacement are (z,y, 2).

In a different coordinate system, one in which is (passively) rotated through
an angle # with respect to the original coordinate system, the displacement
vector is unchanged. However, the components with respect to the new unit
vectors €, ¢, and é,, are different (z',y', 2’).

A specific example is given by the rotation about the z axis
T o=éa + ey + e (2)

The new components are given in terms of the old components by

x! cosf sinf 0 x
Yy’ = — sinf cosf O y (3)
2! 0 0 1 z
Hence,
T =&, (xcosf + ysinh) + & (ycosh — xsinf) + &, 2 (4)

The inverse transformation is given by the substitution § — — 6,

T = é, (2 cos — y sinf) + é, (y cosf + 2’ sinf) + &,z (5)

Any arbitrary vector A can be expressed as
A =6, Ay + 6y Ay + 6. A, (6)

where €, é, and é_, are three orthogonal unit vectors, with fixed directions.
The components of the displacement are (A, Ay, A.). The arbitrary vector
transforms under rotations exactly the same way as the displacement

A= e, (Ay cos® + Ay, sinf ) + é, (A, cost — A, sinf ) + &, AL (7)



2.2 Scalar Products

Under rotations the following quantities associated with vectors that are invari-
ant include:-

(i) Lengths of vectors.

(i) Angles between vectors.

These invariance properties can be formulated in terms of the invariance of a
scalar product.

The scalar product of two vectors is defined as
A.B = A, B, + A, B, + A. B, (8)

The scalar product transforms exactly the same way as a scalar under rotations,
and is thus a scalar or invariant quantity.

A B = A, B, + A B, + A, B,
Y Yy
A, B, + A, B, + A_ B, 9)

2.3 The Gradient

The gradient represents the rate of change of a scalar quantity ¢(7). The gra-

dient is a vector quantity which shows the direction and the maximum rate of

change of the scalar quantity. The gradient can be introduced through consid-
eration of a Taylor expansion

o¢ o¢ ¢

i) = - . it e

o7+ @) ¢()+a8x+ay6‘y+aaz

= P+ @ .VF) + ... (10)

+ ...

This is written in the form of a scalar product of the vector displacement @
given by

@ = éya; + éya, + €, a, (11)

? ~ 6 ¢ ~ 6 (z) ~ 6 ¢

— 2 12
Ox “ dy “ Bz (12)

The latter quantity is a vector quantity, as follows from the scalar quantities
#(7) and ¢(7 + @) being invariant. Thus, the dot product in the Taylor ex-
pansion must behave like a scalar. This is the case if ?qﬁ is a vector, since the
scalar product of the two vectors is a scalar.

The gradient operator is defined as

B B )
?:éx%+éya—y+éz§ (13)



The gradient operator is an abstraction, and only makes good sense when the
operator acts on a differentiable function.

The gradient specifies the rate of change of a scalar field, and the direction
of the gradient is in the direction of largest change.

An example of the gradient that occur in physical applications include, is
the relationship between electric field and the scalar potential

E=-V¢ (14)

in electro-statics. This has the physical meaning that a particle will move (ac-
celerate) from regions of high potential to low potential, always in the direction
of the maximum decrease in potential.

For a point charge of magnitude ¢ the potential is given by

q
= = 15
o =1 (15)
and the electric field is given by
q7
E =+ S (16)

2.4 The Divergence

The gradient operator, since it looks like a vector, could possibly be used in a
scalar product with a differentiable vector field. This can be used to define the
divergence of the vector as the scalar product

v.4 (17)
The divergence is a scalar.

In Cartesian coordinates, the divergence is evaluated from the scalar product

04, | 0A,  0A.
V.4 = R (18)

as

Consider a vector quantity A of the form

A = 7 f(r) (19)



which is spherically symmetric and directed radially from the origin. The di-
vergence of A is given by

0z f(r) oy f(r) dzf(r) 22+ y? + 22 0f(r)
Jr + dy + 0z = 370+ r ar
= 340 + 220 (20)

It is readily seen that the above quantity is invariant under rotations around
the origin, as is expected if the divergence of a vector is a scalar.

Another example is given by the vector T in the = — y plane which is
perpendicular to the radial vector 7. The radial vector is given by

7:ézx+éyy (21)
then tangential vector is founds as

?:—éwy—&—éyﬂc (22)

since it satisfies
7.7 =0 (23)

Then, the divergence of the tangential vector field is zero
V.7 =0 (24)

In this example, the vector field T is flowing in closed circles, and the diver-
gence is zero.

Given a differentiable vector field X, which represents a flow of a quantity,
then the divergence represents the net inflow of the quantity to a volume, and
as such is a scalar.

A physical example of the divergence is provided by the continuity equation
0
8—’; +V.F7 =0 (25)

where p is the density and 7 is the current density. The continuity equation
just states that the accumulation of matter in a volume (the increase in density)
is equal to the matter that flows into the volume.

The presence of a non-zero divergence represents a source or sink for the
flowing quantity. In electro-magnetics, electric charge acts as a source for the
electric field

ﬁ.ﬁ:élﬂ'p (26)



For the example of a point charge at the origin

q7
For r # 0, the divergence is given by
Fog( 2,0y 0=z
v T\ Bz 73 + oy r3 * 0z r3
3 2?2 + y? + 22
<r3 — 5 > =0 (28)

and is not defined at » = 0. By consideration of Gauss’s theorem, one can see
that the divergence must diverge at r = 0. Thus, the electric field accumulates
at the point charge.

There is no source for magnetic induction field, and this shows up in the
Maxwell equation
V.B =0 (29)

The finite magnetic induction field is purely a relativistic effect in that it rep-
resents the electric field produced by compensating charge densities which are
in relative motion.

2.5 The Curl

Given a differentiable vector field, representing a flow, one can define a vector
(pseudo-vector) quantity which represents the rotation of the flow. The curl is
defined as the vector product

VA4 (30)

which is evaluated as

(éza+éma+éza> A (éxAm+éyAy+ézAz> (31)

Ox Ox Ox
or

I A B S <8Az - 8Ay> ., <8Az - aAgC) ; <8Ay _0A,
Z’; f{; f{z “\ 9y 0z Y\ oz 0z “\ ox oy

(32)

The curl of a radial vector 4 = 7 f(r) is evaluated as
éflj Ay AZ
VAA = 2 2 2 =0 (33)
x f(r) y flr) zf(r)

10

)



The curl of a tangential vector 7 given by

T = (ay — éyn) (34)

is evaluated as
VAT =-2¢, (35)

The tangential vector represents a rotation about the z axis in a clockwise (neg-
ative) direction.

A physical example of the curl is given by the relationship between a mag-
netic induction B and the vector potential

B=Vad (36)
The vector potential
Z:B;(xéy—yéx) (37)
produces a magnetic field

B

B, . .
ﬁ A 7 ( T €y — Y €y >
= ¢, B, (38)

which is uniform and oriented along the z axis.

Another example is that of a magnetic induction field produced by a straight
long current carrying wire. If the wire is oriented along the z axis, Ampere’s

law yields
1 . .
§:2Wp2(xey—yex> (39)

where
pro=at oy (40)

The vector potentials A that produces this B can be fund a solution of

VAA=T (41)

The solutions are not unique, one solution is given by

T
A= —ezﬁlnp (42)

11



2.6 Successive Applications of V

The gradient operator can be used successively to create higher order differen-
tials. Frequently found higher derivatives include, the divergence of a gradient
of a scalar ¢

V.V¢=vVy¢ (43)

which defines the Laplacian of ¢. In Cartesian coordinates one has

v‘.ﬁ¢<aj+a:+az>¢ (44)

The Laplacian appears in electrostatic problems. On putting combining the
definition of a scalar potential ¢ in electro-statics

E=-V¢ (45)

and Gauss’s law

V.E =47np (46)

one obtains Laplace’s equation
V2gp = —4dmp (47)

which relates the electrostatic potential to the charge density.

Another useful identity is obtained by taking the curl of a curl. It can be
shown, using Cartesian coordinates, that the curl of the curl can be expressed

- T AT AA) - VAL T(T. D) (1)

This identity is independent of the choice of coordinate systems.

This identity is often used in electromagnetic theory by combining
B=VaAA4 (49)

and the static form of Ampere’s law
YAB = 47” ri (50)
which yields the relation between the vector potential and the current density
~V2A 4+ V(V.4) = 47777) (51)

The above equation holds only when the fields are time independent.

12



Other useful identities include
VA(Vo)=0 (52)

and

V. (VAA)=0 (53)

2.7 Gauss’s Theorem

Gauss’s theorem relates the volume integral of a divergence of a vector to the
surface integral of the vector. Since the volume integral of the divergence is a
scalar, the surface integral of the vector must also be a scalar. The integration
over the surface must be of the form of a scalar product of the vector and the
normal to the surface area.

Consider the volume integral of V.2
/d3?(7>.2) (54)

For simplicity, consider the integration volume as a cube with faces oriented
parallel to the z, y and z axis. In this special case, Gauss’s theorem can be
easily proved by expressing the divergence in terms of the Cartesian components,
and integrating the three separate terms. Since each term is of the form of a
derivative with respect to a Cartesian coordinate, the corresponding integral
can be evaluated in terms of the boundary term

. v+ . 0A 0A 0A
d d d Z L z
/L x /y 4 /L ‘ < ox + dy + 0z >
T4 Ty Zy Y+ T4 Y+ Z4
+ / dz / dz A, + / dx / dy A,
xT_ T zZ— Y xTr_ Y
The last six terms can be identified with the integrations over the six surfaces of
the cube. Tt should be noted that the for a fixed direction of A the integration
over the upper and lower surfaces have different signs. If the normal to the

surface is always chosen to be directed outwards, this expression can be written
as an integral over the surface of the cube

/ 25 . A (56)

(55)

Y+ 24
= / dy / dz Ay
Yy zZ_

zZ_

Hence, we have proved Gauss’s theorem for our special geometry

BP(V.A)= | &#5. 2 (57)
, /

13



where the surface ? bounds the volume V.

The above argument can be extended to volumes of arbitrary shape, by con-
sidering the volume to be composed of an infinite number of infinitesimal cubes,
and applying Gauss’s theorem to each cube. The surfaces of the cubes internal
to the volume occur in pairs. Since the surface integrals are oppositely directed,
they cancel in pairs. This leaves only the integrals over the external surfaces of
the cubes, which defines the integral over the surface of the arbitrary volume.

Example:

Gauss’s theorem can be used to show that the divergence of the electric field
caused by a point charge g is proportional to a Dirac delta function. Since, the

electric field is given by R
q

and

V.E =0 (59)

for r # 0. Then as Gauss’s theorem yields
/dWV\E — /dQ?.ﬁ

2 q7

/ &5 L

"
= 4dng (60)

it suggests that one must have
V.E = drqd®) (61)

Thus, the divergence of the electric field is a point source represented by a Dirac
delta function.

2.8 Stokes’s Theorem

Stoke’s theorem relates the surface integral of the curl of a vector to an integral
of the vector around the perimeter of the surface.

Stokes’s theorem can easily be proved by integration of the curl of the vector
over a square, with normal along the z axis and sides parallel to the Cartesian

/d2ﬁ.<?Aﬁ)

14



@t ve (04, 04,
= \/z de /y dy €z . €z (81: - ay > (62)

The scalar product with the directed surface selects out the z component of the
curl. One integral in each term can be evaluated, yielding

Y+ Tt T4
:/ dy A, —/ do A, :j{d?.ﬁ (63)
Y- x _ x_

which is of the form of an integration over the four sides of the square, in which
the loop is traversed in a counterclockwise direction.

Y+

Y-

Stokes’s theorem can be proved for a general surface, by subdividing it into a
grid of infinitesimal squares. The integration over the interior perimeters cancel,
the net result is an integration over the loop bounding the exterior perimeters.

A physical example of Stokes’s theorem is found in quantum mechanics,
for a charged particle in magnetic field. The wave function can be composed
of a super-position of two components stemming from two paths. The two
components have a phase difference which is proportional of the integral of the
vector potential along the two paths :-

/p " a7 . A4 (64)

and

/p " a7 . A (65)

If these two paths are traversed consecutively, but the second path is traced in
the reverse direction, then one has a loop. If the phase of the wave function at
the origin is unique, up to multiples of 2 7, then the loop integral

j{ a7 . A (66)

must take on multiples of a fundamental value ¢y. Stokes’s theorem leads to
the discovery that magnetic flux must be quantized as

%d?.ﬁ n ¢o
/dQ?.‘B? - n ¢

(67)

where n is an arbitrary integer and ¢ is the fundamental flux quantum . This
phenomenon, discovered by Dirac, is known as flux quantization.

15



2.9 Non-Orthogonal Coordinate Systems

One can introduce non-Cartesian coordinate systems. The most general coor-
dinate systems do not use orthogonal unit vectors. As an example, consider a
coordinate system for a plane based on two unit vectors (of fixed direction) é;
and é;. The position of a point on the plane can be labeled by the components
x1 and zo where

? = él 1 + ég i) (68)

The length [ of the vector is given by
2 = 2% + 23 + 2é; .6, 71 19 (69)

The expression for the length can be written as
0,J

where ¢*7 is known as the metric tensor and is given by
gi’j = é1 . é]‘ (71)

In this prescription we have given the components as the successive displace-
ments needed to be traversed parallel to the unit vectors to arrive at the point.
This is one way of specifying a vector. The components x; and zo are known
as the co-variant components.

Another way of specifying the same vector is given by specifying the com-
ponents z', 22 as the displacements along the unit vectors, if the point is given
by the intersection of the perpendiculars subtended from the axes. The compo-
nents z' and 22 are the contra-variant components.

What is the relationship between the co-variant and contra-variant compo-
nents of the vector? Express the relationship and inverse relationship in terms
of the components of the metric.

Solution:

Let 6 be the angle between é; and és, such that
é1 .6y = cosf (72)

Consider a vector of length [ which is oriented at an angle ¢ relative to the unit
vector €.

16



The relationship between the Cartesian components of the vector and the
covariant components is given by

l cosp = x + x2 cosb
lsing = xo sind (73)
The contra-variant components are given by
lcosp = at
l cos(f —¢) = 2? (74)
Hence we find the relationship

L' = 21 + z9 cosb

22 = x9 + x4 cosf (75)

which can be summarized as
= Z g x; (76)
J

The inverse relation is given by

1
x; = m(wl — 2% cosf)
1
zy = —5— (2° — 2' cosf) (77)
sin” ¢

which can be summarized as

o= 3 () (78)

J

How does the length get expressed in terms of the contra-variant compo-
nents?

The length is given in terms of the contra-variant components by

2= () et (79)

4,J
It is customary to write the inverse of the metric as
(9" = giy (80)

so that the sub-scripts balance the superscripts when summed over.

17



2.9.1 Curvilinear Coordinate Systems

It is usual to identify generalized coordinates, such as (r, 6, ¢), and then define
the unit vectors corresponding to the direction of increasing generalized coordi-
nates. That is é, is the unit vector in the direction of increasing r, €y as the unit
vector in the direction of increasing 6 and é, as the unit vector in the direction
of increasing .

If we denote the generalized coordinates as ¢; then an infinitesimal change
in a Cartesian coordinate can be expressed as

= — dg; 81
. 3(]]' q;j ( )

The change in length dl can be expressed as
> =Y da} (82)

which becomes

Ox; Ox;
di2 = L= | dg; dgj
yzj: <§Z: 0q; Oqyr ) e (%)

Thus the metric is found to be

o Ox; Ox;
JJ = § ¢ ¢ 4
! ( ~ 0Oa; Oqy ) (84

The three unit vectors of the generalized coordinate system are proportional
to 5
A )
€y, X é; 85
0w D g, (85)

In general, the direction of the unit vectors depends on the values of the set of
three generalized coordinates g;’s.

In orthogonal coordinate systems the coordinates are based on the existence
of three orthogonal unit vectors. The unit vectors are orthogonal when the
scalar products of the unit vectors vanish, which gives the conditions

8qj‘ an‘/

for j # j'. Thus, for orthogonal coordinate systems the metric is diagonal.

gj’j/ X (5j,j/ (87)

18



The metric is positive definite as the non-zero elements are given by

;g 81‘1 2
gl = Z (aqj> > 0 (88)

(3

The inverse of the metric is also diagonal and has non-zero elements gl-l’i . Thus,
in this case, the co-variant and contra-variant components of a vector are simply

related by
- 1
g ’
An example of orthogonal curvilinear coordinates are given by spherical polar
coordinates.

2.9.2 Spherical Polar Coordinates

In the spherical polar coordinates representation of an arbitrary vector is given
by the generalized coordinates (7,6, ¢), such that

T = é, 7 sinf cosp + é, r sinf sing + é, r cosf (90)

The unit vectors are (é,, €g, €,) and are in the direction of increasing coordinate.
Thus,

R or
ér = —
or
= &, sinf cosy + &, sinf sinp + é, cosf (91)
and
R or
6 Z
? 00
= &, 1 cost cosp + €, 1 cosf sinp — é, r sind (92)

The unit vector éy is given by
€9 = €, cosf cosp + é, cosf sinp — é, sind (93)

Finally, we find the remaining unit vector from

or
dp
= —é, 7 sinf sinp + é, r sinf cosp (94)

€p X

which is in the z — y plane. The unit vector é, is given by normalizing the
above vector, and is

ey, = — €, sing + &, cose (95)

19



As can be seen by evaluation of the scalar product, these three unit vectors are
mutually perpendicular. Furthermore, they form a coordinate systems in which

& N ég = &, (96)

Due to the orthogonality of the unit vectors, the metric is a diagonal matrix
and has the non-zero matrix elements

gr,r — 1
POCR
g#¥ = r? sin?@ (97)

In terms of the metric, the unit vectors are given by

.1 o7 (98)

€q; = —F/—
% Vgii 0g;

2.9.3 The Gradient

In curvilinear coordinates the gradient of a scalar function ¢ is given by consid-
eration of the infinitesimal increment caused by the change in the independent

variables g;
0
i =% (50) a (99)
RS
which for orthogonal coordinate systems can be written as

. 1 0o . —
; o \/? (3%) . 7 €q; V977 dgy

- 1 (06

J

de

(100)

Thus, in the orthogonal coordinate systems the gradient is identified as

Vo=Y ¢, \/;T; <gqu) (101)

J

In spherical polar coordinates the gradient is given by

(06N .1 fos\ . 1 (8¢
ﬁﬁs—er (87")4_667“(69)—’_6@7“51119(8@) (102)
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2.9.4 The Divergence

Gauss’s theorem can be used to define the divergence in a general orthogonal
coordinate system. In particular, applying Gauss’s theorem to an infinitesimal

volume, one has
BPV.A =P8 A (103)

where the elemental volume is given by

dB? = Hj de \/gj’j
= +/ Det g7 1I; dg; (104)

and the elemental surface areas are given by
dzﬁi = Hj;ﬁi dqj vV gj’j
1 —
= ———— / Det g7 1I; dg; (105)
dgqi \/g"*
Hence, from Gauss’s theorem, one has the divergence given by the ratio of the
sums over the scalar product of the vector with the directed surface areas divided

by the volume element. Since the surfaces with normals é,, occur in pair and
are oppositely directed, one finds the divergence as the derivative

?.Z:WZ(%(%\/Detgjvj> (106)

For spherical polar coordinates, the divergence is evaluated as

V.4 = 18(7‘281119AT>+ 1 a(rsin@Ae)

r2 sinf or r2 sinf 06

1 0
+ 7712 <inf % ( r A‘P > (107)

2.9.5 The Curl

In a generalized orthogonal coordinate system, Stokes’s theorem can be used to
define the curl. We shall apply Stokes’s theorem to an infinitesimal loop integral

/dzﬁ.(v)/\ﬁ>:7{d?.j (108)

The components of the curl along the unit directions é,, can be evaluated over
the surface areas d2°§ with normals €q;- Then we have

/mj.(v A z) - (v A 7) VDG dg (109)

j g]v]
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For the surface with normal in direction 1, this is given by

/d2?1.<§> A X) - (? A Z)l\/ﬁ\/ﬁdqqug (110)

The loop integral over the perimeter of this surface becomes
0
f A7 A = A P2 dgy + <A3 V@33 + dge o0 A \/93’3) dgs
2
0
- (A2\/927+ dQSaqu2\/927>dQ2 — A3 \/g>® dgs

(111)
where we have Taylor expanded the vector field about the center of the in-
finitesimal surface. The lowest order terms in the expansion stemming from the

opposite sides of the perimeter cancel. Hence, the component of the curl along
the normal to the infinitesimal surface is given by the expression

A :Li/:mA_i/z,zA 112
(ﬁ A X 2255 | Oa g 3 94 g 2 (112)

The expression for the entire curl vector can be expressed as a determinant
é1 Vot e /922 é3 /33

1 P P P
(ﬁAX):\/W 2 Zz 2 (113)

/gl,l Al /92,2 A2 /93,3 AB

In spherical polar coordinates, the curl is given by

>

ér T é 17 sinfé,

1 o 0 P

(ﬁAX):T,ZSmQ 2 0 2 (114)
A, 1T Ap 7T sind A,

Find an explicit expression for the angular momentum operator

T =—i?AV (115)

in spherical polar coordinates.
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2.9.6 Compounding Vector Differential Operators in Curvilinear Co-
ordinates

When compounding differential operators, it is essential to note that operators
should be considered to act on an arbitrary differentiable function. Thus, since
O v @) = ¢ 2 fla) + fla) (116)
—z f(z) =  — f(z x
ox ox
one can compound % and z via
—z=x-— +1 (117)

The order of the operators is important. The differential operator acts on every-
thing in front of it, which includes the unit vectors. In Cartesian coordinates,
the directions of the unit vectors are fixed thus,

0 . 0 . 0 .
%egﬁ—a—yew—aem—() (118)

etc. For curvilinear coordinates this is no longer true. For example, in spherical
polar coordinates although the directions of the unit vectors are not determined
by the radial distance

0 ér = ég =

or " or T or

the other derivatives of the unit vectors are not zero, as

9 & 0 é, = 0 (119)

9.
a0 T T«
o .
90 € = Er
0 .
90 6 = 0 (120)
and
0 . P
% ér = sinf é,
0 . .
%69 = cosf é,
3é = — | sinf é + cosfé (121)
8@ e = T 0

Find an explicit expression for the square of the angular momentum operator
22
L where

T =_-i?AV (122)
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in spherical polar coordinates.

The Laplacian of a scalar ¢ can be evaluated by computing the divergence

of the gradient of ¢, i.e.,
v. < v ¢ ) (123)

Here it is important to note that the differential operator acts on the unit vec-
tors, before the scalar product is evaluated.

A2
How is the Laplacian of a scalar V2¢ related to T o7
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3 Partial Differential Equations

The dynamics of systems are usually described by one or more partial differential
equations. A partial differential equation is characterized by being an equation
for an unknown function of more than one independent variable, which expresses
a relationship between the partial derivatives of the function with respect to the
various independent variables. Conceptually, a solution may be envisaged as
being obtained by direct integration. Since integration occurs between two lim-
its, the solution of a partial differential equation is not unique unless its value
is given at one of the limits. That is, the solution is not unique unless the
constants of integration are specified. These are usually specified as boundary
conditions or initial conditions.

Important examples are provided by the non-relativistic Schrodinger equa-
tion 2 o
2 .
sz v+ V()Y = ih 5
in which the wave function v (r,t) is usually a complex function of position and
time. The one particle wave function has the interpretation that | ¢ (r,t) |? is
the probability density for finding a particle at position r at time ¢. In order
that ¢ (r,t) be uniquely specified, it is necessary to specify boundary conditions.
These may take the form of specifying 1 (r, t) or its derivative with respect to r
on the boundary of the three dimensional region of interest. Furthermore, since
this partial differential equation contains the first derivative with respect to
time, it is necessary to specify one boundary condition at a temporal boundary,
such as the initial time ¢y3. That is the entire wave function must be specified
as an initial condition, ¥ (r, o).

(124)

Another important example is given by the wave equation

1 02
o Ly 29
where ¢(r,t) describes the wave motion, ¢ is the phase velocity of the wave and
the force density f(r,t) acts as a source for the waves, inside the region of in-
terest. Again appropriate boundary conditions for four dimensional space time
(r,t) need to be specified, for the solution to be unique. Since this equation
is a second order equation with respect to time, it is necessary to specify ¢ at

two times. Alternatively, one may specify ¢(r,to) at the initial time and its

0¢(r,t)

57— |t, at the initial time.

derivative

Poisson’s equation is the partial differential equation

Vip = —dmp (126)
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which specifies the scalar or electrostatic potential ¢(r) produced by a charge
density p(r). The boundaries of the spatial region in which ¢ is to be deter-
mined, may also involve charge densities on the boundary surfaces or they may
be surfaces over which ¢ is specified. The charge density is to be regarded as a
source for the electric potential ¢.

Maxwell’s theory of electromagnetism is based on a set of equation of the
form

V.E = 47p
V.B 0
4 1 OF
vap = 5; 4 1%
c = c Ot
Cap o 10D
c Ot

(127)

for the two vector quantities £ and B, where p and j are source terms, respec-
tively representing the charge and current densities. These can be considered
as forming a set of eight equations for the six components of £ and B. In gen-
eral specifying more equations than components may lead to inconsistencies,
however, in this case two equations can be thought of specifying consistency
conditions on the initial data, such as the continuity of charge or the absence
of magnetic monopoles. Since these equations are first order in time, it is only
necessary to specify one initial condition on each of the £ and B fields. This is
in contrast to the wave equation, which is obtained by combining the equations
for £ and B, which is a second order partial differential equation. The two
initial conditions required to solve the wave equation correspond to specifying
E and the derivative of E with respect to t, the last condition is equivalent to
specifying B in Maxwell’s equations.

All of the above equations posses the special property that they are linear
partial differential equations. Furthermore, they are all second order linear par-
tial differential equations since, the highest order derivative that enters is the
second order derivative.

Consider the homogeneous equation which is obtained by setting the source
terms to zero. In the absence of the source terms, each term in these equations
only involve the first power of the unknown function or the first power of a (first
or higher order) partial derivative of the function. The solution of the partial
differential equation is not unique, unless the boundary conditions are specified.
That is, one may find more than one (linearly independent) solution for the
unknown function, such as ¢; fori = 1, 2, ... | N. Due to the linearity,
the general solution of the homogeneous equation ¢ can be expressed as a linear
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combination N
o= Cid (128)
i=1

where the C; are arbitrary (complex) numbers. The constant C; may be deter-
mined if appropriate boundary conditions and initial conditions are specified.
This is often referred to as the principle of linear superposition.

Now consider the inhomogeneous equation, that is the equation in which the
source terms are present. If a particular solution of the inhomogeneous equation
is found as ¢, then it can be seen that due to the linearity it is possible to find
a general solution as the sum of the particular solution and the solutions of the
homogeneous equation

N
¢ =dp + >, Cidi (129)
i=1
The solution may be uniquely determined if appropriate boundary and initial
conditions are specified.

Non-Linear Partial Differential Equations.

By contrast, a non-linear partial differential equation involves powers of
different orders in the unknown function and its derivatives. Examples are
given by the sine-Gordon equation

v? L & Zsing = 0 (130)
— - —5 — m° sing =
2 ot?
which is a second order non-linear partial differential equation or the Korteweg-
de Vries equation

¢ o9 Bo
N + ¢ o 3 0 (131)

which describes shallow water waves in a one dimensional channel. The Kortweg-
de Vries equation is a third order non-linear partial differential equation as the
highest order derivative that it contains is third order. In these non-linear equa-
tions, the principle of linear superposition does not hold. One can not express
the general solution of the equation as a linear sum of individual solutions ¢;.
Both these non-linear equations are special as they have travelling wave like so-
lutions which propagate without dispersion. These special solutions are known
as soliton solutions.

For the Korteweg-de Vries equation one can look for soliton solutions which
propagate with velocity c,

p(z,t) = oz — ct) (132)
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so that one has

0¢ 3¢
_ - —Z =9 133
(6 - )t + 28 (133)
which can be integrated to yield
¢? >’
? — C ¢ + @ = K (134)
The constant of integration x is chosen to be zero, by specifying that the ¢ — 0
when | x — ¢t | — oo. On identifying an integrating factor of
9¢
— 135
o (135)

and multiplying the differential equation, by the integrating factor one obtains

008 00, 00

— — 136
oxr 2 Caz¢+8z8z2 (136)
This can be integrated again to yield
¢ @ 1[99\
RN T . = 137
5 c 5 + 5> \ oz Y (137)
The boundary conditions can be used again to find v = 0. The square root of
the equation can be taken, giving the solution as an integral with z = 3¢C

o(z,t)

The integral can be evaluated, using the substitution

z = sech? (139)

and

dz = — 2sech? z tanh z dx (140)
giving

oz, 1) = i (141)

This non-linear solution has a finite spatial extent and propagates with velocity
¢, and does not disperse or spread out.

The stability of shape of the soliton solution is to be contrasted with the
behavior found from either linear equations with non-trivial dispersion relations
or with the non-linear first order differential equation

o _ _, 9

ot -7 oz (142)
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which has the solution

¢ = flz —ot) (143)
where f(x) is the (arbitrary) initial condition. This can be solved graphically.
As the point with largest ¢ moves most rapidly, the wave must change its shape.
It leads to a breaker wave and may give rise to singularities in the solution after
a finite time has elapsed. That is, the solution may cease to be single valued
after the elapse of a specific time.

3.1 Linear First Order Partial Differential Equations

Consider the homogeneous linear first order partial differential equation

o¢ 99 _
Iz + a(z,t) i 0 (144)

with initial conditions ¢(x,0) = f(z). This is known as a Cauchy problem.

We shall solve the Cauchy problem with the method of characteristics. The
characteristics are defined to be curves in the (x,t) plane, x(t), which satisfy
the equation

dx(t)
dt
The solution of this equation defines a family or a set of curves x(t). The
different curves correspond to the different constants of integration, or initial
conditions z(0) = xo.

= a(z(t),t) (145)

The solution ¢(x,t) when evaluated on a characteristic yield ¢(z(t),t), and
has the special property that it has a constant value along the curve z(t). This
can be shown by taking the derivative along the characteristic curve

d _ dat) 98(a,t) | D0(x,?)
5 o)1) = — 5w T o (146)
and as the characteristic satisfies
dr(t)
o = o)1) (147)
one has J D(z. ) (. )
z, z, _
= o)1) = alwt) D+ SERD (148)

as ¢(x,t) satisfies the homogeneous linear partial differential equation. Thus,
¢(x,t) is constant along a characteristic. Hence,

P(z(t),t) = é(20,0)
= f(zo)
(149)
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This means that if we can determine the characteristic one can compute the
solution of the Cauchy problem.

Example:

Consider the Cauchy problem

09 do
with initial conditions
¢(x,0) = f(z) (151)

The characteristic is determined from the ordinary differential equation (it

has only one variable)

dxr
— 152
7 = (152)

which has solutions
x(t) = ¢t + a9 (153)

Thus, the characteristic consist of curves of uniform motion with constant ve-
locity c.

The solution ¢(z,t) is constant on the curve passing through (zo,0), and is
determined from

o(z,t) = ox(t),t) = fl(xo) (154)
However, on inverting the equation for the characteristic one finds
xg = x — ct (155)
so one has
o(x,t) = f(z — ct) (156)

which clearly satisfies both the initial condition and the differential equation.
The above solution corresponds to a wave travelling in the positive direction
with speed c.

Example:

Consider the Cauchy problem

99 99
with initial conditions
¢(x,0) = f(z) (158)



The characteristic is determined by the ordinary differential equation

dx
> 1
7 x (159)

which has a solution
x(t) = xo exp[t] (160)

On inverting the equation for the characteristic and the initial condition, one
has
xo = x(t) exp] — t ] (161)

Then, as the solution is constant along the characteristic curve

¢(z(t),t) = f(zo) (162)

one has

¢(z,t) = f(x exp[—t]) (163)
This is the solution that satisfies both the partial differential equation and the
initial condition.

Inhomogeneous First Order Partial Differential Equations.

The inhomogeneous linear first order partial differential equation can be
solved by a simple extension of the method of characteristics. Consider, the
partial differential equation

¢ o¢

— + a(x,t) == = b(x,t 164
where the inhomogeneous term b(z,t) acts as a source term. The initial condi-
tion is given by

¢(z,0) = f(z) (165)
The characteristics are given by the solution of
d
ch = a(z,1) (166)
and z(0) = xo. The solution along the characteristic is not constant due to
the presence of the inhomogeneous term, but instead satisfies
ds(alt).t) _ 00 da(t) 99
dt ot dt Oz
0¢ ¢
= _— t P ——
ot T @0 g,
= b(x,t)
(167)
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However, the solution can be found by integration along the characteristic curve.
This yields,

mumﬂzfuw+A<WMﬂmJ> (168)

On inverting the relation between z(t) and zg, and substituting the resulting
relation for f(xg) in the above equation one has the solution.

Example:

Consider the inhomogeneous Cauchy problem

99 99 _

v — = A 169

o " Car T (169)

where the solution has to satisfy the initial condition ¢(x,0) = f(x). The
characteristics are found as

x(t) = xo + ct (170)

and the solution of the partial differential equation along the characteristic is
given by

wwm>=fwm+y/ﬁww

0

= flxo) + A(zot + gtz)
(171)

Since the characteristic can be inverted to yield the initial condition as xy =
r — ct, one has the solution

(;S(a:,t):f(x—ct)+)\t(x—c2t> (172)

which completely solves the problem.
Homework:

Find the solution of the inhomogeneous Cauchy problem

0 0 1
87(5: + ca—i = - o(x,t) (173)

subject to the initial condition

¢(x,0) = f(z) (174)



Solution:

The characteristic is given by
z(t) = xo + ct (175)
The ordinary differential equation for ¢(z(t), ) evaluated on a characteristic is

do(x(t),t) _ 1
—a - Tz P(x(t),t) (176)

which has the solution

Bla(t)t) = B(x(0),0) expl - ]

(177)

which is a damped forward travelling wave.

3.2 Classification of Partial Differential Equations

Second order partial differential equations can be classified into three types,
Elliptic, Parabolic and Hyperbolic. The classification is based upon the shape
of surfaces on which the solution ¢ is constant, or on which ¢ has the maximal
variation. These surfaces correspond to the wave fronts in space time (r,t), and
the normals to the surfaces which correspond to the direction of propagation
of waves and are called the characteristics. That is, one finds the combination
corresponding to the light ray of geometrical optics.

To motivate the discussion, consider a general second order partial differen-
tial equation
¢ ) ¢ ¢ o¢
A — 2B C — D — E — F =0 178
oz TP e TV TP TP T (178)
where a, B,C, D, E and F' are smooth differentiable functions of z and ¢. Sup-
pose we are trying to obtain a Frobenius series of ¢ in the independent variables
x and t. If ¢(x,0) is given, then all the derivatives % can be obtained by
% , then the deriva-
t=0

direct differentiation. If the first order derivative

8"+1¢(l‘,t)

tives 5t o

can also be obtained by direct differentiation.
t=0
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%¢(,t)

These two pieces of initial data allow the second derivative =3 to
t=0
be evaluated, by using the differential equation,
Po _ _,BPs _CPs Do B F
0z A Ox Ot A Ot? A Ox A Ot A

Also by repeated differentiation of the differential equation with respect to ¢, all
the higher order derivative can be obtained. Hence, one can find the solution
as an expansion

dp(x,t) " 92 (x,t)
t') = 0 t' : - —=1 180
ety = om0y + ¢ 00| L 0GR s
Thus, on specifying ¢(z,0) and the derivative ‘%gg’t) allows ¢(z,t) to be

t=0
determined. However, it is essential that the appropriate derivatives exist.

Characteristics.
Consider a family of curves £(z,t) = const. and another family of curves
n(xz,t) = const. which act as a local coordinate system. These set of curves

must not be parallel, therefore we require that the Jacobian be non-zero or

J(E,n> _ %o %o, (181)
Y

The family of curves do not need to be mutually orthogonal.

The differential equation can be solved in the (&, 7n) local coordinate system.
We shall define the solution in the new coordinates to be

(,t) = (&) (182)

Let us assume that the differential equation has the function (2)(5 = 0,7) and

9¢(€m)
¢

z1=0

the derivative are given. By differentiation with respect to 1 one

can determine

96(0,m)

on
9*9(0,7)
On?
(183)
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and
99(¢,m) ‘
o0& =0
9*(&,n) ‘
o€ on £=0

(184)

To obtain all the higher order derivatives, one must express the partial dif-
ferential equation in terms of the new variables. Thus, one has

(&), - (), (3).« G).(R), o
and

2eN  _ (9 @ j ¢

otz ), \og), \o? o2
b 96\ (on
con) (i ) (&),
etc. Thus, the differential equation can be written as

(5) (4 (&) ~=2(E) () +o(3))

2\ (0¢\°
(5) (3i).

(186)

+
VS
QP
e
N———
VRS
PR
N———
8 )

_|_

[\)
VS
Q

+

+

(55) (4(2)" -+ (2) (3) - (2))
)2 o) o)

o 9%n %n %n on on
— Al — 2B — D | — E (=
* (an> (83:2 * awor) T 9\ar) TP \a) TP \w
+ Fo+G =0
The ability to solve this equation, with the initial data on & = 0 rests on

whether or not
ot \? e\ [ 0¢ o¢
A(ax) o B(a>(at>+0(at> 20 (188)

35

() (4 (52) (52) 2 [ (52) (B) + () (3)] + e (

23

ot

) (

7))

(187)



If the above expression never vanishes for any real function £(x,t), then the so-
lution can be found. All higher order derivatives of ¢ can be found by repeated
differentiation.

If a real function &(z,t) exists for which
oc)? o5\ (9% 06\ _
A <3x> + 2B (m) (& + C 5 = 0 (189)

then the problem is not solvable if the initial conditions are specified on this
curve.

The condition of the solvability of the partial differential equation is that
the quadratic expression

e\ e\ (€ o€
A <8x> + 2B (83@ a5 + C a5 (190)
is non-vanishing. This condition is governed by the discriminant
B* - AC (191)

and can result results in three regimes.
Hyperbolic Equations.

The case where B> — A C > 0 corresponds to the case of hyperbolic
equations. In this case, one finds that the condition vanishes on the curve

(gi)/(%): [—Bi\/ABQ—AC] o)

However, the slope of the curve £(x,t) = conts. is given

de (gi) + ot (gf) ~ 0 (193)
i3

(Z) _ Ez; (194)
oz

- Lol
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the solution can not be determined from Cauchy initial boundary conditions.
These are the characteristics of the equation. In the local coordinate system
corresponding to the positive sign we see that

A (gﬁf + 2B <§§> <g§) +C (35)2 =0 (196)

and also the other coordinates n(x,t) can be found by choosing the negative
sign. On this family of curves one also finds

A <gz>2 + 2B <§Z> @Z) +C (?Z)Q =0 (197)

In this special coordinate system, one finds the partial differential equation
simplifies and has the canonical form
¢ Do d¢ -
— — 0 =0 198
8§6n+0‘8§+56n+7¢+ (198)

where «, 3,7 and § are functions of £ and 7.

An example of a hyperbolic equation is given by the wave equation

920 1 (9%
(m) - (at) 0 (199)

where A = land B = Qand C' = — ciz The equation for the characteristics

is given by , ,
o€ 1 [oe\*
(%) ~= (&) =° (200
o0& 1 [0¢
(ax) e (m)
on 1 (o) _
(a) . (m) ~ 0 (202)

E =2 — ct (203)

which factorizes as

0 (201)

and
which has solutions
and

n=ux+ct (204)

The wave equation reduces to

(205)

N
Rl
o
gﬁl
N———
(aw]



and has the solution

o(&m) = f() + g(n)
= f(z —ct) + gz + ct)

(206)
which corresponds to a forward and backward travelling wave.
Parabolic Equations.
If the discriminant vanishes in a finite region, B2 — A C = 0, then it is

clear that neither A nor C can vanish as in this case B must also vanish, and
one would only have an ordinary differential equation. If A # 0, one has the

single solution
o€ o0&
(3x>/(6‘t) — B/ (207)

corresponding to the double root. Hence, there is only a single family of char-

acteristics £ defined by

dx A
- = 2
dt B (208)

On transforming to the coordinate system determined by the characteristics

2 2
&, one has the coefficient of g—f vanishes, but 68573"7 must also vanish since the
discriminant vanishes. The equation can be put in canonical form

99
on

) -
@—&-a%-&-ﬁ

b = 2
o 3 +76 + 8 =0 (209)

An example of a parabolic partial differential equation is given by the diffu-
sion equation,

»Po 9
o2~ g =0 (210)

in which A = land B = C = 0.
Elliptic Equations.
In the case when B2 — A C' < 0 the partial differential equation is elliptic.

In the case, when the discriminant is negative, there are no real roots and
thus there are no real solutions of the equation and there is always a solution
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of the partial differential equation if the initial conditions are given.

The elliptic equation can be put in canonical form. First, the coefficient of
¢
9¢ In

is chosen to be put equal to zero. This requires that

() [ ()= ()] () [2(3) o (3)] -0

The curve £ that does this satisfies
ot an )
oy (8)_2() e
dz) ~ ) N d )
ORNIOETE

Secondly, equation is transformed such that the coefficients of g%‘f and g%f

(211)

(213)

are made equal, while the coefficient of % is maintained to be zero. For
convenience, we shall relabel the coordinates found from the first transformation
as (z,t), and the coefficients as A and C etc. The required transformation is
determined by the condition that the coefficients are equal

Y (B ca(2) e () e
G) &) e G)G) -0 e

where one has used B = 0. Furthermore as A C > B? then A and C have
the same sign. These equations can be combined to yield

& @] - e[@ @] e

This condition is equivalent to

(8 - e (3

and zero

A

Oz ot
SOREIC

(217)

39



The existence of a solution of the two equation for both ¢ and 7 is addressed
by assuming that 7 is determined. Once 7 is determined, then £ can be deter-

mined from
C (0n A (0n
— = )de — /= =) dt 21
\/A(@t)m C<6m>d] (218)
The solution exists if the integral is independent of the path of integration. This

requires \/f (?Z)} - % \/g ((22)1 (219)

which is just the condition that £ is an analytic function, so a solution can al-
ways be found.

x,t
&(x,t) = const. + /
x

0,to

0

ot

An example of an elliptic equation is given by Laplace’s equation

»’o | ¢
a2 T oz = (220)
in whichA = C = 1land B = 0.

The characteristic equation is
- o¢ 2 o¢ 2
- (&) + (5)
~[roeey (o AN

which has solutions

(221)

£ = =+ iy
= T — 1y

(222)

In terms of these complex characteristics, the equation reduces to

(22) -

and thus the solution is given by

P&n) = FE) + G)
= Flz+iy) + Gz —iy) (224)
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These are harmonic functions. The real and imaginary part of these solutions
separately satisfy Laplace’s equation.

3.3 Boundary Conditions

Boundary conditions usually take three forms:-
Cauchy Conditions.

Cauchy conditions consist of specifying the value of the unknown function
and the normal derivative (gradient) on the boundary.

Dirichlet Conditions.

Dirichlet conditions correspond to specifying the value of the unknown func-
tion on the boundary.

Neumann Conditions.

Neumann conditions consist of specifying the value of the normal derivative
(gradient) on the boundary.

Hyperbolic equations possess unique solutions if Cauchy conditions are spec-
ified on an open surface.

Elliptic equations possess unique solutions if either Dirichlet or Neumann
conditions are specified over a closed surface.

Parabolic equations posses unique solutions if either Dirichlet or Neumann
conditions are specified over an open surface.

3.4 Separation of Variables

A partial differential equation may some time be solvable by the method of
separation of variables. In this case, the partial differential equation can be bro-
ken down into a set of differential equations, one equation for each independent
variable.

For example. the wave equation in Cartesian coordinates takes the form
0% 0%¢ 0% 1 [0%¢
o e e — ) - —(ZZ) =0 225
(52) + (5) + (3) - = () 229
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This can be reduced to three one dimensional differential equations by assuming
that
o(z,y,2,t) = X(x) Y(y) Z(2) T(t) (226)

which, on substituting into the differential equation leads to

st () i (57) 21 (52) 31 (59)] -

(227)

X(x)Y(y) Z(2) T(t)

or on diving by ¢ one has
11 (82T

st (58) + 5t (36) + 2ty (5] - &5 (5F) oo

The left hand side is independent of ¢ and is a constant as ¢ is varied while the
right hand side is only a function of . Hence, we have

1 1 [/0?T

- == = K 229

2T (8t2) (229)
where K is the constant of separation. One then finds that the ¢ dependence is
governed by

1 [(0*T

S |= ) = KT(t 230

= (5%) 0 (230)
and is given by the solution of a one dimensional problem. The equation for the
spatial terms is given by

1 92X 1 %Y 1 0’z
= K 231
[X(@ (5) * 7o (a) * 279 () 231
The function X (z) can be determined by noting that
1 (9% 1 [(8%Z 1 [8°X
v (3) * 25 (52) | K = 3 (7)o

Hence, the left hand side is constant while the independent variable x is varied.

Thus, it is a constant L
1 0*X
— | =) =1L 233
v (5) 259

which is the one dimensional problem

<%2;§) = L X(z) (234)
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which can easily be solved. The remaining terms are governed by

1 0*Y N 1 [0*Z
Y(y) \ 0y? Z(z) \ 022
which involves the two constants of separation K and L. This equation can be
solved by noting that

which can be reduced from a two dimensional to a one dimensional problem by
noting that the left hand side is independent of y and is thus a constant, say,

= K - L (235)

Z(2)

— M. Then )
0°Y
)\ =MY 237
(%) W) (237)
which can be solved. Finally, one has
1 0%z
——|=— ) =K -L - M 2
Z(z) (822> (238)

which can also be solved.

Thus, on solving the one dimensional problems we have found a specific
solution of the form

¢K,L7N1(x,y,z.t) = Tk(t) Xp(x) Yu(y) Zx—r—m(2) (239)

Since we have a linear partial differential equation one has a general solution of
the form of a linear superposition

$(x,y,2,0) = Y Crrm brrm(®,y,21t)
K.L.M

= Z Crrm Tr(t) Xo(z) Yu(y) Zr—r—m(2) (240)
K, LM

The constant coefficients Ck 1 s are chosen such as to satisfy the boundary
conditions.

Example:

The quantum mechanical three dimensional harmonic oscillator has energy
eigenstates described by the equation

2 2
_Lv2w+mw

2
U = EUT 241
2m 2 (241)




This can be solved in Cartesian coordinates by using

r? = 2% 4 y® 4 22 (242)

and the ansatz for the eigenfunction
U(z,y,2z) = X(z) Y(y) Z(2) (243)
which leads to three equations

h? 92X (x) m w?

2m 922 2
R: 8%Y (y m w?

- T TS 2y = B YW)
G VA m w?

(244)

where the constants of separation satisfy # = E, + E, + E..

Example:

The energy eigenfunction for a particle of mass m with a radial potential
V(r) can be written as

h? o,
_ 2 VX 4+ V(r)U = EV 24
5 + V(r) (245)

and in spherical polar coordinates reduces to

Lo souy, 0 o ey 1 o
2m |r2 Or or r2 sinf 00 00 r2 sin? @ O¢p?
(246)

This can be reduced to three one dimensional problems by separation of vari-
ables. The eigenfunction is assumed to be of the form

U(r,0,¢) = R(r) ©(8) (v) (247)

On substituting this form into the equation and multiplying by r? sin?# and
dividing be ¥ it can be found that the azimuthal function satisfies

+V(r)v = EVY

0%

Gz =~ o) (248)

where the constant of separation is identified as m?. The solution is denoted
by ®,,(¢). On substituting for the ¢ dependence in terms of the constant of
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separation and multiplying by sin6 ©(#), one finds that 6 dependence is also
separable and governed by

1 0 ., 00 m?
Sine(%(sm@)—@(9)——l(l+1)@(9) (249)
where the constant of separation is written as I ({ + 1 ). The solution depends
on the values of (I,m) and is denoted by ©;,,(0). The radial dependence R(r)
satisfies the one dimensional problem

1o (Tz <9R> LU * 1) by 4 V) RO = B R() (250)

2m r? Or or 2mr?
It is seen that R(r) depends on [ and not m, and is denoted by R;(r). Thus, in
this case the solution of the partial differential equation can be reduced to the
solution of three one dimensional problems or ordinary differential equations,
involving two constants of separation (I, m). The general solution can be written
as the linear superposition

W(’r‘,@,(p) = Z CVl,m Rl(r) ®l,m(9) @m(go) (251)
Im

of solutions with the different possible (I, m) values, and with expansion coeffi-
cients Cj .
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4 Ordinary Differential Equations

An ordinary differential equation is an equation involving one unknown function
¢ of a single variable and it’s derivatives. In physical applications, the variable is
either a position coordinate z or time ¢t. Since the equation involves a derivative
of first or higher order, finding solution requires the equivalent of at least one
integration of the unknown function ¢(x). Hence, in order that the constants
of integration be uniquely specified the equation must be supplemented by at
least one boundary condition. Generally, as many derivatives occur in the ODE;,
many different boundary conditions are also needed. The number of boundary
conditions needed usually correspond to the degree of the highest order deriva-
tive. The boundary conditions usually consist of specifying a combination of
the unknown function and its derivatives at a particular value of the variable, xg.

Ordinary differential equations may be either linear or non-linear differential
equations. A linear ODE is an equation in which each term in the equation
only contains terms of first order in the unknown function or its derivative. For

example,
2

0 .
Frl + sinw t ¢(t) = coswt (252)

is a linear differential equation. An equation is non-linear if it contains powers
of the unknown function or its derivatives other than linear. For example,

— — m” sing(z) = 0 (253)

is a non-linear differential equation. It occurs in connection with the sine-
Gordon field theory, which involves the temporal and spatial variation of the
physical field ¢. Non-linear differential equations do not have systematic meth-
ods of finding solutions. Sometimes a specific solution can be found by intro-
ducing an integrating factor. In the above case, an integrating factor of g—i can
be used to convert the equation into the form of an exact integral

¢ ¢ 99 .
% @ — m2 % Sln¢(x) =0 (254)
which can be integrated to yield
1 (09\* |,

where C' is a constant of integration. The constant of integration must be
determined from the boundary conditions. A suitable boundary condition may
be given by

lim ¢(z) = 0 (256)

r—r 00
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In this case one may identify C = m?2. Hence, the non-linear differential

equation of second order in the derivative has been reduced to a non-linear dif-
ferential equation only involving the first order derivative of ¢.

On using the trigonometric identity

(1 — cosgp) = 2 singg (257)
one can take the square root of the equation to yield
0
(éﬁ) = +2m sin% (258)

This is a first order non-linear differential equation. This can be solved by
writing

9¢
(?Id)) =2m (259)
Sin b
which can be integrated by changing variable to t = tan(%). A limit of the

integration can be chosen to coincide with the point at which the boundary

condition is specified
¢
2 Int =
ntan < )

which involves the term In tan(@) which is another constant of integration.

If this is specified to have a value In A, the above equation can be inverted to
yield

x

= +2mzx (260)

0

é(xr) = 4 tan™! (A exp[ + m x] ) (261)

This solution represents a static soliton excitation. Solitons of this kind exist in
a system of infinitely many gravitational pendula. In this case, the pendula are
joined rigidly to one wire. The rotation of a pendulum provides a twist in the
supporting wire which transmits a torsional force on the neighboring wire. The
angle that the pendula make with the direction of the gravitation is denoted by
¢. The gravitational force is periodic in the angle ¢ and is responsible for the
non-linear term. The above solution represents a rotation of successive pendula
over the top. In addition to this one expects small amplitude oscillations of the
weights around the bottom. Since ¢ is expected to be small one can linearize
the equation, that is we may be able to write b

sing = ¢ (262)
to obtain
0%¢ B

e m? ¢(x) = 0 (263)
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This is a second order linear differential equation. It can be solved to yield the
solution

¢px)= Asinm(z — x9) (264)

involving two constants of integration which are provided by two boundary
conditions. This solution represents a snapshot of the ripples of the coupled
pendula. We have assumed that the amplitude of the ripples are such that
A< 1.

4.1 Linear Ordinary Differential Equations

Linear differential equations have the form

n=N n
Y ) 50 = j@) (265)

where the set of functions a,(z) and f(z) are known. The largest value of n for
which the function a, (z) is non-zero is denoted by N, then the linear differential
equation is of N-th order. If the term f(z) is zero the equation is homogeneous,
whereas if the term fx) is non-zero the equation is inhomogeneous.

Homogeneous linear differential equations satisfy the principle of superpo-
sition. Namely if ¢ (x) satisfies the equation and ¢o(z) also satisfies the same
equation, then the linear combination

d(z) = C1 ¢1(x) + C2 ¢ga2(x) (266)

also satisfies the same linear differential equation. In general, the non-uniqueness
of solutions to an equation is due to the failure to specify appropriate boundary
conditions on ¢(x). This non-uniqueness can be utilized to construct solutions
that satisfy the appropriate boundary conditions.

A particular solution of an inhomogeneous linear differential equation, ¢,(x),

is not unique as, if any solution of the homogeneous equation is added to the
particular solution is added it

¢(x) =dp(x) + Y Co ¢ulx) (267)

then this ¢ also satisfies the same inhomogeneous equation. The non-uniqueness
does not hold when appropriate boundary conditions are specified.

For an ordinary differential equation of N-th order it is usually necessary
to specify N boundary conditions in order to obtain a unique solution. These
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boundary conditions eliminate the N constants of integration that are found
when integrating the equation N times. Exceptions to this rule may occur if
the coefficient of the highest differential may vanish at a point. This, essentially,
reduces the order of the differential equation locally. If the boundary conditions
are not used, one can develop N independent solutions of the N-th order linear
differential equation.

4.1.1 Singular Points

A homogeneous linear differential equation can be re-written such that the co-
efficient of the highest order derivative is unity. That is it can be written in the
form

an(z) Oxm

For a second order differential equation we shall use the notation

d*¢ do
— P(z) — =0 269
T8+ P) S+ Q) 6 (269)
If both P(z) and Q(x) are finite at the point z = =z the point xg is an ordinary
point. If either P(z), Q(z) or both diverge at the point x = z( the point z is
a singular point. Example of a singular point occurs in quantum mechanics, for
example the behavior of the radial part of the Hydrogen atom wave function is
governed by the ordinary differential equation
o1 ( 9 5 0

o 2w + [ve + LD

5 12 R(r) = E R(r)

(270)
where the centrifugal potential diverges as r — 0. This is an example of a
singular point. Physically, what is expected to occur is that the terms V' (r) and
FE are negligible, near this singular point, and that the radial kinetic energy will

balance the centrifugal potential.

—h21<8 28>R(r)+h2l(l+1)R(r)zo (271)

2m r? Er or 2 m r?

2m r?

Then, one expects that for » ~ 0 the radial wave function will be such that

}1_1% R(r) o< r (272)
where « = lora = — (1l + 1). Another example occurs in the one

dimensional harmonic oscillator which is governed by

" 9% m w? x?
—?w—l-Tw—Ez/} (273)
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when x — +oo. In this case, one expects that the kinetic energy term should
balance the potential energy term. This is usually handled by introducing the

variable z = %

The type of singularity can be classified as being regular or irregular.

A regular singular point xg is a singular point in which both (z — xg ) P(x)
and (r — 2 )? Q(v) remain finite in the limit * — .

An irregular point zg is a singular point in which either (z — zo ) P(x) or
(x — 20 )? Q(x) diverge in the limit * — .

4.2 The Frobenius Method

Given a linear differential equation one can generate an approximate solution
around a point xg in the form of a power series in (  — xg ). This is the Frobe-
nius method. The idea is to develop P(x) and Q(x) in a power series around
zo and then express the solution as a power series, with arbitrary coefficients
C,. The arbitrary coefficients are determined by demanding that each power
of (x — xo )™ vanish identically when the series solution is substituted into
the equation. Essentially, we are demanding that the power series satisfy the
differential equation by yielding zero, and that the zero only can be expanded
as a polynomial if all the coefficients are zero. This produces a set of linear al-
gebraic equations, one for each value of n, which determine the set of unknown
coefficients C),. For simple equations, these coefficients can be determined from
a recursion relation.

We shall consider the series expansion of the solution ¢ about the point g,
in the form

(275)

o) = (& = w)* Y Co(w — @) (274)
n=0
Then one has
8(2553) = a(z xo)a_lzCn(x—xo)"‘F(fU—xO)aZ”C’l(m_m)n1
n=0 n=1
= ZCn(x—xo)a+nl<"+o‘>
and
3;;;;) = a(a—1)(56—%0)0‘7226%(35_330)"



+ (m—mo)aZn(n—1)Cn(x—mo)”72

n=2

;Cn(x—%)””_?(n(n— 1) +2na+a(a— 1))

ZC’n(Jc—xo)(”'”_Z(n—&—a)(n—i—a—1) (276)
n=0

etc.

4.2.1 Ordinary Points

If ¢ is an ordinary point then P(x) and Q(z) can be expanded around z
P(z) =Y Pp(z — z)"
m=0
Q) =3 Qu (- @)"

m=0
(277)
On substituting all these into the differential equation, one obtains the equation

0 = Z(m—xo)a+”_20n(n+a> (n+a—1)

n=0

+ Z(a: R I ’”XZ:” Pan_m<n— m+a)

n=0 m=0
m=n
+ Z ( r — X )aJrn Qm Cn—m
n=0 m=0

(278)

On relabelling n by n + 2 in the first equation and n by n 4+ 1 in the second
equation, so that the summations have formally similar exponents, one obtains

0 = Z(Jc—xo)a"’”CnJrg(n—&—Q—i—a)(n+a+1>

n=0

m=n+1
+ Z(x_lb)a—i_n Z Panm+1(n_m+Oé+1)
m=0

n=0
m=n
+ Z (.’13 — X0 )aJrn Z Qm OIL—TTL
n=0 m=0
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+ (2 —20)*?Cha(a — 1)
+ (:c—xo)a_loz(cl(oz—i—l)—i—PoCO)
(279)

On equating two polynomials, the coefficients of the various powers are to be
equated. Hence we have the set of algebraic equations consisting of two equa-
tions

0 = a(a —1)CC

0 = Oz<Cl(Oé+1)+P000)

(280)
and the set of equations valid for integer n > 0
0 = Cn+2<n+2+a)(n+a+1>
m=n+1
+ Z Pmcn—m+1<n_m+a+1)
m=0
m=0
(281)
The first equation is known as the indicial equation, and has solutions & = 0 or
a = 1. The indicial equation can be obtained directly be examining only the

lowest order mono-nomial. Due to the principle of superposition the coefficient
Cy can be chosen arbitrarily.

In the case @« = 0, the coefficient C is arbitrary.

For a =1 the coefficient C1 is determined uniquely in terms of Cy by

. R Cy R (Cy
¢ = a+ 1 2 (282)

The set of equations, for each positive index n determines C), 12 in terms of
all the lower order expansion coefficients. For example, for n = 0 one has

1
02:_MM((Q+1)P001+(PIQ+QO)CO) (283)
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For v = 0 the first few terms of the solution can be written as

Qo

do(r) = C’o(l—j(x—zo)z—k...)
+ C1(1‘—5E0)(1—%($—$0)+...)
(284)
while for « = 0 one has
op(z) = Co(x—xo)(l—%(x—zo)—i-...)
(285)

Thus, we have found only two independent solutions of the second order differ-
ential equation. A general solution can be expressed as a linear combination of
¢a(z) with C1 = 0 and ¢p(x).

Example:

An example of an equation that can be solved by the Frobenius method is
Airy’s equation. It arises in the context of a quantum mechanical particle in
a uniform electric field. The equation for the motion of the particle along the
field direction is given by

R 02
—— — VY(2) —eFE, z2V¥(z) = EVY(z 286
S oS U() — e B2 () (=) (256)
where F, is the field strength and E is the energy. Before solving this equation,
it is useful to change coordinates. Let us note that the classical turning point is
determined by the point at which the potential — e F, z is equal to the energy
E. That is, if the turning point is denoted by zj, then the turning point is
determined from

—eE,z = F (287)

We shall change variables so that the position s is measured relative to the
turning point

s =z — 2 (288)
in which case the equation takes the form
R 0?
————V —¢c¢FE, sV = 2
5 5s2 ek, s 0 (289)

The form of the equation can be further simplified by identifying a length scale
£ defined by

h2
2m|el| E,

i (200)
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Z

and then introducing a dimensionless length = £ one obtains

3
82
72 2@) — 2 o) =0 (291)
where ¢(z) = ¢(57) = ¥(2).

Airy’s equation has no singularities at finite values of z, except at infinity.
We shall find a solution by series expansion around x = 0. Let, us assume that
the solution has the form

d(x) = z° Z Cp z"

= Z C, "
n=0
(292)

which is substituted into the differential equation. One finds

d(n+a)(n+a—1)C a2 = > C,a™™t =0 (203)
n=0

n=0

The value of « is determined from the indicial equation. It is found by
examining the terms of lowest power in the above equation. This, by definition,
has to be a term in which n = 0. The term of lowest power is identified as the
term 222 and the coefficients are given by

a(a—-—1) =0 (294)

Thus, we either have « = Oora = 1.

For a = 0 the equation becomes

don(n—1)Ca™? =) Cpa" =0 (295)
n=0 n=0

Or since the first two terms on the left hand side are zero one has

oo o0
Zn(n—l)C’nx"d—ZC’nx”H:O (296)
n=2 n=0
Changing the summation variable from m = n — 3 one has
S(m+3)(m A+ 2)Cpysa™™ = Y Cpa™t =0 (297)
m=—1 n=0
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or
2C 1 + Y, ((m+3)(m—|—2)0m+3 - Om)xm“ =0 (298)
m=0

On equating the coefficients of the various powers to zero, one obtains
C., =0 (299)

which is consistent with our assumption that the series expansion starts with
Cy. The higher order coefficients are related via

Cm
(m+3)(m +2)

Cmis = (300)

Hence, we have a relation between the terms in which the powers of x are of the
form 23". One has
C3r_3
(3r)(3r — 1)
Csr—6
(3r)(3r —1)(3r —3)(3r —4)

037" =

(301)

This leads to the unique determination of all the coefficients whose orders are
divisible by three.

The other solution of the indicial equation is a« = 1. This solution cor-
responds to the terms in the series of which start with Cy. The coeflicients
satisfy

Cn
Cmts = 302
T (m o+ 3)(m +2) (302)
or on writing m = 3 7 + 1 one has one has
C137’72
Csr
s (37 +1)(37r)
_ CS’(‘*E)
(3r 4+ 1)(3r)(3r —2)(3r —3)
(303)
The general solution is given by
3 26 237
= (Cp |1 —
¢(=) ot o3 T asse T T 23 (3r —1)(3r) |



4 CE7 {B3T+1
c
i 1[m+34+3467‘L T sa 3 (3r+ 1)
> .I‘ST
= Co|1
0[ + 23....(37“—1)(37")}

(304)

Because of the denominator of the general term in the series, the series converge
for all values of x. The solutions show oscillations with increasing frequency and
decreasing amplitude for increasingly negative values of x. The solutions are
montonic for positive values of x.

4.2.2 Regular Singularities

The Frobenius method, when applied at a regular singular point, xg, yields an
indicial equation that has a non-trivial solution. The series expansion shows a
non-analytic behavior at xg. Fuchs’s theorem states that it is always possible
to find one series solution for ordinary or regular singular points. For a regular
singular point, where

P-1

Ry

+ po + ... (305)

and

_ q—2 q-1
Q(x)_(zfz0)2+(x*g:0)+q0+“' (306)

the indicial equation can be found by examining the lowest term in the expansion
Co( x — xo )“. The indicial equation is found as

ala —1)+pia+qgas =0 (307)
which is a quadratic equation and gives a solution

1

a=2<1—p1i\/(1—p1)2—4q2> (308)

Example:

Consider the differential equation

d? 2.d (1 1
_73_,£+ng0 (309)
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which has a regular singular point at 7 = 0. On applying the Frobenius method

with
R(r) = r® ( T;) Ch r") (310)

The indicial equation can be found directly by examining the coefficient of the
lowest order mononomial Cyr®. Thus, we have

I(l+1)

—a(oz—l)C’oro‘_Q—ZgCora_l—i— 3
r r

Cor® =0 (311)
Thus, the indicial equation leads to
a(la+1)=1(1+1) (312)

ora = lora= — (1 + 1). The singularity governs the behavior of the inde-
pendent solutions at 7 = 0. In this case, only Cy is non-zero. All higher order
expansion coefficients satisfy equations which only have the solutions C;,, = 0.
This is because the equation is homogeneous in r. That is, if we count the
powers of r in each term where each derivative % is counted as r~!, then each
term has the same power. If the equation is homogeneous it does not mix up
the different powers, so the solutions must be simple powers.

Example:

For a slightly different equation, such as

@R 2dR  1(l+1)

_Lr 2t T TR = k2 1
dr? r dr + 72 R R (313)
it is convenient to change variables to x = k r. The equation for R(x/k)
becomes PR iR " )
2 + 1
-z — "' R = R 314
dx? x dz + 2 (314)
The solution is assumed to have the form
o0
R(x k) = z“ Z Cp a" (315)
n=0

and this is substituted into the differential equation, leading to a polynomial
equation

—Z(n+a)(n+a— 1) C, zletn=2 _
n=0

o7
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Combining the terms of the same power we have

o

Z ((n—l—a)(n—!—a—i—l) —l(l+1))0nx(o‘+"_2) = icnx”
n=0

n=0
Z(nJrafl)(n+oz+l+1)0n:v(a+"’2) = ZC’n_gz’%Q
n=0 n=2

If one were to move all the non-zero terms to one side of the equation, it is
seen that this equation is equivalent to equating a polynomial with zero. A
polynomial is only equal to zero, for all values of a continuous variable z, if the
coeflicients are of the polynomial are all identical to zero. That is the coefficients
of the terms with like powers must be identical. On equating coefficients of the
same power one has

(n+a—-1)(n+a+1l+1)C, = —Ch_s (318)

Then, if one assumes that Cy # 0, on equating the terms with n = 0 one
finds the indicial equation,

a(a+1)—1(l+1)=0 (319)

with solutions &« = lora = — (I + 1). On equating the coefficients with
n = 1, i.e. the coefficients of the terms proportional to x>+, then one finds

(a+2)(a+1)—1(l+1)[C =0 (320)

Since, for @« = lora = — (I + 1) the term in the parenthesis is non-zero
one must have C; = 0, except if [ = 0.

However, the general set of linear equations reduces to the recursion relation
(n+a-0)(n+a+14+1)C, = (—-1)Chs (321)

This series does not terminate, and so one has

1
c, = (-1 Che 322
( )(n+a—l)(n+a+l+1) 2 (322)
which can be iterated to yield
n — )N I +1)N
C, = (—1)% (o = iM(a+1+1) o (323)

(n+a—-IM(n+a+1+1)!

o8

(317)



where the double factorial is defined as

nll = n(n — 2)! (324)
and for even n, n = 2 m, can be written as
(2m)!l = 2" m! (325)
and for odd n,n = 2m + 1, one has
(2m + 1)!
2 == 326
(2m + 1) — (326)

Instead of using the explicit expression for odd n we shall use the relation
for even n to define the factorial expression for half integer n. That is, we shall
define the half integer factorial via

<2m+1)uzmé(m+;>! (327)

Thus the solution regular at the origin can be represented by an infinite
power series

Ri(r) _xl%g;o(2m)!!(2nht2z+1)!!(*1)5C
(20 + 1)

I
&%N
K

NE

2nml (2m + 21 + 1)1

3
I
o

!
22nml (m + 1 + 1)

mwmfl+§ﬁ(_wm6fm

I
gN
8

[M]8

3
Il
o

I
gs.
8

[M]8

3
Il
o

(328)

where we have defined the factorial for half integer n. It can be seen, from the
ratio test, that this series converges as the ratio of successive terms is — #, for
large m. The first few terms of the solution is given by

(kr)?

Rl(r):C’o(k:r)l 1—m

+... (329)
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This series solution is related to the Bessel function of half integer order, also
known as the spherical Bessel function.

Homework:

Show that the series solution for R;(x) satisfies the recursion relations

20 + 1
Risi(2) + Rioa(2) = ——— Ri(z) (330)
and 5R
LRi—a(x) — (L 4+ 1) Ria(z) = (20 + 1) alx(x) (331)
Homework:
Verify that '
) sin x
Jo(z) = (332)
x
and )
, sinx — x cosw
jilw) = PE T (333)
are solutions of the differential equation for I = 0 and [ = 1. Show that

on expanding these solutions in powers of z, one recovers (up to an arbitrary
multiplicative constant) the Frobenius series solutions which are nonsingular at
z = 0.

Homework:

Using the above recursion relations, find explicit expressions for the solutions
forl =2andl = 3.

Homework: 8.5.5
Homework: 8.5.6
Homework: 8.5.12
Example:

Consider the differential equation

2)82—¢—2x8¢

(1 -2 0x? or

+1(l+1)¢p =0 (334)
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This equation has regular singular points at * = =4 1. We require that the
solution is finite for all values of z in the interval (—1,1). The Frobenius series
is assumed to be of the form

o(x) = x° Z Cp a" (335)
Substitution of this form in the equation leads to

(1 —x2)ZCn(n+a)(n+a— 1) gnta=2)
n=0

—ZxZCn(n+a)x(”+o‘_1) +1(l+1) chw("'m) =0
n=0

n=0

(336)
or
Z Co(n+a)(n+a—1)z0te2 =
n=0
(oo}
= ZCH_2<(n+oz —2)(n+a—1)—=1(1+ 1)>x("+°‘_2)
n=2
(337)
Hence we have
Ch(n+a)(n+a-1)=Cra(n+a-1-2)(n+a+1-1)
(338)
where we have defined C_, = C_; = 0.
The indicial equation is found by setting n = 0, and yields
a(la—-1)=0 (339)

Choosing & = 0 one obtains solutions of even symmetry, and the coefficients
are related via
(n =1 —-2)(n+1-1)

C, = =T Chs (340)

For large n the coefficients are of the same order of magnitude, and by the ratio

test,
C n+2
lim —2Y g2 (341)

n — oo Cnxn
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In fact, it can be shown that the series diverges when x = = 1, unless the
coefficients are zero for large n. However, when [ is an integer, say IV, the series

truncates,
(N —I1)(N +1+1)

0=20C = C 342

N+2 (N +2)(N+1) ¥ (342)
and the solution for « = 0 is an even polynomial
C C

di(x) = Co |1+ =222 + 222t + ... (343)
Co Co

in which the highest term is of power N = [.

For a« = 1 the solution is odd in  and we have and the coefficients are

related via ( l 1) ( .
n — 1+ n +

C, = Chn_ 344

" n(n+ 1) n? (344)

For large n the coefficients are of the same order of magnitude, and by the ratio

test, so the series may diverge when x = =+ 1, unless the coefficients are zero for

large n. In fact, this is the case for arbitrary [. However, when [ is an integer,

say IV, the series truncates,

B (N -1+ 1)(N+1)
0 = Cniz = (N +2)(N +1) On (349)

and the solution is x multiplied by an even polynomial in which the highest
term is of power N = [ — 1.

C. C
oi(x) = x C 14+ 2222 ¢ 2t (346)
Co Co
Hence, in the case a = 1, the solution is an odd polynomial of order I.
Homework:
Show that the solution for finite [ can be written as
¢i(z) = Y Aozl (347)
s=0
where z
= [ even
— 2
Smazx { lT_Q l Odd } (348)

and the coefficients are given by

A - 7(l72$+1)(1725+2)As_1
2s(21 —2s+1)
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As = (=1)° . A
( )(z_23)!2551(21_25+1)...(21_1) 0
(21 —2s)2p

Ay = (—1)° A

( )(l—28)!2581(21)!2(1*5)(1—s)! 0

(349)
Thus, the coefficients are given by
(=1 ()2 (21 — 25s)!

A= T I T = 2501 (1 = sy o (350)
and the series solution is given by

(D2 e (—1) (20— 2s)

= A (1=2s) 1
R Y S TRIP P e T (351)
Homework:

Show that the series solution, for integer [, satisfies the recursion relation

(21 + 1) adix) = (I + 1) dipal@) + 1 dro1(@) (352)

Example:

An example of the Frobenius method providing a solution of an eigenvalue
equation, is given by the following equation

0%¢ 1 oler mo
8x2+(x_1>8x+x¢_0 (353)

which is Laguerre’s differential equation. This represents an eigenfunction when
the series truncates to yield a polynomial, as certain boundary conditions have
to be satisfied as + — oo. In the case that the boundary conditions are satis-
fied because the series truncates, the parameter m is the eigenvalue. The point
x = 0 is a regular point.

The Frobenius solution is found by assuming a solution in the form of an
expansion

o(x) = a® Z Cp z" (354)

On substituting this into the differential equation one a polynomial equation
which is equal to zero

0 = ZCn<n+a><n+a—l>xa+"2
n=0
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oo

o
+ Z Cn (Tl + a) (mcx+n—2 _ xa+n—1) + Z an xoz—i—n—l
n=0

n=0
(355)
On collecting terms one finds that
o o0
0= Culn+a)Pa®™? 4> (m—n— a)C, ™" (3506
n=0 n=0
On writing n = n’ — 1 in the second term and noting that the sum starts at
n’ = 1 one has
0 = Z Cp(n + a)?z*™m2 4 Z (m —n' —a + 1) Cpq a2
n=0 n’=1

(357)

or

0 = Z <C”(”+a)2+(m—n—a+l)0n1)x"‘+”2
n=0

(358)

if one defines C_; = 0. This polynomial is only zero if the coefficients of the
various powers are all equal to zero.

Examining the coefficient of the lowest power, 272, and equating the coef-
ficient of the mononomial to zero, one finds the indicial equation

a?Cy =0 (359)

which only involves the lowest order expansion coefficient Cy. Since, by defini-
tion (Y is the coefficient of the lowest order term in the expansion, it is non-zero,
otherwise all the coefficients are zero. Hence, we must have

o> =0 (360)
which only yields one solution for a.

On examining the higher order coefficient of the polynomial, i.e. the coeffi-
cient of the power in 2”2, and equating the coefficient to zero, one has

0 = n2Cp + (m —n+1)Chy
(361)
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Hence, we have the recursion relation

—m -1
o, = 7 7’; oo, (362)

This yields the higher order coefficients in terms of the lower order coefficients.
In fact, on iterating one can obtain the formal relation

m!
(m — n)!(n!)

for m > n. The Frobenius method only allows us to find this one solution,
since there is only one solution for o and C is uniquely determined by Cy.

Cp = (-1)" 5 Co (363)

For large n the recursion relation can be approximated by
1

or C
0
Co ~ — (365)

Hence, for large = the series can be approximated by an exponential as

0 n
T
p(z) ~ 2} Co o
~ Cy exp| x| (366)
If the series truncates at the IN-th order term one must have Cp; = 0 for

all M > N. This can only be the case if Cxyy1; = 0and Cny # 0. In this
case, the recursion relation becomes

0 = Cny1 = m Cn (367)

which requires N = m. In the case of integer m, the Frobenius series trun-
cates to an m-th order polynomial, and m is the eigenvalue. The polynomial
converges and therefore represents a good solution.

Example:

The Hermite polynomials ¢,,(x) satisfy the equation

P dum () I (x)
— - 2 — 2 =

52 T = + 2m ¢p(x) 0 (368)
on the interval (—o0,400). On using the Frobenius method one employs the
ansatz

Pm(z) = 2% i Cpn z" (369)
n=0
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and substitutes this into the differential equation

 Cu(n+a)(nta—1)a"™ 242> Co(m-—n—-a)z" =0
n=0 n=0

(370)
Setting m = n’ — 2 in the last term

Z Co(n+a)(n+a—1)z"2 42 Z Chi_a (m+2—n’foz)x"/+”‘*2 =0
n=0 n’/=2

(371)
We shall define C_; = C_; =0, and then find that

oo

Z (Cn(n+a)(n+a1)+2 Cn—z(m+2na)>x"+“2 =0
n=0
(372)

The indicial equation is found from examining the coefficient of lowest non-

zero mononomial z*~ 2, where n = 0,
a(a—-1)CH =0 (373)
hence, either « = Oora = 1.
For @ = 0 one has the recursion relation
n—2—-m
Ch, =2 ——— C,_ 374
n(n — 1) 2 (374)
Thus, the solution is even in . On writing n = 2 s one has
2s — 2 —m
Cos = 2 ———— Oy
2 2s(2s — 1) 72
_ l)s(m—2s+2)(m—25+4)...(m—2)m2800
(2)!
(m)!!
= —1)° 2° C
(=1) (m — 2s)Il (25)! 0
= (-1) (5)! 2% Cy
(5 — ) (29)!
(375)
It can be seen that the series truncates when
N —
0 = Cyio = 2 m Cn (376)

(N +2)(N+1)
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that is, the series terminates if m = N and the series is a polynomial of order V.

We note that if the series does not truncate the large n behavior of the

coeflicients is governed by

c ~ 2an, (377)
n

so one has 1
Cos ~ o Co (378)

and the series would exponentiate at large z.

4.3 Linear Dependence

In the Frobenius method we look for a power series solution, by substituting
the power series into the equation. Let us examine only the first N terms in the
series solution. After some re-organization one finds a polynomial equation, in
which the polynomial is equated to zero. This equation is solved by insisting
that if the polynomial in x is equal to zero then all the coefficients of the poly-
nomial are zero. This then leads to the recursion relation etc., and if the series
converges in the limit N — oo one has a solution.

A crucial point of the procedure is the insistence that if the polynomial is
equal to zero then the only solution is that all the coefficients of the various
mononomials are zero. This is a statement that the various mononomials =™
are linearly independent.

The linear independence can be proved by examining a general N-th order
polynomial which is equal to zero

n+N
S et =0 (379)
n=0

which is supposed to hold over a continuous range of x values. Then as this
holds for x = 0 one finds that the coefficient Cy must be zero. On taking the
differential of the polynomial one obtains

n=N
Y nCya"t =0 (380)

n=1

which must also hold at x = 0. Hence one obtains C; = 0. By taking all N
higher order differentials this can be extended to show that all the C,, = 0.
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Thus, we have shown that if the polynomial is equal to zero the coefficients of
the various mononomials are equal to zero. Thus, it is impossible to write

ky 2V o= Yk a” (381)

for any set of k, which contains non-zero values. This is formalized by the
statement that a set of functions ¢,, = z™ are linearly independent if the only
solution of

is that k£, = 0 for all n. On the other hand if one has a set of functions ¢,
such as the set containing all the N-th lowest order mononomials, such as x™,
and the function ¢n11 = a 22 + bz + c¢ then there are non zero or non
trivial solutions of the equation

N+1
Z ko ¢po = 0 (383)
a=0
such as
k() = C
ki = b
]CQ = a
kv =1

(384)

In this case, the set of functions ¢, are linearly dependent as at least one of
them can be expressed as a linear combination of the others.

The concept of linear dependence and linear independence can be extended
to other sets of functions. A set of N functions ¢, are linearly independent if
the only solution of the equation

N
> koo =0 (385)
a=1

is that
ko =0 Vo (386)

Otherwise, if a non-trivial solution exists the set of functions are linearly de-
pendent.
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A simple test of linear dependence is provided by the Wronskian. Consider
the generalization of the proof that the mono-nomials are linearly independent.
Namely consider

N
> ko ¢a =0 (387)
a=1
and the successive derivatives with respect to x starting with
N
Opa
> ka o =0 (388)
a=1
and v
¢q
> ka Sz =0 (389)

a=1
etc. The set of all these equations must be satisfied if the original equation
is satisfied for a continuous range of x, since the derivatives of the equation
can be found by subtracting the equation at infinitesimally different values of
x ie, z + dx and z, and then dividing by dx. The set of N coefficients k, are
completely determined from N independent equations, so we shall truncate the

set of equations with
N

aN 1 o
Z acN¢1 =0 (390)

Since the functions ¢, and the derivatives are known, this is a set of IV linear
equations for N unknowns and can be written as a matrix equation

P ¢ .. ... ON Ky 0
a¢1 % 8¢N k O
81‘ 61 DRI DY al‘ 2
e . = . (391)
o o e } )
P le e 2l ki 0
This matrix equation has a solution given by
-1
k'l (bl (ﬁg el ¢N 0
k 91 992 9on 0
2 87: a,L‘ e e 87:
. RS oo e e e )
kn % %xz\rj? el e %,ET(ﬁlN 0

The matrix has an inverse if it’s determinant is non-zero. In this case, the only
solution consists of the trivial solution k,, = 0 for all n. If the determinant is
non-zero the set of functions ¢,, are linearly independent.
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If the determinant is zero, then non-zero solutions exist for k,, for some n
and the set of functions ¢,, are linearly dependent.

The determinant of the N by N matrix composed of the N functions and
their first N — 1 derivatives is known as the Wronskian, W

o1 o)) ON
91 )5y O¢n
£ o o
wo=| (393)
aN71¢1 8N—1¢2 3N—1¢N
zN=1  9gN=1 -+ =+ ggpN—1

As examples one can find that the functions sinx and cosx are linearly
independent as
sinx  cosx
cosx — sinzx

= -1 (394)
which is non zero. Although, sin z is related to cosx via

sinez = £/ (1 — cos?x) (395)
this relation is non-linear.

It is easy to show that the functions expx, exp —x and cosh x are linearly
dependent as
expxr exp—x coshzx
expr —exp—x sinhz | = 0 (396)
expr exp—x coshzx
which shows that it is possible to find a linear relationship between the functions

such as
expr + exp—z = 2 coshz (397)

The concept of linear dependence and linear independence is common to
the theory of vectors in d-dimensional spaces. A set of vectors ¢,, are linearly
independent if non-zero constants k,, can not be found such that

> kntn =0 (398)

In such cases, the set of q@n can be used as a basis for the d-dimensional space,
in that an arbitrary vector ® can be expanded as

n=d

= Co fn (399)
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That is, the vector T and the set of basis vectors are form a linearly depen-
dent set. To see the relation we should identify k441 = 1 as the multiplier
of <2>d+1 = 3 and k, = (), as the multipliers for the rest of the gi;n Thus,
the k, or C), can be considered as the components of the vector and the set of
linearly independent én as providing the basis vectors.

This is to be considered as analogous to he expansion of an arbitrary poly-

nomial ®(z) of degree d in terms of the mononomials ¢,, = z™ so that

n=d

o(x) = Cp "
n=1
n=d

= Cn én
n=1

(400)

where the set of linearly independent mononomials can be considered as forming
the basis functions ¢,.

4.3.1 Linearly Independent Solutions

For an N-th order linear differential equation one expects that there exist N
linearly independent solutions ¢,,. The general solution is expected to be able
to be written as a linear superposition of the N linearly independent solutions
as

n=N
n=1

where the NV arbitrary coefficients C), roughly correspond to the information
contained in the N constants of integration. If a set of appropriate boundary
conditions are applied, the coefficients C,, can be determined such that the so-
lution ¢ satisfies the boundary conditions.

Given an N-th order differential equation for ¢

n=N 8”&5
; an(z) 5o =0 (402)

then it is easy to show that IV is the maximum number of linearly independent

solutions. This can be proved by contradiction. Assume that there are N 41 or
more linearly independent solutions represented by the set of N 4+ 1 functions
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¢n. Then form the Wronskian as the determinant of an V41 by N + 1 matrix

P o) cee oo OGN+
91 O 0PN 11
ox ox ttot e oz
W = e cee e e (403)
Vg 0Ng, 9éNt1
5N SN e e S

On substituting from the differential equation for the N-th order derivative one
finds the Wronskian is zero as the last row can be expressed as a linear combi-
nation of the (N — 1) higher rows. Hence, the set of N + 1 solutions are linearly
dependent contrary to our initial assumption. Thus, at most there are only N
linearly independent solutions of the general N-th order differential equation.

4.3.2 Abel’s Theorem

If there are two linearly independent solutions ¢; and ¢5 of the second order
differential equation

0% 00
ar TP g, ¥

then the Wronskian W may be a function of x

q(x) ¢ = 0 (404)

$1 P2 o a
W= o o0 | = 0152 — 62 G
ox ox

Abel’s theorem states that the x dependence of the Wronskian W(z) is deter-
mined from the differential equation through p(z). Taking the derivative of the
Wronskian one finds

ow 9 do 0 91
o ax<¢1ax>‘ax(¢2ax>

0o ¢
= ¢ proa b2 52
(405)
On substituting the differential equation
) o¢
oz - p() or q(z) ¢ (406)
for the second derivatives one obtains
ow I¢a 991
e = ) gyt pl) 5y
= —plz) W(z)
(407)
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This can be integrated to yield

W(z) = W(a) exp { _ / ot p(t)} (408)

Thus, if W (a) is non-zero because the solutions are linearly independent then as
long as p(t) is not complex then W (z) is always non-zero and the solutions are
always linearly independent. For linearly independent solutions the Wronskian
is determined up to an arbitrary multiplicative constant as the solutions are
only determined up to a multiplicative constant. Furthermore, if p(z) = 0
then the Wronskian is simply a constant.

4.3.3 Other Solutions

Given of N — 1 linearly independent solutions ¢,, and the Wronskian W of an
N-th order differential one can reduce the order of the equation to an N — 1-th
ordinary differential equation. This is most useful for the case where N = 2. In
this case given a solution ¢; and a Wronskian W one can find a second solution
¢o. Starting with W (zx)

0 0

0¢2
_ 2 2o _ P2 991
RGN -y

I
=
g
e

Fle
~~

&

~—

(409)
Thus,

and so one obtains the second solution of the second order differential equation
through one integration

P2(z) = ¢1(x) /I dt m (411)

Since the Wronskian is known up to an arbitrary multiplicative constant the
second solution is also determined up to a multiplicative constant.
A simple example is given by the solution of
0%

@+¢:0 (412)
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which on knowing one solution ¢; = sinx one can find a second solution. Since
p(z) = 0 the Wronskian is just a constant W, hence

¢o(x) = sinz /w dt W

sin®t

= W sinx ( — cotx)

= — W cosz (413)

Thus, cosx is a second linearly independent solution of the equation.
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5 Stiurm Liouville Theory

Consider the Stiirm-Liouville eigenvalue equation for the unknown function ¢
in the form
2

w() 55 + a@) 5+ o) 6 = Aul) @ (414)
where A is an unknown number, and all the functions are defined on an interval
between © = a and * = b. The solutions are expected to satisfy boundary
conditions. The functions ag(x) and u(x) are non zero in the interval (a,b). For
convenience we shall consider the case where u(xz) > 0. The case of negative
u(z) can be treated by changing the definition of A to accommodate the sign
change. The number A is regarded as unknown and is called the eigenvalue. The
possible values of the eigenvalue are found from the condition that a solution
¢(x) exists which satisfies the boundary conditions. When the solutions ¢y ()
are found to exist the eigenvalues have particular values. The set of eigenvalues
may take on either discrete or continuous values. The function ¢, (z) is called
an eigenfunction, and each eigenfunction corresponds to a particular eigenvalue
A. Sometimes a particular eigenvalue A\ may correspond to two or more different
eigenfunctions. In this case, the eigenvalue is said to be degenerate. Any lin-
ear combination of the degenerate eigenfunctions is also an eigenfunction with
the same eigenvalue. The number of linearly independent eigenfunctions corre-
sponding to this eigenvalue is the degeneracy of the eigenvalue.

It is usual to re-write the Stiirm-Liouville equation in the form

o¢ (p(x) 90

% ax>+d@¢=kww¢ (415)

which is equivalent to

*¢  Op(x) 0¢
P@) 52 T Tor e

+ q(@) ¢ = Aw(x) ¢ (416)

Hence, we can identify

ar(z) &

az(z)  p(x)
ao() _ q(l
ai(z)  p(e)
uz) _ w(x)
az(w) p(z)

(417)

()



Thus, we can find p(x) by integration between two limits of integration in the

interval ” N
- / a2 (418)

Inp(t) ()

or

p(z) = pla) exp[ [ a m (119)

It is because of this that we required that as(t) be non-vanishing in (a, b).

A well known example of a Stiirm-Liouville eigenvalue equation is provided
by
0%
— = A 420
S = (420)
on the interval (0, L) where the boundary conditions are that the functions ¢
must vanish at the boundaries

¢(0) = ¢(L) = 0 (421)

In this case, we see that p(z) = w(z) = 1 and ¢(z) = 0. For each arbitrary
real value of A one can find two solutions of the differential equation which do
not satisfy the two boundary conditions

far(z) = exp[ + \f)\x} (422)

The functions fiy(x) can be combined to yield functions ¢, (x) that satisfies
the boundary condition at = 0 as

QSA(:C):exp[—i—\F)\x]—exp[—\/Xﬂc} (423)

so ¢(0) = 0. The second boundary condition is not satisfied for arbitrary
values of A as
ér(L) = 2 sinh VX L (424)

which is non-zero for real values of VA or positive A. However, for negative
values of A one finds that this equation can have solutions

dr(L) = 2i siny/[A| L (425)

for values of A\ such that
ML =nm (426)
for integer n. The eigenfunctions can be written as

nmx

¢n(x) = sin

(427)
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and the eigenvalues form a discrete set of negative numbers

An = — (”;)2 (428)

Thus, the values of the eigenvalues \,, are determined by the condition that
¢n(x) exists and satisfy the boundary conditions.

Homework:

Find the general solutions of the above equation, using the Frobenius method,
without imposing boundary conditions.

If boundary conditions are applied, can the series be used directly to find
the possible set of eigenvalues?

Example:

A second example is given by the Stiirm-Liouville eigenvalue equation

0%¢ _

37 22 = No (429)

subject to the boundary conditions that ¢(x) vanishes in the limits x — =+ oo.

Here p(x) = w(x) =1 and q(xr) = — 22. The eigenvalue equation can be

solved near the origin by the Frobenius method. The indicial equation is simply
a(a—-—1)=0 (430)
and thus the solutions have the form of either
go = Y, Cpa” (431)
n=0
or

¢ =z Yy Cpa” (432)
n=0

Furthermore, from the recursion relation one finds that the odd coefficients
vanish and that the even coefficients must satisfy

n(n — 1)Cn — Cn,4 = )\Cn,Q (433)

Thus, the solutions are either even ¢g(—x) = ¢g(z) or odd ¢1(—2z) = — ¢1(x)
in z. The Frobenius method can not be expected to converge in the limits
x — = o0o. Thus, we need to examine the asymptotic large  behavior. In this
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case, one can neglect the eigenvalue compared to the 22 term. The approximate
equation is given by
&¢ _ 2 ¢ ~ 0 (434)
Ox?

This equation can be approximately factorized as

(i_x><£c+x)¢~o (435)

Then, we can expect that

¢
it ~ 0 436
5 T L (436)
so that the asymptotic large x variation is given by
2
o) ~ x|~ 5] (137)

which satisfies the boundary conditions.

Thus, we may look for solutions of the forms of power series in increasing
powers of x? times a decreasing exponential function. That is we either have
the even function

2
do(z) = Z Py, 22" exp[ - 3;2} (438)
n=0
or the odd function
2

o1(x) = x ; Py, 2" exp{ - 172} (439)

Using this form we can determine the power series with coefficients P,, by using
the Frobenius method.

$2

To simplify the solution we shall substitute ¢(x) = p(x) exp [ - = ] into

the equation and after cancelling out the common exponential factor one finds

&p(x) Ip(z) _
POy D) = (440)
Then the indicial equation for p(z) is
a(a—-1)=0 (441)

The recursion relation becomes

(2n+24+a)(2n+1+4+a)Pyyo—(2n+2a+ A+ 1) P, = 0 (442)
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For large n, such n > X the coefficients are related by

Popyo ~ Tn (443)
SO P
Py, ~ T&)' (444)
In this case the series can be approximately summed to yield
72
p(z) ~ po exp { + 5 ] (445)

which diverges exponentially. Thus, we note that the recursion relation for
P,, must truncate at some finite value of N in order that the solution has the
correct exponentially decaying behavior for asymptotically large values of .
However, the series only truncates for particular values of A. The value of A
can be determined by examining the recursion relation of the largest term in
the polynomial. Physically this is because the term proportional to 2V, and the
exponential factor, dominates the function ¢(z) at large x. Hence, we find that
if P2N+2 = 0 then

AN = — (2N +2a + 1) (446)

Thus, the value of X is determined by the highest power in the finite polynomial.

In the above two examples, the set of eigenfunctions share the common
property that

b
/ dz ¢n(x) w(z) dm(z) = 0 (447)
where \,, # A,,. This is a general property of a set of eigenfunctions of the
Stiirm-Liouville equation. This theorem implies that the successive eigenfunc-

tions change sign an increasing number of times. That is the eigenfunctions can
be classified by their number of nodes.

Homework:

Show that the set eigenfunctions
@) = | 2 sinTE (448)
VL L

L
/O 0z G () fu(z) = 0 (449)

obey the equation

if A # An.
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5.1 Degenerate Eigenfunctions

If more than one eigenfunction corresponds to the same eigenvalue, the eigen-
value is said to be degenerate. The number of linearly independent eigenfunc-
tions are the degeneracy of the eigenvalue. The set of eigenfunctions are said to
be degenerate.

Example:

An example of degenerate eigenfunctions is given by the solutions of

p
= k2 ¢ (450)

without boundary conditions. The eigenvalue — k? is a real negative number
and is twofold degenerate, as it corresponds to the two linearly independent
eigenfunctions

¢1(z) = sin k x
¢o(x) = cos k x
(451)

Since any linear combinations of these are also eigenfunctions, one finds that
the complex functions

o (z) = exp[-l— zkx}

gf);(x)—exp[ikx} N
452

are also eigenfunctions corresponding to the same eigenvalue.

5.2 The Inner Product

The inner product of two functions ¥(x) and ®(z) is defined as the weighted
integral

b
/ dx U*(x) w(z) P(x) (453)

Two functions are said to be orthogonal if their inner product is zero. The inner
product of a function with itself is the normalization of the function. If w(x) is
a real, non-zero, function the normalization is a real number. It is customary to
demand that all functions ¥(z) are normalized to unity. Thus, we insist that

/ dx U*(z) w(z) ¥(z) = 1 (454)

80



A function can always be normalized as, according to the principle of linear
superposition it can always be multiplied by a constant complex number C.
This appears as a factor | C' | in the inner product. The magnitude of the real
number | C |2 is chosen such that the functions are normalized.

This inner product is analogous to the scalar product of two vectors
A.B (455)

which is usually evaluated in terms of its components. That is on expanding
the vector in terms of the basis vectors é,, via

d
A=Y A, e (456)

and noting that the basis vectors form an orthogonal set so that
€n - €m = Onm (457)

one has

d
A.B =Y 4,8, (458)

The inner product of two functions can be evaluated in the same way. First
the functions are expanded in terms of the basis functions ¢, (x) with compo-
nents A4,, and B,,

d
() = > An du(2) (459)

and .
U(z) = Z B, ¢n () (460)

n=1

Then, if the basis functions form an orthonormal set so that

/ " o 610) w@) bm(x) = G (461)
then the inner product is evaluated as
/ b dr W' (z) w(z) ®(z) = Y B bpm Am
)= > B A, (462)

n

which is similar to the scalar product of two vectors.
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5.3 Orthogonality of Eigenfunctions

The orthogonality property of eigenfunctions of a Stiirm-Liouville equation can
be derived by examining the properties of two solutions, ¢; and ¢, corresponding
to the respective eigenvalues A1y and Ay. Then

0 0

5 (2@ 52 ) + a@ o = xwl@an (163)
and 5 5

5 (20 52 ) + at@) 62 = 2o wi)on (464)
The complex conjugate of the second equation is just

0 o3

5o (7@ 52+ ) 65 = %5 wi)os (465)

as p(z), q(z) and w(x) are real. Pre-multiplying the above equation by ¢;(x)
and pre-multiplying the first equation by the complex conjugate ¢3(x) and sub-
tracting one obtains

on0) 35 (200 22 )~ 560 7 (960) 2 ) = (3= A1) ae) o) 030)
(466)

In this the terms proportional to g(x) have cancelled identically. Taking the
above equation and integrating over the interval between a and b, one has

[ e g (90 229 ) — g30) 5 (o) 2520

b
— (N - M) / dz ¢3(z) w(z) én(x)

(467)

where the term on the right hand side is recognized as the inner product. The
term on the left hand side is evaluated by splitting into two parts and integrating
each term by parts. The terms of the form

03 !
2 o) S (468)
cancel identically, leaving only the boundary terms
Do b o b
nte) o) T2 |~ 360) pla) 2 |
b

= (% = M) [ de 63 () o)

(469)
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However, on either using boundary conditions such that the functions vanish on
the boundaries

pla) = ¢(b) = 0 (470)
or boundary conditions where the derivative vanishes at the boundaries

0¢ 09

it - -z = 471

Ox oz |, 0 (471)
then one finds that

b
(% = M) [ de 63(0) w(o) r(a) = 0 (472)

This is the central result. It proves the theorem. First if ¢o = ¢; then the
normalization integral is finite and non-zero, so A = A;. Thus, the eigenvalues
of the Stiirm-Liouville equation are real. Using this we have

b
(M — A1) / dz 63(x) w(z) ¢1(z) = 0 (473)

Thus, if Ay # A2 one must have

b
/ dz §3(x) w(z) é1(z) = 0 (474)

Thus, the eigenfunctions belonging to different eigenvalues are orthogonal. As
we shall see later, if an eigenvalue is degenerate one can use the properties of the
degeneracy to construct a set of mutually orthogonal eigenfunctions correspond-
ing to the same eigenvalue. The maximum number of the mutually orthogonal
functions is equal to the degeneracy. This means that the eigenfunctions of the
Stirm-Liouville equation can be used to create a very convenient set of basis
functions, in function space.

5.4 Orthogonality and Linear Independence

Given a set of mutually orthogonal functions ¢, (z), one can easily show that
they are linearly independent. For if one has

> ki du(z) = 0 (475)

then one can take the inner product with any one of them, say ¢,,(x), to find

b
S b [ de 07u(e) w(e) énle) = 0
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Z kn 6n,m =0

ke = 0
(476)

Thus, the only solution of the equation is that all the k,, are identically zero.
Hence, any set of mutually orthogonal functions are linearly independent.

5.5 Gram-Schmidt Orthogonalization

If we have a set of eigenfunctions of a Stiirm-Liouville equation, some of the
eigenvalues might be degenerate. The eigenfunctions corresponding to the
same eigenvalue generally might not be orthogonal. The Gram-Schmidt or-
thogonalization process can be used to construct a set of mutually orthogonal
eigenfunctions. Consider the set of normalized eigenfunctions ¢1(z), ¢2(x),
¢3(x),....corresponding to an eigenvalue A. The method produces a set of or-
thogonal and normalized eigenfunctions 9y (x), ¥2(x), ¥3(x),.... The first eigen-
function is chosen to be

Pi(z) = ¢1(x) (477)

The second eigenfunction is to be constructed from ¢o(x). However, since the
inner product with ¢;(x) is non-zero, there is a component of ¢o(x) which is
parallel to ¢ (z). Thus, we can subtract the component of ¢o(2) which is parallel
to ¢1(x) and then normalize the function by multiplying by a constant Co

b
Pa(z) = Co <¢2($) — () (/ dt () w(t) 2(t) )) (478)

This is an eigenfunction corresponding to the eigenvalue A\ as the eigenvalue
equation is linear. The constant Cy or rather | Cy |? in () is determined
from the normalization condition

/ dz V() w(z) da(z) = 1 (479)

It can be seen that 1o (x) is orthogonal to 14 (z) by direct substitution in

b
/ dz () w(z) Ya(x) = 0 (480)

and using the fact that ¢ (x) is normalized to unity

b
/ dz ¥} (x) w(z) ¥r(z) = 1 (481)
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The next eigenfunction 3(z) is constructed from ¢s(x) by orthogonalizing it
to 12(x) and ;1 (x). That is, we write

b b

dn(z) = Cy <¢3<x>w2<x> / dt 93(1) w(t) da(t) — v () /

a a

(482)
The eigenfunction ¢3(x) has no components parallel to 1 (x) or to 12(x), since
t2(z) and 11 () have been normalized previously. The constant Cj is then
determined from the normalization condition

b
/ dz 5 () w(z) Ys(z) = 1 (483)

This procedure is iterated, by orthogonalizing ¢, (x) to all the previous or-
thonormal functions ¥,,(z) forn > m

m=n—1 b
Un(z) = Cp <¢>n(x) - Ym () / dt ¢, () w(t) sbn(t)) (484)
|2

and then determining the normalization | C,, |* from the condition

b
/ dz W5 () w(z) Ya () = 1 (485)

If the set of eigenfunctions is composed of M functions corresponding to the
same eigenvalue this procedure only has to be iterated M times.

The method does not have to be applied to a set of linearly independent
eigenfunctions. If it is applied to a set of M linearly dependent eigenfunctions,
where M > N and the degeneracy of the eigenvalue is N, then the Gram-
Schmidt orthogonalization procedure will lead to a maximum of N orthonormal
functions. The way this happens is that if the n-th initial eigenfunction ¢, (x)
is linearly dependent on the previous set of initial eigenfunctions, the orthogo-
nalization procedure will lead to ¢, (x) = 0.

Thus, it is always possible to construct a set of orthonormal basis functions
from the set of Sturm-Liouville eigenfunctions. We shall always assume that
the set of eigenfunctions of a Stiirm-Liouville equation have been chosen as an
orthonormal set.

As an example of Gram-Schmitt orthogonalization, consider the set of poly-
nomials, ¢, (x) 1, z, 2%, 23, .... defined on the real interval between (—1,1) and
with weight factor one. Since the interval and the weighting factor is evenly dis-
tributed around = 0, we shall see that the orthogonal polynomials 1, (x) are
either even or odd, because the even polynomials are automatically orthogonal
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with the odd polynomials.
The method starts with normalizing ¢g(z) to yield 1o (z) as
Yo(z) = Co do(x) = Cp 1 (486)

The normalization constant Cj is determined from

1

= |Gy *2
(487)
or|Cy| = % Thus, since all our quantities are real we might as well choose
all the phases to be real and have
Yolz) = — (188)
r) = —
’ V2
The lowest order normalized polynomial 1o (z) is an even function of x.
Proceeding to construct the next orthogonal polynomial from ¢;(z) = =z,
one has
1
wo= G (o)~ wnle) [ o vl )
-1
1 1
= - = dt t
ACREV D
= 01 x
(489)

since x is odd and 1 is an even function of x. The normalization is found to be

C, =

g (490)

Thus, the orthogonal polynomial ¢, () = % 2 and is an odd function of x.
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The next polynomial is constructed from ¢o(z) = 2 this is an even function
and is automatically orthogonal to all odd functions of x. Thus, we only need
to orthogonalize it against ¢g(x)

( 1

.-
(491)

45
Cy =\ 5 (492)

The orthogonalization of the next polynomial is non-trivial. The process

starts with ¢3(x) = 3, so one finds

1
V3 (x) C3(x3—m§/_ldtt4>

and (s is found as

(493)

Il
2
N
8

w

|
ol W

3
~

etc.

This set of polynomials, apart from multiplicative constants, are the same
as the set of Legendre polynomials P, (x)

Py(z) =
Pi(x) = =z
i
23 — 3z
Py(z) = > 5 ’
2n)! ™
Pn(z) = ( )2n (n,;

(494)

The Legendre polynomials are normalized differently. The Legendre polynomi-
als are normalized by insisting that P,(0) = 1.

Homework:

Construct the first four orthogonal polynomials on the interval (—oo, +00)
with weight factor w(z) = exp[ — 2% ]. Show, by direct substitution in the
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equation, that these are the same polynomials p(z) that occur in the eigenfunc-
2
X

tions ¢(z) = p(z) exp[ — % | of
9?%¢
Pl

subject to the boundary conditions that the functions ¢(z) vanishes in the limits
r — £ oo.

¢ = X o (495)

Homework:

Use the Gram-Schmidt procedure to obtain an orthonormal set of functions
¥, (x) from the degenerate eigenfunctions on the interval (0, L)

do(xr) = exp {z nzx}
¢1(x) = cos r Z <
¢2(x) = sin r Z z

(496)

Are the initial set ¢, (x) and the final set ¢, (z) linearly independent?

5.6 Completeness of Eigenfunctions

A set of linearly independent basis vectors in a vector space is defined to be
complete if any vector in the space can be expressed as a linear combination of
the basis vectors. The set of linearly independent basis vectors are incomplete if
they are not complete. In the case of an incomplete set of basis vectors, then a
linear combination of the basis vectors can only describe a subset of the vectors
residing in the vector space.

In general the number of linearly independent basis vectors that form a com-
plete set is equal to the dimension of the vector space. Also, if the basis is not
complete, then the set of vectors that can be expressed as a linear combination
of the incomplete basis set forms a vector space which has dimensions equal to
the number of linearly independent basis vectors in the incomplete set.

For example, in two dimensions, any vector can be expanded in terms of a
basis composed of two non-collinear unit vectors, é; and és. The non-collinearity
condition is an expression of the linear independence of the basis vectors. Thus,
any vector in the two dimensional plane can be written as

T =Crér + Crén (497)
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For the two dimensional space, the set of the two basis vectors span the entire
vector space and the basis is said to be complete. However, in a three dimen-
sional vector space, the above combination only describes a two dimensional
plane in the three dimensional volume. The two dimensional basis vectors do
not span the three dimensional vector space and the set of two basis vectors is
therefore said to be incomplete.

To be able to express any vector in the three dimensional volume, it is
necessary to expand our basis by adding one non-coplanar unit vector. In this
case, one can express a general vector as

3
A=Y Ae (498)
=1

In this case of a three dimensional vector space, the set of the three basis vectors
is complete.

One can generalize the above definitions to a linearly independent set of
basis functions. Thus, for example, given a set of mononomials ¢,, = z™
which serve as basis functions one can describe polynomials as residing in the
space of polynomials. Thus, with a complete set of basis functions 1, z and
22, one can describe any polynomial in a three dimensional space as a linear

combination of the three linearly independent basis mononomials
p(x) = po + p1x + pya’ (499)

where the expansion coefficients (pg,p1,p2) are the ”components” or ”coordi-
nates” of the polynomial.

Likewise, if we use the set of functions given by the eigenfunctions ¢, (z)
of a Stirm-Liouville equation one can, if needed through the Gram-Schmidt
process, construct an orthogonal set of basis functions. We shall always assume
that the basis functions are orthonormal. Then a well behaved general function
can be expressed as a linear combination of the basis functions

U(z) = Y Cn dnlx) (500)

By a general well behaved function, we require that our function satisfy the
same boundary conditions as the basis functions. Also, the inner product of
U(x) with itself must exist. These functions lie in the space Co, i.e., the space
of square integrable complex functions.

It is easy to show that a function ¥(z) in this space has a unique expansion
in terms of the basis. That is the expansion coefficients are uniquely determined
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since by use of the inner product of ¥(z) with any one of the basis functions,
say ¢m,(z), one can uniquely determine the expansion coefficient Cy,.

b
> G [ dn6@) u@) ou(o)
= Z Cn 5n,m

= Cp (501)

b
[ o 6@ o) via)

That is, the expansion coefficient C), is uniquely determined by the inner prod-
uct of U(x) and ¢, (z).

For an arbitrary well behaved function ¥(z) one can write

\Il(x) = Z Cn ¢n(x)

" b

S [0 w) ) 6uw
/ dt Wt Z o ( b ()

(502)

Thus, the delta function 6(z — t) is identified as the sum

(=) = 3 61(0) wlt) 6.2 (503)

Alternatively, if the delta function §(z — 2’) is expanded as

§(x —a') Z Cp &n(x (504)
then we have .
/ dz ¢ (2) w(z) 6(x — ') = Cn (505)
which is simply evaluated as
Cn = ¢p,(2") w(z') (506)

Thus, the Dirac delta function has an expansion of the form

(x —a') Z ¢ (2') w(a') () (507)

90



Since the delta function is symmetrical in x and z’ one can also write
bz —a') =) o) wz) oule) (508)

because the left hand side is zero unless z = z’.

An example of the completeness relation is given by the doubly degenerate
eigenfunctions

1
) = — e + ikzx 509
oula) = = x| } (509
of the eigenvalue equation
Fo _ e ¢ (510)
0x2

Degenerate eigenfunctions corresponding to positive and negative values of k.
The completeness relation is given by

+oo

S(x—a) = L dkexp{—ikx’}exp[—i—ikw} (511)

)

The integral can be evaluated by breaking it into two segments

1 [T
Sz —2") = e dkexp{ikx’]exp[Jrikx}

—+o0
+ — dkexp[—kikx']exp{—ikx]
2w 0
(512)
and then a convergence factor exp[ — k € | is added and the limit ¢ — 0 is
taken. Thus,

[
Sz —2') = 5 dk:exp{Jrik(o::c')ke]
0
1 [t
+ — dk:exp[—ik;(x—x’)—k‘e]

2w 0
R R SR R
N 2w i(xz —a') — € 2w i(x — 2’ ) + €
1 €
o (x — 2')? 4 €2

This agrees with the definition of the delta function as a limit of a series functions

1 €
T (x — 2/ )2 4+ €

Sz—2) = 1

e =0

(513)
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The theory of the Fourier integral transform consists of the expansion of an
arbitrary function f(x)

flz) = /m dke f(k) exp[ + ik :1:] (514)

and the inverse transform

- +oo 1
k :/ dx exp[—ikx} x 515
fioy = [ e (@) (515)

Completeness of the eigenfunctions of a Stiirm-Liouville equation has to be
proved on a case by case basis. The proof usually consists of showing that the
expansion in a series of eigenfunctions

N
> Ch fu(2) (516)
n=0

converges to f(z), when N — oo at each point . However it is possible, by
relaxing the condition for convergence at every point z, to extend the space of
functions f(z) to functions which have a finite number of discontinuities and do
not satisfy the boundary conditions. In this case, one requires convergence in
the mean. This just requires that

b
lim w(x) = 0 (517)
N — oo

N 2
= > Ch ()

a

Since, for finite N one has

b N 2
/d:v —ZCn(;Sn(x)
/d:vlf( ZC*/ 61(2) w(a) f(2)
—ZC/f on( +Z|on|2>o
b

IRECITEED ML

w(z) > 0

(518)

one finds that convergence requires that the equality sign in Bessel’s inequality
holds as N — o0.
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Another useful inequality is the Schwartz inequality

b b b 2
[l @ P @ [y on) 1 ut) > \ [t 50w 6,0

(519)
which is evaluated as

b
/ dr | f(x) [ w(z) > | Cy | (520)

which is a statement that the squared length of a vector must be greater than
the square of any one component.

We shall now examine a few physically important examples of Stiirm-Liouville
equations.
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6 Fourier Transforms
The plane waves are eigenfunctions of the Stiirm-Lioville equation

0* ¢,

= — k? 21
02 ¢ (521)
on the interval (—oo, 00) has solutions
or(x) L [ i k :| (522)
x) = exp|ikx
¢ Vor P

The eigenfunctions satisfy the orthogonality relations

[ wawew = [ 55 ew|it- 1)

— 00 — 00

5(k — K )

(523)

These eigenfunctions form a complete set, so an arbitrary function f(z) can be
expanded as a linear superposition of the type

flz) = /_Z dk f(k) \/% exp{ + zk‘;v] (524)

This expansion coincides with the inverse Fourier Transform. The expansion
coefficient f(k) is given by the Fourier Transform

Fk) = /Do dz f(z) \lﬁ exp[ _ zk:x} (525)

o 27

Example:

The response of a system to a delta function pulse at time ¢ = 0 can be
represented by a response function x(¢). For a particular system the response
is given by

x(t) = Xo exp {z wo t } exp { - Tt } () (526)
where O(t) is the Heaviside step function which expresses causality

o) =1 fort > 0
o) = 0 fort < 0
(527)
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Find the frequency-dependent response function given by the Fourier Transform
X(w). The divergences only occur in the lower complex frequency plane.

The frequency-dependent response is obtained from

X(w) = \/ﬂ/ dt x(t) eXp[Jriwt}

dt xo exp[ - iwot} exp{ — I‘t} exp{—f— iwt]

\/ﬂ

? X0
_ 528
Vor w — wyg + i (528)

The frequency dependent response is finite for real frequencies, but diverges at
w = wg — ¢ in the lower half complex plane.

6.1 Fourier Transform of Derivatives

The Fourier transform of a derivative of a function can be simply expressed in
terms of the Fourier transform of the function. Let f(z) be a function which
has the Fourier transform f(k), where

F(k) = /Z dz f(x) J%T exp{ _ zk‘x} (529)

Then the Fourier transform of the derivative is defined by

/Z dz agf) \/% exp{ - zka:] (530)

Integrating by parts, one obtains

5o V2T

— fla) — exp[—ikaoo —ik/oodmf(x) L exp[—ikx}

(531)
which if f(z) vanishes asz — = oo yields the Fourier transform of the derivative

as
= —zkz/ dz f(x

zkf

exp[—ikx}

(532)
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The Fourier transform of the n-th order derivative can be obtained by re-
peated differentiation by parts and is given by

/Z dx (8’;{;}9)) \/% exp{ - ka}

= (ik)" f(k)

(533)

Example:

The wave equation can be solved by Fourier transformation. Consider the
wave equation

0% 1 0%

a2 @ e (534)
subject to an initial conditions

¢(z,0) = f(z) (535)
and d6(z.1)

x’

(at) — y() (536)
t=0

Fourier transforming the equation with respect to x, one has

[tz o] oee] = A [ A
XL X — 1 T _— = = XL X — 1 T
oo 2x P 0x? 2 J_ o 2x P

- 1 82¢(k,t)
-k dk,t) = - ——
o(k,?) 2 o2
At t = 0 the Fourier transform of the initial conditions are given by

o(k,0) /_:O da \/% exp[ — zkx} o(z,0)
/+Ood:c L exp[ikx}f(m)

(538)
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Hence, we have to solve the second order differential equation

1 (k1)

— 2 7 —
okt = 5 =55

subject to the two initial conditions given by

o(k,0) = f(k)

()

and

= g(k)

t=0

The second order ordinary differential equation has the general solution

ok, t) = Aexp[ickt] + Bexp[ - ickt]

(539)

(540)

(541)

(542)

(543)

where A and B are arbitrary constants. The initial conditions determine A and

B from the initial conditions as

f(k) = A+ B

and
gk) = ick(A - B)

Hence, we have determined the constants as

A:1<f(k)—i§(]]?>

DO |

" B:;<f(k)+¢‘7c(’]?)
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Thus, the Fourier Transform of the solution is given by

ok, t) = % l(f(k)-i%?) exp[—i—ickt} +B(f(k)+igc(ll?>exp{—ickt]]

(548)
and then the solution is given by the inverse Fourier Transform

oz, t) = /+Oo dk ¢(k,t) \/% exp [ + ik x} (549)

— 00

or

/_:O dk(f(k) - Z’i“?)\/%exp{ik(w + ct)}

/_:o dk(f(k) + zgc(lz)> \/%exp[ik(x - ct)}
(550)

N = N

The integrals can be evaluated from the definition of the inverse Fourier Trans-
form yielding
r+ct
/ dz g(2) }

e

where the arbitrary constant of integration cancels. In fact, using this cancella-
tion one can write the solution as

oz, t) = |:f($+0t)+

_|_

N~ N
Ol ol

[ﬂx Cet) -
(551)

b(z,t) — ;[f(a: +oet)+ flo - ct)}
1 x+ct

t o5

dz g(2)
r—ct

(552)

This is D’Alembert’s solution of the wave equation and corresponds to a super-
position of a backward and forward travelling wave.

6.2 Convolution Theorem

A convolution of two functions f(x) and g(x) is defined as the integral

\/% /_Oc dt gt) f(x — t) (553)
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The convolution theorem expresses a convolution as the Fourier Transform
of the product of the two functions

1 oo
— /m at gt) f(z — 1)

= \/%/i dt g(t) /O:o dkf(k)\/%exp{—kik(ﬂﬁ—t)}

-/ Tk k) Fk)

1
n mexp{—i—ikx]

which is the Fourier Transform of the product of Fourier Transforms. Inversely,
the inverse Fourier transform of a convolution is merely the product of Fourier
transforms.

Example:

The time dependent response of a system A(t) to an applied time dependent
field B(t) is given in terms of a response function x(t — ¢') such that

Alt) = /t dt" x(t —t') B(t") (555)

— 00

where the stimulus occurs at a time ¢’ that is earlier than the response time.
This expresses causality. The integral over ¢’ in this relation can be extended
to oo as
(oo}
At) = / dt' x(t —t') B(t) (556)
— 00
if we define
xt—t) =0 fort' > t (557)
Thus, the response has the form of the convolution.
The applied field can be Fourier Transformed into its frequency components,
and also the response can be frequency resolved into the components A(w). The

relation between the frequency components of the response and the applied can
be obtained by Fourier Transforming the linear relation, which yields

Aw) = ¥(w) Bw) (558)

Thus, the response relation simplifies in the frequency domain.
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6.3 Parseval’s Relation

Parseval’s relation is given by

+oo - +oo
/ dk F(k) (k) = / dr f(z) *(x) (559)

—0o0 oo

and can be derived using the completeness relation

/_:O dv f(x) g*(x) = /_:o dzx /_:o dk f(k) \/;7” exp[ + ka} g* ()

:/_:o dx/_:o dkf(k)\/%exp{—&-ikx] /_:o dk’g*(k’)\/%exp[—ik’x]
_ /+°° dk (k) /+OO dk' §* (k') /—H)Od:vexp[—ki(k—k’)x}

—o0 —oo —o0 m

+oo - +oo
= / dk f(k)/ dk' §* (k') §(k — K)

— 00

+oo
- [ dk f(k) 3 (k)

(560)

which is Parseval’s relation.
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7 Fourier Series

The Stiirm-Liouville equation
9 2

with eigenvalue — n? has solutions cosnz and sinnz that can be used to form
an orthonormal set, as

2
/ dx sinmz sinnx = 7y m m # 0
0

2m

dr cosmz cosnt = T Opm m # 0

0

27
/ dr sinmx sinnx = 0

0

(562)

The basis function corresponding to n = 0 is non-degenerate and can be taken

to be
1

V2

The other basis functions, with n > 0, are degenerate and can be taken to be

(563)

1 .
— SInnx
NG

1
— COSNnx

Jr
(564)

This set of eigenfunctions generates the finite Fourier series expansion, whereby
any well behaved function on the interval (0,27) can be expanded as

flx) = ag \/% + Z <an % cosnz + by, % sinn:z:) (565)

n=1

where the coefficients (a,, < by,) are calculated from

/ T ) -

Qa, =
0 V2T
27 1
ap = dt f(t) — cos nt
fowro
27 1
b, = / dt f(t) — sin nt
0 Uﬁ

(566)
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This leads to an explicit form of the completeness condition, in which we define
the dirac delta function restricted to the interval (0,27) to be A(x —t) so

1
Az —t) = +fZ(cos nx cos nt + sin nx sin nt )
7r

n=1

L
2
1 1
ﬁ +;;COSR($—t)

(567)

It can be shown that the set of Fourier expansion coefficients (ay, b,,) in the
expansion of f(z) are the coefficients that minimize the difference

a

0 AN .
x(z) = f(z) — Vo nz::l NG (an cos nx + b, sin nx) (568)

as they can be determined from the x? minimization scheme in which

27
I = / dx x*(z) > 0 (569)
0
and or oI
—_—a —— <
B . 0 Vn <N (570)

This leads to the equations

27
a = \/%/0 dt f(t)
2
an, = %/0 dt f(t) cos nt

b, = \/IE/OQTr dt f(t) sin nt
(571)

For these values of the expansion coefficients, the difference x(z) only vanishes
for almost all values of z if
I =0 (572)

This condition allows the function to deviate from the Fourier series only at a
set of isolated points that contribute zero to the integral. The condition I = 0
is equivalent to Bessel’s inequality being satisfied, since

Iz/o%dtf2(t)—ag—§:<ai+bi> (573)

n=1
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The quantity a2 + b2 (which is a function of n) is known as the power spectrum

of f(x).

The basis functions ¢, () are continuous at every point in the interval (0, 27)
yet, it is possible to expand a square integrable f(z) with a finite number of
discontinuities as a Fourier series. If f(x) has a discontinuity at x = 1z it can
be proved that the series converges to the value of

lim, % Fao+€) + flzo—e) (574)

€ —

This can be seen by evaluating the Fourier series expansion of

f(z) x 0 <z <
fle) = = -2« T <z < 2w
(575)
In this case, it is easily seen that the constant term is zero
1 2
ay = — dt f(t
o= o= [ e
1 T 27
= — dt f(t +/ dt t)
= ([aro [T
1 T 27
= — dtt—l—/ dtt—?w)
\/27T</0 71' ( )
1 (w o am_w
- Var \ 2 2 2 T
=0
(576)

Using integration by parts one finds that the coeflicients of the cosine terms are
also zero

1 /27\'
an, = — dt f(t) cos nt
VT Jo
1 ™ 2m
= — dt f(t) cos nt+/ dt f(t) cos nt>
v ﬂ
1 ™ 2m
= — dttcosnt+/ dt(t?w)cosmﬁ)
v ,r
1 fcosnm -1 cos nm — 1
T n? n?
a, = 0

(577)
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However, the coefficients of the sine terms are evaluated as

2
b, = / dt f(t) sin nt
0

1
Vi
1 T 27
= — dtftsinnt+/ dtftsinnt)
([ @ [ s
1 T 27
— dttsinnt—i—/ dt (t — 2w sinnt)
7 . )
12 1+lfcosn7r
9 _ = - - s R
Nz n n

bn = fﬁ(*l)n

(578)
and are non-zero. Hence, we have the Fourier series expansion
o~ (—1)"
) = 2 ——— sin nz 579
@) =2y (579)
n=1
which just consists of an expansion in terms of the sine functions.
Direct evaluation of the series at x =  yields a sum of zero since sinnm =

0. The original function is undefined at the discontinuity, but has a value of
7 just below the discontinuity and a value of — 7 just above the discontinuity.

Thus, we see that

Ozé{w—i—(—ﬂ)] (580)

as expected.
Homework: 14.1.4
Homework:

Expand 22 and z* in a Fourier series and then evaluate the series at the
point x = .

A numerical evaluation of the Fourier series in the vicinity of a discontinuity,
shows the Gibbs phenomenon. Consider a square wave train

flz) = 1 for 0 < z <
flz) = 0 for m <z < 27
(581)
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this has a discontinuity at + = 7. The Fourier series expansion is given by

fla) = % + %Z 73111(22::11)”3 (582)

The Fourier series assigns a value to the function at the discontinuity, which is
the mean from just above and below. Furthermore, the Fourier series truncated
after N terms, also over-estimates the function or overshoots it just before the
discontinuity. This is the Gibbs phenomenon.

7.1 Gibbs Phenomenon

In order to discuss the Gibb’s phenomenon, it is necessary to sum the Fourier
series. It can be shown that

A(m—t):%—ﬁ—%Zcosn(m—t) (583)
n=1

or, equivalently

A(ac—t)z217T+71rRealzeXp[in(x—t)} (584)

n=1

then, on summing only the first IV terms, one has

1 1 N
= — + —Real ) : ¢
—i—7r ea exp[zn(ac )}

AN<.’17—t) >

n=1

1 1
= 2+Real<
T m exp{i(m—t)}—l

1 (cos (N+1)2(m_t) sin N(mz_t)>

+; (z —t)
2

sin(N+;)(:c—t)]

sin

1
2
1
2w in e —t)

s 2

Hence, on defining the sum of the first N terms of the Fourier series for f(x) as
fn(z) one has

2m
fn(x) = /0 dt f(t) An(z —1t)
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1 2

= 5= dt f(t) l

27 0

sin (N + 1) (2 —t)
sin L2 —1)
2

(586)

The Gibbs phenomenon can be demonstrated by the square wave in which case

fN(l') = / dt 1 AN(ac —t)
0
1 g sin (N + 2 z —t
_ L [TV ) (et (587)
27 Jo sin (fﬂz;t)
At the discontinuity at x = m, one has
1 i sin (N + 2 T — 1
futm) = = [T | N T 2)(m 2 F) (558)
27 Jo sin {7 - )
which, on introducing the variable y = 7w — ¢, can be written as
1 T sin (N + 1)y
= — d 2 589
I (m) 27 Jo 4 [ sin & (589)
The integral can be evaluated in the limit N — oo by writingz = (N + 3 )y,
so that
1 [ sin z
li = =
Jm g = 2 [ [ : ]
1
= = 590
X (590)
The over shoot at x = 0 can be estimated by rewriting the partial sum, by
shifting the variable of integration to s = = — ¢
1 x sin (N + %)s
= — d 2 591
fn(z) o ). S ( sin 3 (591)
The integrand is symmetrical in s and has a maximum value of NT% ats = 0
and first falls to zero at s = =+ NL# We shall examine the behavior of the
2
series at the discontinuity at z = 0. At x = 0 the integral over s starts with a

small value of the integrand which oscillates about zero and the integrand then
attains its maximum value at the upper limit of integration. However, it is clear
to see that the integral will be greater if the range of integration of s covers both
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s
N+ 5°
In this case, one estimates the maximum value of the partial sum is given by

positive regions around the central maximum. This occurs when =z =

1 T si N + 1
fN(x) N T N+3 dsl 111(. S2)S‘|
mazx Y . SIHE
_ 1+L ¥t sm(]\'f—|—sé)s
2 27 Jo sin 5
N 1+1/”dzlsmz]
2 T Jo z
(592)
where 1
Z=(N+§)S (593)

The second integral is greater than 0.5, its’ value is 0.588. The truth of this in-
equality can be seen by plotting the integrand. The integrand when considered
as function of s is oscillatory, with a constant period ~ QW” As z is increased in
steps of %’T, the upper limit of s includes one more cycle of the integrand, and the
upper limit of the z integration increases by a multiple of 27. Each successive
half cycle yields a contribution of opposite sign and smaller magnitude than the
previous half cycle. Thus, when taken in pairs, the contribution from the en-
tire z interval of (0, 00) [which contributes 0.5] is smaller than the contribution
from the first half cycle. Thus, the series over shoots at the discontinuity by 8%.

An alternative formulation of Fourier series makes use of another linear com-
bination of the degenerate eigenfunctions of the Stiirm-Liouville equation with
periodic boundary conditions

1
P-m(p) = \/;7 exp{ - imw]
(594)
and the non degenerate function
1
Polp) = (595)

V2T

This is the complex representation, in which the eigenfunctions are symmetri-
cally normalized via

27
/O dp $51(0) 6n(@) = bum (596)
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and any complex function ®(y) on the interval 2 7 > ¢ > 0 can be expanded
as

O(p) = Y Co dm(e) (597)

The complex coefficients C),, are given by

1 27
szi/ dex{—im ]@ 598
oz | dpew ¢ | 2(p) (598)
If the function & is real, then one must have
Com = CF, (599)

These functions often occur as solutions of Stiirm-Liouville equations in the az-
imuthal angle in spherical polar coordinates.

Example:

Consider a cylindrical metal sheet of radius a and infinite length that has
been cut across a diameter. The two sheets are almost touching. One half of
the cylinder is kept at a potential ¢g and the other half is kept at a potential
—¢p. Determine the potential at an arbitrary point (z,, ¢) inside the cylinder.
Assume, that the potential ¢(z,7,¢) inside the cylinder is governed by the
equation

VZg =0 (600)

or in cylindrical coordinates

0% 10 0¢ 1 0%
82’2—"_7’67’( )+’I"2((W_0 (601)

Tar

Solution:

This can be solved by noting that the problem is invariant under transla-
tions along the cylinders axis. Thus, the potential is only a function of (r,¢)
alone. Furthermore, one can assume that the potential can be expanded in a
discrete Fourier series in ¢ with arbitrary coefficients that depend on r, since
the potential is periodic in .

orp) = ¥ T2 oxp | img | (602)

On substituting the series expansion into Laplace’s equation, and on multiplying
by the complex conjugate function

m

exp |~ inp| (603)

§H
3
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and integrating over ¢ between 0 and 2 7, one finds that the expansion coefficient
Cp(r) satisfies the equation

10 oC,(r) n?
- - = 4
r Or (r or ) r2 Cn(r) 0 (604)
Thus, we find that
Co(r) = Ap 1™ + By " (605)
so that the potential is of the form
1 o0
o(ryp) = ( A, ™™ + Bpr™" ) exp [ ing } (606)
V2m n:z—oo
Since, the potential must be finite at the center of the cylinder (r = 0) one
can set B,, = 0. Furthermore, from the boundary condition at r = a one has

Pla,p) = ¢po for 2> ¢ > 7
pla,p) = —¢o for 7> ¢ > 0
(607)

Then, using the Fourier series expansion of ¢(a, ) and the orthogonality con-
dition one has

%0 ( %d x[—' ]— " x{—‘ D:A ™ (608
X /7T © exp inp /0 © exp ing na” (608)

which uniquely determines A,, as

A, = — V271 ¢pa™ exp{—im} {SIHQ}

2 || =
(609)
Since, for even n one has sin %+ = 0, it is useful to re-write the coefficients as
4i ¢
A " _ a (2n+1)
et V2 2n+1
Ay = 0
(610)

which are only non-zero for odd n. Thus, the expansion only contains terms
that have odd n. The potential is given by

(bo [eS) ] r 2n+1
n=0
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Example:

An interesting example is given by Laplace’s equation for a potential ¢ in a
two dimensional region in the shape of a wedge, of angle 7, where b > % The
boundary conditions used will be
s

o(r, b) = 0O(r,0) =0 (612)

Laplace’s equation in two dimensions becomes
1 0 0¢ 1 0%¢
- —_ 2 =0 613
T@T(raT>+T2 002 (613)

and this can be solved by separation of variables, and then series expansion.
The solutions are sought in the form

¢(r,0) = R(r) ©(0) (614)

On substitution of this ansatz into Laplace’s equation and writing the separation
constant as — p?, one obtains the two ordinary differential equations. These
consist of the differential equation for the angular part

0%e 9
and the radial equation
1 0 OR u?
- - - - = = 1
rar(rar> r2R 0 (616)

The angular equation has solutions

) = Asinpb
() = B cosu b
(617)

However, due to the boundary conditions, the only allowable solutions are
O0) = Asinpb (618)
where

,uzb =mm (619)
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and m is any positive integer. That is, the allowable values of u are given by

w = mb (620)
The functions are normalized such that
g 2 A2 2
A2/ df sin® m6Ob = —/ dx sin“m x
0 b Jo
A2 [T
= —/ dr (1 — cos2mux)
2b Jo
- o2 T
2b
=1
(621)
The radial equation becomes
9] OR 9 19
The radial equation has solutions
R(ry = Cr* + Dr™#
= Crm 4 Dy mb
(623)
As the solution must be regular at r = 0 one has
R(r) = Cp ™ (624)

and the potential can be expanded as a Fourier series

— /2
o(r,0) = Z Cp 7™ 20 sin m b 6 (625)
™
m=1

The coefficients C,,, have to be determined from additional boundary conditions.

The above solution has the interesting property that when b > 1, which
means that the angle between the conducting planes is obtuse, then the radial
component of the electric field is given

. 2b
E, = — b Crp r™1 4/ == sin m b6 2
Zm Cp 1 — sinm (626)

m=1

The Fourier component of the field with m = 1 varies as

— Cy bt ,/2—1’ sin b 6 (627)
™
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which is unbounded for b < 1 asr — 0. Thus, electric fields can be excep-
tionally large and have corner singularities close to the edge on a metal object
with an acute angle, such as lightning rods.

As an example of the occurrence of a high dimensional eigenvalue equation,
consider Laplace’s equation in three dimensions

V2 ®(z,y,2) = 0 (628)

Laplace’s equation can be considered as an eigenvalue equation with eigenvalue
A = 0. The solutions should form a complete set. Since one suspects that
all functions can be expanded as polynomials in the variables (z,y, z), one can
look for polynomial solutions. Some solutions are easily identified, for example

po(x,y,2) =1 (629)
or one has the three linearly independent linear functions
(bl,c(xa Y, Z)
¢1,s(xa Y, Z) =
b10(7,y,2) = =
(630)

Although there are six quadratic form there are only five linearly independent
quadratic forms which satisfy Laplace’s equation. These are

G2,s(z,y,2) = y=z

p2c(x,y,2) = Tz
b22s(x,y,2) = xy

P220(2,y,2) = a? — ¢
p20(2,y,2) = 222 — 2% — 4P

(631)

Thus, the zero eigenvalue of the Laplace operator V2 is highly degenerate. In
spherical polar coordinates (r, 8, ¢) the eigenfunctions are

¢o(r,0,0) = 1 (632)
and
d1,c(r,0,) = 1 sinf cosep
$15(r,0,0) = 71 sinf sing
d10(r,0,0) = 1 cosf
(633)
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The linear functions, for fixed (r,0), form a set of orthogonal functions of .
Likewise, for the set of quadratic functions

$2.5(r,0,0) = 72 sinf cosf singp
$2.c(r,0,0) = 12 sinf cosf cosep
P2.2s(r,0,0) = 1% sin?0 cosy sing
b2,20(r,0,0) = 7% sin?6 (cos?p — sin’p)
b20(r,0,0) = 1% (2 cos’f — sin?6)

(634)

which again form a set orthogonal functions of ¢, because the integral over ¢
vanishes

2T
/0 dp 8% .(60,0) ban(0.0) = 0 (635)

ifn # m. Furthermore, even if the eigenfunctions have the same ¢ dependence,
they are orthogonal to the linear functions with weight factor sin 6 as the integral

/ " 05, (0, 0) sind ¢1,m(0,) = 0 (636)
0

vanishes. For example, when m = 0, and on substituting z = cos6 our
functions are recognized as being orthogonal polynomials which are proportional
to the Legendre polynomials P, (z). Also note that there are only five linearly
independent functions ¢z ,,, since the remaining linear combination is just
2?2+ 2 2= (637)

which has the same 6 and ¢ dependence as ¢.
Example:

Find all (7) real linearly cubic expressions that are solutions of Laplace’s
equation, and then express them in terms of spherical polar coordinates.

Hint: Enumerate all cubic mononomials e.g % ... xyz. Express a general
cubic polynomial in terms of these mononomials. Laplace’s equation yields a re-
lationship between the coefficients of the mononomials. Use the Gram Schmidt
method, to find the linearly independent solutions of Laplace’s equation.

Solution.

By substitution of the form

3 3

+a2y3+agz
>+ Bsya® Payz

¢ = yryztaw

+ Bzy’ + Pz 2

2+ Bezy?

(638)

+ B zx

113



one finds the seven linearly independent solutions

®3,25
®3,2¢

®3,0
®3,3s
®3,3¢
®3.1s
93,1¢

= zy=z

z(2® — y*)

= 22 —3z(2* +4*)
3

— 3y’

Il
<

y3 +yx2 — 4y22

2

= 2 + 29y — 4z
(639)

These combinations are recognized as

$3,25
$3.2¢

®3,0
$3,35
$3.3¢
$3,15
¢3,1C

3 cosf sin® @ sing cos

3 cosf sin?6 (cos’p — sin¢p)

73 (2 cos>@ — 3 cosf sin®6 )

3 sin®@ (cos®p — cosy sin? )

r3 sin® @ (sin®p — sing cos®p )

r3 (sin?@ — 4 cos®6 ) sinf sing

3 (sin?@ — 4 cos?6 ) sinf cosy

(640)

which are orthogonal with each other, when considered as functions of ¢.
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8 Bessel Functions
Bessel’s Differential Equation is

d*y, (z) - dyn(z)
dx? dx

z? + (22 = n?)y, =0 (641)

This has a singularity at « = 0. This is a regular singular point. The solution

either diverges as ™" or x”. The two solutions are usually determined by the
behavior near x = 0.

8.0.1 The Generating Function Expansion

The solutions for the different values of n, which are convergent at x = 0, can
be determined from a generating function g(x,t)

g(a,t) = exp [ g (t — t! )} (642)

The generating function expansion is given by

exp [Z (t — ¢ )] = Ei‘; yn (@) t" (643)

The generating function is symmetric under the transformation
t — —t! (644)

which implies that y,,(z) and y_,(x) are related via

yn(r) = (= 1)" yn(2) (645)
On replacing t = 1 in the generating function expansion one then finds the
sum rule oo
n=—00
or -
1 = yolz) + 2 Zygn(x) (647)
n=1

for all values of z.
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8.0.2 Series Expansion

A series expansion ( in z ) for the functions y,(z) can be found by writing

g(x,t) =

(648)

This series expansion can be compared with the generating function expansion

g(z,t) = Y ynla) t" (649)
if one identifies n = r — s or alternatively
r=mn-+s (650)

The function y,(x), for positive n, is given by the coefficient of ¢" and is iden-
tified as a polynomial in z where the various powers correspond to the terms in
the sum over all values of s. The function is found as

oo xn+2s
yn(m) = ZO ( -1 ) on+2s gf (n+$)|
x_n & .I‘2S
= = L 651
n = ( ) 225 gl (s +n)! (651)

S

which is a series expansion in & which vanishes at the origin for n > 0. For neg-
ative n, the properties of the generating function yield y,(z) = (—1)" y_,(x)
which also vanishes at the origin.

8.0.3 Recursion Relations

On differentiating the generating function expansion with respect to ¢ the func-
tions y, (t), for different values of n, are found to satisfy

g(l +t72) exp [ g (t — t_l)} = n;oo yn(@) n "1 (652)
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On using the generating function expansion in the left hand side

T n=oo n=oo
B (1 4+ t72) Z yn(x) t" = Z Yn(x) n t" ! (653)
n=-—oo n=-—oo

and identifying the powers of "~ ! one finds the recursion relation

pa@) + piae) = 2 (o) (654)

This recursion relation can be used to determine y,,11(x) in terms of y, () and
yn—1(x). However, since the errors increase with increasing n it is more efficient
to use the equation for y, (x) and y,+1(z) to determine y,,—1 (z) with lower val-
ues of n.

Another recursion relation can be found by taking the derivative of the
generating function with respect to =

(t—t_l)exp[g(t—t_l)} S ayg)‘;x)tn (655)

N | =

which leads to

OYn ()
Ox

N

(1) = vmia(a) ) (636)

These two recursion relations can be combined to yield either

D ale) + 2y () (657)
or P
D) — 2y (639)

respectively, if one eliminates either y,11(x) or y,_1(z).

Compact alternate forms of the above two recursion relations can be found.
For example, starting with

ayn(x)

Yn(z) + e Yn—1(x) (659)

one can multiply by z™ and find that

0

i [x ya(a) } — " i (a) (660)
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and likewise, starting from the other one of the above pair of relations, one can
show that

a% [x_” yn(x)} = =2 " Yps1() (661)

8.0.4 Bessel’s Equation

These set of recursion relations can be used to show that the functions y,(x)
satisfy Bessel’s equations. On differentiating the recursion relation

OYn
nyn(r) + yaix) = Z Yp—1(x) (662)
one obtains
8yn(x) 82yn(x) _ 6yn—1(37)
(n+1) o +z . = T o, + Yn-1(7) (663)

Multiplying the above equation by x and subtracting n times the recurrence
relationship for the derivative of y, (z), one obtains

T Oy, (T
z? gxg ) +x yaé ) —nfy,(z) =z

2 ayn— 1
ox

—(n—1)xy,—1(x) (664)

The right hand side is identified as —2? y,(x), by using the other recursion
relation for the derivative of y,—1(z). Thus, we find that y,(z) does indeed
satisfy Bessel’s equation

5 0%yn(z) + Iy (z)
Ox? Ox
As Bessel’s equation is a second order differential equation it has two solutions.

The two solutions can be found from the Frobenius method as series expansions.
The indicial equation yields

x + (22 — n? ) yu(z) = 0 (665)

a? = n? (666)

The solutions which remain finite or vanish at + = 0, and have the leading
term 2" are known as the integer Bessel functions, and are denoted by J,(z),
while the solutions that diverge as ™" at the origin are known as the Neumann
functions N, (x). However, the generating function leads to a unique form of
yn(2), which has been found as an expansion in z. By comparison, one finds that
the functions y, (x) are proportional to the Bessel functions. The normalization
is chosen such that

yn(x) = Jn(2) (667)
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8.0.5 Integral Representation

The series for the Bessel functions can be expressed in terms of an integral. This
can be shown by starting with the generating function expansion

gl t) = Jo(@) + Y (Jul@)t" + J (@) t™")

n

Il
-

M2

= Jo(z) + Jn(z) (2 + (=1)" ")
n=1
(668)
Changing variable from ¢ to 6 defined by ¢t = exp| i0 | one finds that the
expansion takes the form
g(z,exp[i0]) = Jo(z) + Z Jn(2) < exp[+in6] + (—1)" exp[—in@])
n=1

= Jo(z) + Z Jon(z) 2 cos 2n 0 + Z Joant1(z) 24 sin (2n + 1)46
n=1 n=0

(669)

where we have separated out the even and odd terms of the series. When
expressed in terms of 6, the generating function reduces to

g(z,exp[i0]) = exp {zx sin@] (670)

On splitting the complex form of the generating function expansion into equa-
tions for the real and imaginary parts one finds the two equations

cos (x sinf ) = Jo(z) + 2 Z Jan () cos 2n 6
n=1
sin (z sinf ) = 2 Z Jont1(z) sin (2n + 1) 6
n=0

(671)

The Bessel functions can be obtained by using the orthogonality properties
of the trigonometric function on the interval (0, 7). That is, we have

/ df cosnf cosmb = T On,m
0

SIES

/ df sinnf sinmf =
0
(672)
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Thus, on multiplying the real and imaginary part of the generating function by
either sinnf or cosnf and integrating, we have the four equations

1 27
Jon(z) = — df cos( z sinf ) cos 2né
™ Jo
1 27
Jont1(z) = - /0 df sin( z sinf ) sin 2n+1) 0
1 2m
0o = — / df sin( x sinf ) cos 2nf
T Jo
1 2
0 = — / df cos( z sinf ) sin (2n+1) 6
T Jo

(673)

depending on whether n is even or odd. Combining these equations in pairs, for
odd n and even n, one has

2m
/ de [ cos( x sinf ) cos nd + sin( z sinf ) sin né
0

A= A e

2m
/ df cos (x sinf — n @)
0
(674)

for non zero n. The above equations are integral representations of the Bessel
functions.

8.0.6 Addition Theorem

An addition theorem can be found for the Bessel functions by noting that the
generating functions satisfy the relation

gl +y,t) = g(=,t) g(y,1) (675)

SO o
Z Jn(x4y)t Z Tm(@) ™ " Ji(y) t (676)

n=-—oo m=—o00 l=—00
Z Tn(z +y) t Z Z T —m(y) £ (677)

Hence, on equating the coefficients of ¢, one has the Bessel function addition
theorem

Jn(z4y) = Z Jim —m(y) (678)

m=—0oQ
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The Bessel functions often occur in problems that involve circular planar
symmetry, like a vibrating drum head. In this case, one describes the location
of a point on the circular surface of the drum by planar polar coordinates (r, ¢).
Another application occurs in the theory of diffraction.

Example:

Consider a light wave falling incident normally on a screen with a circular
opening of radius a. It will be seen that the intensity of the transmitted light
falling on a distant screen will form a circular pattern. The intensity of the
transmitted light may fall to zero on concentric circles. The strength of the
electric field passing through the circular aperture and arriving at a distant
point on the other side of the aperture, directed an angle « normal to the
aperture is given by

a 2
2
E ~ / drr / dp exp[z’ TW 7 sin cosap] (679)
0 0

This electric field is the sum of the amplitudes of the light originating from
the points (r, ) inside the circular aperture, weighted by the phase from their
differences in optical path length r cos¢ sina. The integration over ¢ can be
performed using the integral representation of the Bessel function

@ 2
Ew/ dT”I‘Qﬂ'Jo(:—TSinOz) (680)
0
The integration over r can be performed by using the recursion relations, leading
to
A 2
E~ 22 Jl( ”sma> (681)
sin v A

The intensity of the light, I, arriving at the distant screen is proportional to

| E %, s0
2
2
I ~ <S?nc;> J12< 7;“ sina) (682)

us

The angle « lies between 0 and 5 so the factor sina vanishes at 0. Thus,
the denominator vanishes for light transmitted in the normal direction, but
fortunately so does the Bessel function Ji, as can be seen from the Frobenius
series. Thus, on using 'Hopital’s rule, the intensity is non-vanishing for a point
directly in front of the aperture, as expected. However, the intensity falls to
zero in specific directions a determined by the vanishing of the Bessel function
Ji

2
Jl( 7;“ sina) =0 (683)
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For a sufficiently large aperture, a > A, the intensity falls to zero at the angles.
The first zero is found at the angle o determined by

21 a

sina = 3.8137 (684)
For a macroscopic opening ¢ = 0.5 x 1072 m and A ~ 107 m one has
a ~ 107° rad (685)

Thus, the first circle of zero intensity makes has an extremely small angular
spread. The outer circles are determined by the higher order zeroes of the
Bessel function , and for large n are approximated by

2mTa
A

sina ~ nw (686)

which is similar to the Bragg condition. The outer dark rings are hard to ob-
serve as the intensity between the rings is very low.

Example:

A particle of mass m is confined within a cylinder of radius a and length [.
The particle is in an energy eigenstate described by the equation
- V¥ = EV (687)
2m
where the allowed value of the energy is denoted by E. The wave function
U(r, 6, z) expressed in terms of cylindrical coordinates satisfies the boundary
conditions

U(a,0,z) = 0
U(r,0,0) = U(r,6l) =0
(688)
Find an expression for the wave functions and the allowed energies.
The eigenvalue equation can be written in the form
19 ov 1 0?0 0*w 2mE
- — — - — -— = - — Vv 689
r or (T or ) 2 o2 T 92 R (689)
On substituting the ansatz for the eigenfunction
U(r,0,z) = R(r) ©(0) Z(2) (690)
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into the equation and diving by ¥ one finds

1 9 ( OR 1 96  2mE 18Z
r R Or T@r

Ze 0 - Z 7oz (691)

Since the z dependence is entirely contained in the right hand side, and the left
hand side is constant as the independent variable z is changed, we must have

0%z 9
where — k2 is an arbitrary constant. This equation has a general solution
Z(z) = A coskz + B sinkz (693)
Since ¥ must vanish on the two surfaces z = 0 and z = [ one determines the
constants as
A=0
B sinkl = 0 (694)

Hence, we have the allowed solutions

N, T2

Z(z) = B sin i (695)
where n is an arbitrary positive integer, and x = ™% . On substituting Z(z)
back into the differential equation, and multiplying by 72 one has
r 0 OR 1 9’6 s (2mE n2m?
—_ = —-— - = = — - = 696
R@r(rar>+@892 T<n2 z2> (696)

From the above equation one can recognize that the # dependent term must
also be a constant, say — m?2, and therefore satisfies the differential equation

9°0(9) 2
2 — m*- O (697)
which has solutions of the form
©(0) = exp [ im0 ] (698)

Since the wave function has a unique value at any point, one must have
0@ + 2m) = O(0) (699)

which implies that m must be a positive or negative integer.
Finally, we find that the radial function satisfies the equation

0 OR 2 o o 2mE n2n?
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We shall put this equation into a dimensionless form by introducing the variable

x = k r, where k is to be determined. The differential equation of R(z/k)
becomes
0 OR 9 2> (2mE nZn?
— — | - R=—-—5|—7— - = R 701
x3x<x3m> " k2< 12 2 (701)

If we choose the value of k to be given by

2mFE n2n?
k? = <h2 - = ) (702)

the differential equation has the form of Bessel’s equation

$8x<x6x>+(x - m°)R =0 (703)
and has the solutions
R(r) = Jn(kr) (704)

which are regular at the origin. Since, the wave function must vanish at the
walls of the cylinder, the value k must satisfy

Im(ka) = 0 (705)
and so the allowed values of k are given by

_ Zmn (706)

km,n -
a
where 2, ,, is the n-th zero of the m-th Bessel function, i.e.
Im(Zmn) = 0 (707)

Thus we have shown that the eigenfunctions are of the form of

U(r,0,2) = sin 22 exp [ im0 } T (2T (708)
a
and the allowed energy eigenvalues are simply given by
2 22 n? w2
E = — : =
2m ( a? + 12 ) (709)

Example:
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Consider the electromagnetic field inside a cylindrical metal cavity of radius
a and length [. Maxwell’s equations are given by

VAE = iaf (710)
and

1 0F
VAB =+4+-" 711

+ c Ot (711)
Maxwell’s equations can be combined to yield the wave equation governing the

electric field -
?A(ﬁ/\ﬁ):-la (712)

2 ot?
and since Gauss’s law holds
V.E =0 (713)
one has
1 °F
~V2E = - 22
2 Ot?
On representing the time dependence of the electric field as a wave of frequency
w via

(714)

E(r,t) = E(r) Real { expliwt] } (715)
then one finds that the spatial dependence of the field satisfies

w

-VE@ = 5 E0 (716)

In cylindrical coordinates the z component of the electric field satisfies the Lapla-
cian eigenvalue equation
1 0 ( oF, > 1 0°E, 0’E, w?

r

ra\"ar ) T T T 2t (T

On using the method of separation of variables we assume that the z component
of the electric field can be written as the product

E. = R(r) ©(0) Z(2) (718)

On substituting this ansatz into the partial differential equation one finds that
it separates into three ordinary differential equations. The z dependent function
7 (z) satisfies

?Z(z) _ 2
and ©(0) satisfies
0’0(0) _ 2
02 = ™ o(6) (720)
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Using the values of the separation constants, one finds that the Radial function
R(r) has to satisfy

10 OR m? w? 9
which is Bessel’s equation. Thus, the general solution of the partial differential
equation has been found to be of the form

E.(r) = Z Im (krr) exp [im 0] (amm sink,z + by, cOS k‘zz> (722)

m;ky

where the constants of separation are related by

w2

= = k2 + k? (723)

The boundary condition at the cylindrical walls is that the component of the
electric field parallel to the axis vanishes. This implies that

T (ky a) = 0 (724)

Hence, the allowed values of k,. are given in terms of the zeros of the m-th Bessel
function. The allowed k values are given by

k, = Zmn (725)

where z,,,, stands for the n-th zero of the m-th Bessel function, i.e. Jp,(2m.n) =
0. The electromagnetic field must also satisfy boundary conditions at the two
ends of the cylinder. The boundary conditions at the ends of the cylinder z = 0

and z = [ are satisfied by setting a,, x, = 0 and k, = =57 for integer and
zero values of n,. In this case, the tangential components of the field E, and
FEy vanish at z = 0 and z = [. This leads to the magnetic induction field

being purely transverse. The allowed values of the frequencies are given by

22 n2 72
w=c a2, + Zl2 (726)

8.0.7 Orthonormality

The orthonormality relations for the Bessel functions can be proved by starting
from Bessel’s equation

g2 & 0@) ;;2(”3) + o Lﬁgf) (22 = P ) @) =0 (T2
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Due to physical reasons, we shall write z = k 7 and use zero boundary condi-

tions at the center and edge of the circular area r = 0 and at » = a. Thus,
we demand that our solution must satisfy
¢,(0) = ¢,(ka) = 0 (728)

In this case, Bessel’s equation has the form

(V)

92 19 ,
a9 (bu(kr) + ; 5 d)u(kr) + (k -

ﬂm‘ AN
I
o

- ) 6.t

o (rapetn ) (# - %) ot

where k2 can be regarded as the eigenvalue. The eigenvalue, or rather the value
km, is determined by demanding that the solution of Bessel’s equation ¢, (k)
satisfies the boundary condition

¥
I
jan}

(729)

¢y (kma) = 0 (730)

The orthogonality of ¢, (kna) and ¢, (k,a) can be proved by multiplying the
equation for ¢, (kna) by ¢, (k,a) and subtracting this from the analogous equa-
tion with m and n interchanged

1 0 0 1 0 0
¢V(km7') ; 6’1"( r 5 ¢V(knr) > - ¢L/(kn7') ; 67"( T E (bu(kmr) >

= ¢u(knr) ( k72n - erL ) Gu(kmr)
(731)

On multiplying by the weighting factor r ( which, due to the two dimensional
circular symmetry, is related to the infinitesimal area element given by dr r dy
) and integrating by parts, one finds that

a a

0
0 - ¢u(knr) r a ¢V(k'rnT) 0

= (kfn - ki ) / dr r ¢, (knr) &y (kpr)

0

Gu (kmr) T 9

o ¢u(knr)

(732)

Using the boundary conditions at » = a and noting that the solutions are
finite at + = 0, one finds that the eigenfunctions corresponding to different
eigenvalues are orthogonal, as

(R, — &) /0 R S S (733)
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The normalization can be found by setting k,, = k, + €, hence, on using
the boundary condition at r = 0 one has

a

¢y (kna +e€a) a ¢, (kna) — du(kna) a ¢, (kna + €a)
0

~ 9 / " dr v b (k) o (kar)
0

(734)
and using the boundary conditions one finds
2 ¢ / dr 1 oy (kat) dulknt) = a® Ey € §2(kna) (735)
0
Furthermore, since
v
bur1(kna) = o du(kna) — ¢, (kna) (736)
one has " )
a
| tten = 5 [ et | (737)
0
In the limit @ — oo, the normalization condition becomes
o 1
/ dr ¢, (kr) r ¢, (K'r) = % (k' — k) (738)
0

8.0.8 Bessel Series

Since the set of Bessel functions ¢, (k,a) for fixed v and different k,,, values form
a complete set, then an arbitrary function ®(r) can be expanded as a Bessel
Series

O(r) = Y Com dy(kmr) (739)

for a > r > 0. The expansion coefficients C,, can be found via

2 a
Cn = gt /O dr () 1 éy (knr) (740)
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Example:

The amplitude u(r, 8,t) of the vertical displacements of a circular drumhead
of radius a satisfies the wave equation
1 0%u

2 _
Viu — 5 oy =0 (741)

where c is the velocity of the sound waves on the drumhead. Since the drumhead
is fixed tightly to the circular rim, the boundary conditions is that there is no
vertical displacement so

u(a,0,t) = 0 (742)

In circular coordinates one has

2 2

L0 (), Lo Lo _
r or or r2 06? 2 ot?

This partial differential equation can be solved by assuming that the solution
can be expressed as a Fourier series in the time variable. For any fixed time
t, the solution can be considered to be a function of (r,6). The 6 dependence
can be expressed as a series in Legendre polynomials, where the coefficients are
functions of r. The undetermined coefficients which are functions of r can then
be expanded as a Bessel series. The general term in this multiple expansion is
given by the ansatz

u(r,0,t) = R(r) ©(0) exp {z w t] (744)

On substituting this ansatz into the equation, cancelling the common time de-
pendent terms, the equation reduces to

10 (T 6R(r)> | R() 5°6(9) w2

00 75 ar 7z oz~ B el) (74)

On multiplying by > R=1(r) ©71(6) one has

r 8(T6R(r)) @1 920(0) W

R or\ " or @ o a2’ (746)

This equation can be written such that one side depends on r alone and another
side which depends on 6 alone
r 9 OR(r) wfz s 1 9%0(0)
R(r) or or

2" T T o0 o (747)
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Thus, the solution can be obtained by the method of separation of variables. It
can be seen that, since the left hand side is independent of  and the right hand
side is independent of 7, they must be equal to a constant, ( say — m? ). Thus,
we have

>°0(9) 2
which has solutions of the form
O(0) = A cosmf + B sinmb (749)

Since, one can identify the point (r,6) as (r,8 + 27), then one requires that
00 +21) = O8) (750)

which requires that m is an integer. Furthermore, the other side of the equation
is equal to the same constant

which can be recognized as Bessel’s equation of integer order

02 J(z) OJm ()
2 7 vm\) Zemi\r) 2 _ 2 —
x 2 + x - + (:c m ) Jm(z) 0 (752)

if the variable z = % r. The solutions .J,,(x) are retained and the Neumann

functions are discarded as the amplitude is expected to not diverge at r = 0.
Thus, for a fixed Fourier component w, the solution can be written as

o0

uy(r,0,t) = Z exp [iw t] Jm( s r> (A (w) cosmb + B, (w) sinmb )

c
m=0

(753)

The allowed values of w, w,, are determined by the boundary condition, which

becomes
Wn,

T ( a) =0 (754)

c

Thus, the frequencies of the normal modes of the drum head are determined by
the zeroes of the Bessel functions J,,(x). The general solution, is a sum over
the different frequencies w,, and thus is in the form of a Bessel series

u(r,0,t) = Z Z exp {iwnt] (A (wn) cosmb + By, (wy,) sinmb ) Jm( % r
m=0 wp
(755)

The expansion coefficients have to be determined from the initial conditions.
This can be done, as an arbitrary initial condition can always be expanded in
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terms of a Bessel series.
Example:

A disk of radius R in the x-y plane ( z = 0) is kept at a constant potential
¢ and the rest of the plane z = 0 is kept at zero potential. Find the potential
for z > 0.

The potential satisfies Laplace’s equation
VZgp=0 (756)
which in cylindrical symmetry, where the potential is independent of 8, becomes

10 [ 9 2o

Using the method of separation of variables one seeks solutions of the homoge-
neous equation in the form

o(r,z) = R(r) Z(2) (758)

On substitution of the ansatz for the solution, one finds that R and Z must
satisfy
1 9 OR 1 9°Z
rR@r(T8r> T 7 92
Since the left and right hand side are functions of independent variables r and
2z, they must be equal to a constant ( say — k2 ). Then the differential equation
is equivalent to the pair of ordinary differential equations

(759)

0?Z
— =k Z 760
5.2 (760)
10 OR 9
—_— — — = 1
rar(rar>+kR 0 (761)
The equation for Z(z) has the solution
Z(z)—Aexp[k:z]JrBexp[Jrkz] (762)
but since the potential must vanish as 2z — oo one has B = 0. Likewise, the
radial part of the potential is given by
R(r) = Jo(kr) (763)
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as the potential remains finite at the center of the disk, » = 0. Thus, we
find the general solution of the partial differential equation is of the form of the
linear superposition

6(r,2) = /0 Tk AR Jo(kr) exp[ _ & z] (764)

where A(k) has to be determined by the boundary condition at z = 0.

Imposing the boundary condition at z = 0 yields
6(r,0) = / die A(k) Jo(kr) (765)
0

On multiplying by Jo(k'r) and integrating over r with a weight factor of r one
has

/o dr r Jo(K'r) ¢(r,0) = /0 dr r Jo(k'r) / dk A(k) Jo(kr) (766)

0

On interchanging the order of integration and using the continuum form of the
orthonormality relation

5(k — k) (767)

=

/Oij dr v Jo(kr) Jo(k'r) =

one determines the coefficients A(k'), as the integral

1 R
o A(K) = ¢ /0 dr r Jo(k'r) (768)

However, due to the Bessel function recursion relation

% <T Jy(K'r) ) = K r Jo(k'r) (769)

one can perform the integration and find

A(K') = ¢o R J1(K'R) (770)

Hence, we have the potential as

o(r,z) = ¢o R /000 dk Ji(kR) Jo(kr) exp[ -k z] (771)
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The potential above the center of the disk ( » = 0) is given by the integral

6(0,2) = oo R /000 dk Jy(kR) exp{ _ kz}

|- ) .
72

This can be seen by noting the special case of the Bessel function recurrence
relations yields
dJo(z)
Ox

This relation can be used in the integration of the expression for the potential.
On integrating by parts with respect to k, one finds the equation

= /Ooo dk Jo(kR) e"p[ B MD

k=0

Ji(z) = (773)

(0, )

¢0< — Jo(kR) exp[ - kz]

6(0,2) = ¢>0(1 ~ /OOo dk Jo(kR) exp[ - kzD
(774)

The last integral can be evaluated by using the integral representation of the

Bessel function.
o] 2 % .
/ dk ()/ dp cos( kR siny ) exp{ - kz]
0 T/ Jo

2\ [? >
()/ dy / dk cos( kR singp ) exp{ -k z]
T/ Jo 0

2 2 z

z dp —— =~
<7T>/0 Y21 R sin? ¢

/Ooo dk Jo(kR) exp[ _ kz]

= (775)
Thus, the potential on the axis is given by
z
0,z) = 1 - ————
60.5) = oo |1 - S |

(776)

Example:
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A cylinder, of length [ and radius a, has the top plate held at a potential
¢(l,r) and the bottom plate is held at a potential ¢(0,r). The potential between
the plates is given by

VZg =0 (777)
which reduces to 5 9 5
1
r&(rw>+aﬂ—0 (778)

From separation of variables one finds the solutions of the homogeneous equation
in the form

¢(z,r) = R(r) Z(z) (779)

On substituting this form into the partial differential equation, one finds that
1 0 OR 1 0*Z

7ﬂ&(rm)—‘z&z (780)

Thus, the equations for the r dependence and z dependence separates. On
assuming a separation constant of — 2, one finds that the differential equation
for R and Z is equivalent to the pair of ordinary differential equations

02z

— = 2
e (781)
and 10 OR
[ — —_— 2 =
rar(rar>+sz 0 (782)

The equation for Z(z) has a general solution of the form
Z(z) = Ap cosh[k z] + By sinh[ k z | (783)

while the solution of the radial equation which is regular at the center of the
cylinder, r = 0, is given by

R(r) = Jo(kr) (784)

The Bessel function of zero-th order occurs since the potential is invariant under
arbitrary rotations about the cylinders axis. The boundary condition at the
surface of the cylinder is equivalent to requiring

Jo(ka) = 0 (785)
which yields the allowed values of k, in terms of the zeroes of the zeroth order
Bessel function, k, = 2. The solution can be expressed as

dzr) = Y ( Ay, cosh[ k z] + By sinh[k z | ) Jo(kr) (786)
k
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The coefficients A, and By can be obtained, by first finding the coefficients
in the Bessel expansion of ¢(0,7) and ¢(l,r). At the top plate, (z = 1), we
expand the boundary value as a Bessel series

Z (1) Jo(kr) (787)

where the expansion coefficients are found from

- ) a
) = ——— d l k
o) = gy | dr o) Join) (753)
and likewise at z = 0 one can also expand ¢(0, 7). Then, at the bottom plate,
(z = 0), we have
Z or(0) Jo(kr) (789)
where the coefficients are found from
- 2 a
0) = ——— d 0,7) Jo(k 790
30 = s [ dr 0(0r) ofa) (790)

Then finally, we have the solution in the form of a sum

~ i k(l — ~ i k
o) = X [ a0y LSS G S | e (o
k

where the allowed values of k are given by the zeroes of the Bessel function.
Homework: 11.2.3

Homework: 11.2.9

8.1 Neumann Functions

The Neumann functions N, (x) are also solutions of Bessel’s equation, and are
known as Bessel functions of the second kind. They are distinguished from the
Bessel functions of the first kind J,(x) in that they diverge as ™™ in the limit
x — 0. In particular, for non-integer v they are defined in terms of J,(z) and
J_,(x) via

cosvm J,(x) — Ju(x)

sin v

N,(z) =

(792)
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Thus, the Neumann functions are particular linear combinations of the Bessel
functions. On substituting the power series expansion for J,(z) one finds

N (@) = — =D <2> b (793)

s €T

forv > 0.
Example:

An example which involves Neumann functions is the co-axial wave guide.
The co-axial wave guide or cable is composed of two metal cylinders, with
the same axis. The radius of the outer cylinder is b and the radius of the
inner cylinder is a. The electromagnetic field is confined in the region enclosed
between the two cylinders. We shall consider the component of the electric field
E.,, along the direction of the axis, é,. This satisfies

?A(?Aﬁ)_la@ (794)

2 Ot?

or on Fourier Transforming with respect to time
W2
m(mﬁ):ﬁ (795)
c
However, one has the identity

?A(ﬁAE})Z—VZE}JF?(vE*) (796)

and Gauss’s law reduces to ﬁ . E = 0 in vacuum with no charges present.
Thus, the z component of the electric field is governed by

2
VQEZ+<L;]) E. =0 (797)

In cylindrical coordinates this partial differential equation has the form

10 OF. 1 9°E,  O°E, w \?
r&"(rﬁr>+1"2 692+822+<c) B =0 (199

On using separation of variables one assumes that the E.M. waves have the form

E.(r60,z,t) = Z A (k) R (r) ©(0) Z(2) exp [ —iw t] (799)
m,k
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On solving for the (6, 2) dependence, and using the condition that F, is 2 =
periodic in # one has travelling waves of the form

E.(r,0,2,t) = ; Crn (k) Ry (7) exp{—im@} exp[i(kz—wt)} (800)

where the radial function satisfies

1 0 OR,, 2 2
(r)_mRm+(°§2—k2>Rm=o (s01)

r or or 72
The radial equation has a solution for b > r > a given by

R, (r) = A, Jn(ar) + By Np(ar) (802)

where a? = ‘Z—j — k2. The Neumann functions are allowed since the region
where they diverge, (7 = 0 ), has been excluded. The allowed values of «
are determined by the boundary conditions at » = a and r = b where the
tangential field F, must vanish. Hence, the ratio of the two coefficients and «
are determined from the boundary conditions

Ry.(a) = Ap Jn(aa) + By, Np(aa) = 0 (803)
and
Rn(b) = Ap Jm(ab) + B No(ab) = 0 (804)

The allowed values of o are determined from the transcendental equation
Np(aa) Jp(ab) = Ny (ab) Jp(aa) (805)

The frequencies of the E.M. waves are given by

2

w
= = a® + k? (806)

Since k2 must be positive if the wave is to be transmitted, the minimum fre-
quency is given by wyin = ¢ a.

The Hankel functions are defined as solutions of Bessel’s equation which are

the superpositions
Hi(z) = J,(z) + i N,(2) (807)

and
H,(z) = J,(z) — i N,(2) (808)

v

The Hankel functions have the asymptotic forms of

lim HE(z) — exp{ + zx} (809)
T—r0o0
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and since they diverge at the origin has a natural interpretation in terms of
outgoing cylindrical waves or incoming cylindrical waves.

Example:

Consider the diffraction of an electromagnetic plane wave Ey with frequency
w, by a metal wire of radius a. The electric vector is parallel to the cylindrical
axis, and the direction of propagation is perpendicular to the cylindrical axis.
The incident field is

éoneXp|:i(kTCOS9—wt) (810)

The amplitude of the diffracted electric field satisfies Helmholtz’s equation
19 ( OFq. ) 1 9By

z - k? FEs. = 11
r Or Oor r2 902 + 0 (811)

The amplitude must also satisfy the boundary condition that the tangential field
vanishes at the surface of the conductor

Ei.(a,0) + Ey exp {z ka cos@} =0 (812)
The boundary condition at infinity is given by the radiation condition
. (0B, -
Tlglgo ( r —l—zkEsc> =0 (813)

On applying the method of separation of variables one finds the solution as
a series

(oo}
Eeo(r,0) = > <Am cosm 0 + B, sinm 9) {Cm H} (kr) + Dy, H,,(kr)
m=0
(814)

On examining the boundary condition at » — oo one finds that the expansion
coefficient D,,, = 0. From the symmetry condition # — — 6, the solution
must be an even function of 8 so one has B,, = 0. Thus, the solution is of the
form -

Eeo(r,0) = Y Cp cosm 0 H} (kr) (815)

m=0

From the boundary condition at » = a one has

Z Cm cosm 0 Hf (ka) + Ey exp {zk a cos@} =0 (816)

m=0
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Furthermore, as
exp [ ika cos@} = Jo(ka) + 2 Z (i)™ Jmn(ka) cosm 6 (817)
m=1

one can determine the coefficients C,,, uniquely. In particular

C() H0+(ka) = — Eo Jo(k'a) (818)
and
Crm Hif (ka) = =2 (i)™ By Jn(ka) (819)
Thus, the scattered wave is given by
Jo(ka) . 2N Im(ka)
E,. = — E Hi (k 2 m————= H(k sm, 6
0 H (ka) o (kr) + mz_:l(z) 2 (k) (kr) cosm

(820)

8.2 Spherical Bessel Functions

The spherical Bessel Functions j,(x) are related to Bessel functions of half in-
teger order. The spherical Bessel functions occur in three dimensional problems
with spherical symmetry. For example, in three dimensions the radial part of
the solution of Laplace’s equation can be written as

10 5 OR(r) 9 I(l+1)
— = SRR —— = 21
r2 0r ( " o Ak r2 R(r) 0 (821)
On substituting the form of the radial function as
k
R(r) = 2, (s22)
(kr)z
one obtains Bessel’s equation of half integer order
0%¢ 0o 1
2 2 2 2
bl - — - = 2
8r2+rar+ k*r (l+2) 0] 0 (823)
Thus one has a solution for the radial function of the form
Jiyy (kr)
R(r) = ——— 824
(r) N (824)
The spherical Bessel functions are defined as the solution
im(@) = (/o= J 825
Jn(@) = \/5= Ty @) (825)



incorporating a specific constant of proportionality. The spherical Neumann
functions are defined analogously by

M) = /5= Ny 3 () (826)

8.2.1 Recursion Relations

It can be seen that the zeroth order spherical Bessel function jo(z) is given by

jolz) = Sizx (827)

The recurrence relations for the spherical Bessel functions are given by

. . 2n + 1 |
]n—l(x) + ]n+l(z) = T]n(x)

(2n + 1) ju ()

njn—1(®) — (n + 1) jnsa(z)
(828)

The recurrence relations can be used to evaluate the low order spherical Bessel
functions

sinx Ccos T

Jl(x) = ) - T

. 3 — a? . 3
jo(z) = = sing — —5 cosw

(829)

The general form of the spherical Bessel functions can be obtained from the
recursion relations by combining them into the form

0 , ntl
(@ ) =

;x( 27" jn(x) ) = — 3" jna(2)

(830)
By induction one can establish the Rayleigh formula
1 a n

() = (—1)" 2" [ = =— ) 831

o) = (=1 (3 ) ko) (s31)
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for the spherical Bessel function of order n. The asymptotic, large x, behavior
is given by
1 0

jn(z) = - sin(m ~ 2) (832)

T

This follows as the asymptotic large x behavior is governed by the terms of
lowest power in % The derivatives present in the Rayleigh formula produce a
faster decay and hence negligible contributions when they act on the powers of
2. Thus the leading term of the large x behavior is determined by the term
where the n derivatives in the Rayleigh formula for jo(z) all act on the factor
sin x.

8.2.2 Orthogonality Relations
The orthogonality relations for the spherical Bessel functions can be expressed

as
3

/Oa dr jn(kr) 12 ju(k'r) = % { Gy (ka) r S (833)

where k and k' are solutions of the equation
jn(ka) =0 (834)

expressing the boundary condition.

8.2.3 Spherical Neumann Functions

The spherical Neumann functions can also be evaluated explicitly as

cos
z) = -
1o () -
(@) cos T sin x
xr) = - —
m 22 .
3 — 22 .
() = - 3 ) cosz — —5 sinz

(835)
etc. It can be seen that the spherical Neumann functions diverge at the origin.
Example:

The free particle energy eigenvalue equation in three dimensions
72

—ﬁvzsz\y (836)
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has an energy eigenfunction ¥ that can be expressed as
U(r,0,¢) = R(r) ©(0) (¢) (837)

The wave function ¥(r, 8, ¢) with angular momentum [ has a radial wave func-
tion R;(kr) which satisfies the differential equation

OR(r) | % W;T) ( L M > R(r) = 0 (838)

or? r

K2 k2

5 The radial function has

where the energy eigenvalue is given by £ =
the general solution

R(r) = Ay ji(kr) + Bimi(kr) (839)
The solution which is regular at » = 0 corresponds to the case where B; = 0.
Example:

The energy eigenfunction for a particle, of angular momentum [, moving in

a short ranged potential V'(r) such that V(r) = 0 for r > a has a radial wave
function

Rl(’l“) = A jl(kT) + By m(k?“) (840)

for r > a. The wave functions have the asymptotic form

. 1 . T
gilkr) ~ T s1n(kr - l2>
7r
m(kr) ~ T cos(k‘r — l2>
(841)
On writing % = —tand;(k), one finds that
Ri(r) = A — sin( kr — 1T 4+ 8k 842
) = A s (k- 1T 4 k) (342

for 7 > a. The energy eigenfunction is of the form of a standing spherical
wave, in which the effect of the potential is contained in the phase shift ¢;(k).

Example:

A quantum mechanical particle in a stationary state experiences a strong
repulsive potential V' (r) from a nucleus which prevents the particle from entering
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the nucleus. The potential V' (r) is spherically symmetric and can be represented
by

Vir) = { PR } (843)

> a

The wave function ¥, which expresses the state of the particle, satisfies the
energy eigenvalue equation
" VZU + V(r)¥= ET (844)
— r =
2m
The effect of the potential is to demand that the wave function U(r, 0, ) satisfies

the boundary condition
¥(a,0,4) = 0 (845)

at r = a. This corresponds to the condition that the particle does not enter
the nucleus. Due to the spherical symmetry of the potential, we have a solution
of the form

\Ijlym(ra 0; QD) = RZ(T) }/lm(ov 90) (846)

The radial function R;(r) is given by

Rl(r) = A ]l(kT) + B T]l(kT) (847)

where A; and B are arbitrary constants, and the energy eigenvalue is given by
2 2

FE = h2 ffl . The boundary condition at the surface of the spherical nucleus

determines the ratio of the constants

0 = Al ]l(ka) + By nl(ka) (848)
Thus, one has
By Ji(ka)
20 849
A ni(ka) (849)

In this case, the phase shift d;(k) is determined by the energy and the radius of
the nucleus )
Ji(ka)

m(ka)

Thus, determination of the angle and energy dependence of the scattering cross-
section can be used to determine the phase shift, which can then be used to
determine the characteristic properties of the scattering potential.

tand; (k) = (850)

Homework: 11.7.22
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An important example is given by the expansion of a plane wave in terms of
spherical Bessel functions

exp [ ikr cos@] = Z Cy jn(kr) (851)
n=0

The coefficient C,, is evaluated as
Cpn =14"(2n + 1) Py(cos) (852)

where P, (z)are the Legendre Polynomials. It should be expected that plane
waves can be expressed in terms of spherical Bessel functions with the same k
values as both the spherical Bessel functions and the plane wave are both free
particle energy eigenfunctions.

144



9 Legendre Polynomials

9.0.4 Generating Function Expansion

The generating function g(z, t) yields an expansion for the Legendre polynomials
P, (z). The generating function expansion is simply

[N

g(x,t) = (1 — 2t +t2)_

> Py(a) t
n=0

(853)

This has direct application in electrostatics, where the potential ¢(7) due to
a charge distribution p(7°) is given by the solution of Poisson’s equation. The
solution can be expressed in terms of the Green’s function and the charge den-
sity, and the Green’s function can be expanded using the generating function
expansion

—

oo ™ 2 p(?)
= / dr’ ' / do sinc9/ dy
0 0 0 V2 — 27r ! cosf + 12
oo ™ 27 o0 n
1
= / dr’ r' / df sinf / de p(?) Z — <T<> P, (cos0)
0 0 0 — > \T>

(854)

where 6 is the angle between 7 and 777 and r- and r~ are, respectively, the
smaller and large values of (r,77).

Homework:

Evaluate the potential due to a spherically symmetric charge density

pir) = 0 forr > a
p(r) = po forr < a
(855)

Assume that the Legendre polynomials P;(cos#) are orthogonal, with weight
factor sin 6.
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9.0.5 Series Expansion

The generating function can be used to find the series expansion of the Legendre
polynomials. First we expand in powers of 2 x ¢t — t2, via

1
V1-—2zt+ ¢t

222(822;)2(2ztt2)5

g(.’L‘,t) =

s=0
(856)
and then expand in powers of ¢
o @) s
glx,t) = Y o (27 = 1)
s=0
= (29)! - s! _
= A A— - 1)y — 2 s—rogr
Z%Q%(dﬁ g;( V= (2
(857)
On writing n = s + r and keeping n fixed s = n — 7, so
o ] (2n — 2r)!
t = . t(=1) (2 n—2r
9(x.t) 7;) 22n=2r pl (n —r)! (n — 2r)! ( )y (22)

—_ 3

NEA|

= >

(2n — 2r)!
27 ¢l (n—r)! (n—2r)!

= Z tn(—l)T(x)n_2T

n=

o

r=0
(858)

Thus, the Legendre polynomials are given by
(3]
(2n — 2r)!

=) oz (1) T (859)

P,(x) =

r=0

Hence, the Legendre polynomials have the highest power of ™, and terms which
decrease in powers of x2. Thus, for odd n the series only contains odd terms
in x, whereas for even n the series is even in x. The series in decreasing pow-
ers of 72 terminates when n = 27 for even n and whenn = 27 + 1 for odd n.
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9.0.6 Recursion Relations

Recursion relations for the Legendre polynomials can be found by taking the
derivative of the generating function with respect to ¢t. Thus, starting from

1
_1

oo

= Z P,(z) t"
n=0
(860)
one obtains
0 x — t
— gz, t) =
g 9L 1) (1 — 22t + 12)2
= Z P (x) nt"!
n=0
(861)
The above equation can be written as
oo
(z — t)glxt) = (1 —2xt + %) Z n Py(x) t"!
n=0
(2 —t) > Pu(@)t™ = (1 =22t + ) > nPyax)t"
m=0 n=0
(862)
On equating like powers of ¢ one has
(2n + 1)z Pyzx) = (n + 1) Pupi(x) + n Po_q(x) (863)

This recursion relation can be used to construct the higher order Legendre poly-
nomials starting from Py(z) = 1 and Pi(z) = =.

An alternate form of the recursion relation can be obtained by taking the
derivative of the generating function expansion with respect to x

t
(1 — 2zt + 12)2

— 0
:Zaf

0
% g(l’,t) -

(864)
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or

= 0
tglz,t) = (1 —2xt + ¢ — P,(x) t"
so) = (120t )3 2 AW
o0 o0 8
t Pn n _ o 2 - P, n
> Pu(a)t (1 2xt+t)zaxP(x)t
n=0 n=0
(865)
Equating like powers of ¢ we obtain the recursion relation
0 0 0
— P, P, = — P, — P,_
(23: o () + n) o w1 () + 9z o 1(z) (866)

This is not very useful.

A more useful relation can be obtained, if one takes the derivative of

(2n + 1)z Py(z) = (n + 1) Poyi(z) + n Puoy(x) (867)

to give
(2n+1) (xaipn(x)+Pn(:r)> = (n+1)%Pn+1(x)+n%Pn,l(x)
(868)

This relation can be used to eliminate the derivative of P,(x) in the previous
equation, by multiplying by 2 and subtracting ( 2 n + 1) times the previous
equation, leading to

9 b @) (869)

(20 + 1) Pale) = 2 Paale) — o

or

On eliminating the derivative of P,,_1(x), by multiplying by n and subtract-
ing, one obtains

0 0

x— Pu(z) + (n + 1) Py(z) = P2 Poii(z) (870)

Alternatively, on eliminating the derivative of P, 11 (x) by multiplying by (n+1)
and subtracting, one obtains

3} 0
T 5 P,(z) — n Py(x) = 32 P,_1(x) (871)
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The above two equations are to be combined. One is first put in the form
n — n — 1 so it becomes

1o} 0
T 5 Po_1(x) + n P,_1(x) = p P,(x) (872)
and this is combined with = times the relation
xEP(x)—nP(x)—ﬁP (x) (873)
81' n n - 81: n—1

so as to eliminate -2 P,_;(x). On performing these manipulations one obtains
. O
the recursion relation

(1 — 22 )% P, (z) = n Py_1(x) — nx Py(x) (874)

Finally, if one uses the above recursion relation together with
(2n + 1)z Pyz) = (n + 1) Pyya(z) + n Pooy(x) (875)

one obtains a recursion relation in the form

0

(17:52)%

P, (z) = (n+ 1)z Py(x) — (n + 1) Pyyi(x) (876)
Example:
The multi-pole expansion can be derived, using spherical polar coordinates

where z = r cos@, from the properties of Legendre polynomials. The mathe-
matical basis for this expansion is found in the identity

0 P, (cosf P,i1(cos0
&{M}(”+U:&(m> (877)

This can be proved starting with the expression
0 ory\ 0 0 cosf 0
( 0z >xy B <8z) or * < 0z > 0 cosf (878)

and with r =/ 22 + y2 + 22 and cos§ = ———=—— one has

N
0 z\ 0 r? — 22 0
(82 )my B (7”) ar * ( r3 ) Ocosf (879)
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Hence,

0 [ Py(cosO) ] | Pn(cos®) 9 0 P, (cos6)

0z { r(n+1) } = —(n+1)cosd [ r(n+2) +sin” ¢ dcosf | rnt2)
(880)

but one has the recursion relation

P,
sin? @ OPn(cos9) = (n+ 1) cosf Py(cos) — (n + 1) Pyq1y(cosf) (881)
dcosf
Thus, one has proved the identity
0 [ Py(cost) ] P,y1(cosb)
[ } = —(n+1) — i (882)

0z r(n+l)

Alternatively, this identity can be shown to be true by starting from the

generating function expansion
— P, (cosf
(cos9) (883)

1
:;W

cosf,r) =
g ) V1 + 712 = 27r cosh

On taking the derivative with respect to z, keeping (z,y) fixed, one has
1 — =z

0 1
0z /1 + 22 + y2 + 22 — 22 (14 a? oy 422 - 22)8
B (1 — r cosf)
(1 + 2 — 27 cosf)3
(884)
Hence, we have
0 . P,(cosf) (1 — r cosf)
el ) = 885
62(; r(ntl) ) (1—|—r2—27“c0s9)% (885)
which can be written as
0 P, (cosb) > (1 — r cosb)
1+r2—27‘c030< ] =
( ) 0z 7;) r(nt1) V(1 + 72 — 27 cosf )
2. Py(cosh)
= (]_ - T COS@) ZO W
n=

(886)
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On substituting the identity that is being verified, we find

> P, (cos ) 2. cosf P,(cosf) = P,(cosb)
2 . (n+1) _ n n
;}(1—1—7‘ —2Tc059)(n+1)4r(n+2) —Z_;) e —Z_% r(nt1)
(887)

or on changing the index of summation

o~ P_q)(cosb) > P(y41y(cos 0) = cos® P, (cosf)
Yoo DEEE Y 1) ST = 3 (2 1) 227 BT
n=0 ! " " n=0 ( " ) " n=0 ( " ) "

(888)

which is satisfied identically, because of the recursion relation

(2n + 1) cosf Py(cos) = n Py_1y(cos) + (n + 1) Pryqy(cosd)
(889)

Thus, we have verified the identity in question.

9.0.7 Legendre’s Equation

The Legendre polynomials satisfy Legendre’s equation. Legendre’s equation can
be derived starting with the recursion relation

(1 — 2? )% P, (z) = n Py_1(x) — nx Py(x) (890)

Differentiating the recursion relation with respect to x one obtains

02 0 0 0
—_ 2 - i - — - — - —
(1—=z )ax2 P, (z) -2z o P,(x) =n % P,_1(z)—nz 5 P, (x) —n P,(x)
(891)
and then using
0 0

x — Py(x) — n Py(z) = P,_1(z) (892)

ox

to eliminate the derivative of P,,_1(z) one obtains Legendre’s equation

oxr

2

0
(1 — xQ)@Pn(x) - Zx%Pn(x) +n(n+ 1)P(z) =0 (893)
Legendre’s differential equation has singular points at + = =+ 1, where the

solution P, (x) may become infinite. The value of n must be an integer if the
solution is to remain finite. If n is integer the Frobenius series expansion termi-
nates and the solution becomes a polynomial.
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If the solution is assumed to be of the form

P,(z) = z° Z Cy z" (894)

a =0 (895)

and the coefficient of ™ satisfies the recursion relation

(m+2)(m+1)Chnya = [m(m—1)+2m—n(n—|—l)]0m

[m(m+ 1) —n(n + 1):|Cm
(896)

which terminates after n terms when n is an integer.

Legendre’s equation is most frequently seen in a form where the independent
variable is in the form x = cos#f. In this case, the first order derivative with
respect to x is given by

0 1 0

oz Y 96 (897)
and the second order derivative is evaluated as
# 1 0(1 0
dxr2 ~  sinf 90 \ sinf 00
B 1 872 7 cos 6 2
~ sin?6 002 sin® 9 90
(898)
Thus, Legendre’s equation takes the form
02 cos O
ET P, (cosf) + 0 90 P,(cosf) + n(n + 1) Py(cosf) = 0
S 'GQP( 0) ) + n(n + 1) Py(cosf) =0
snd 20 sin 50 . (cos n(n . (cos =
(899)
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9.0.8 Orthogonality
Legendre’s differential equation in the variable x can be written as

0

p 9 Pyz) | + n(n + 1)P,(x) =0 (900)

(1_x2)8x

which is a Stiirm-Liouville equation, with eigenvalue n (n 4+ 1) and weighting
factor unity. The boundary conditions are imposed at * = = 1, which are
regular singular points as (1 — 2% ) = 0 at the ends of the interval.

The orthogonality condition is found by multiplying by P,,(z) as the weight
factor is unity, and subtracting this from the equation with n and m inter-
changed. After integrating over z between +1 and —1 one obtains

0

-1

~ (e =m0 [P B

-1

On integrating by parts, and noting that the factor ( 1 — x? ) vanishes at both
the boundaries, then as long as P, (£1) is not infinite one has

+1
(n(n+1)—m(m+1))/ dx Pp(z) Py(z) = 0 (902)

-1
Thus, the Legendre functions are orthogonal as long as the eigenvalues are not

equaln (n + 1) # m(m + 1).

The Legendre functions are defined such that P, (1) = 1. The normalization
integral can be evaluated from the square of the generating function expansion

(1 —2xt + t*)t = (nio Pn(x)t”>2 (903)

n=0

On integrating over = from —1 to +1 one has

+1 1 e, +1 ,
dx = < / dx P;(x) (904)
/, LT — 2t + 2 nZ::O o

where we have used the orthogonality of the Legendre functions. The integral
can be evaluated as

n=oo

1 1 — 2t 4 ¢2 +
= ln = = £2n dx P2 905
2¢ 1+ 2t + 2 7;) [1 z Py() (905)
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The left hand side can be expanded in powers of ¢ as

11+t —
=1 = 2 906
t "1 -t 2o 1 (906)
On equating like coefficients of t2* one has
+1 , 9
dx P = —
[1 x P (x) n 1 (907)
Hence, we can write the orthonormality condition as
+1 9
[ o Pu@) Pal) = G (908)

9.0.9 Legendre Expansions

Due to the orthogonality conditions and the completeness of the eigenfunctions
of a Stiirm-Liouville equation, any function can be expanded on the interval
(—1,+1) as a Legendre series

fl@) = > Cy Pal2) (909)
n=0
where the coefficients C,,, can be evaluated from
2 +1
— Cy, = dt P, (t t 1
1 O = [t Palt) £ (910)

The completeness condition can be expressed as

n=o00 +1

D w Pn(x)/ dt Pa(t) f(1)

n=0 -1

+1 n=oe o .
= [ derw Y P R R

—1

f(x)

n=0
(911)
Hence, we may expand the delta function, on the interval (—1,41) as

n=oo

S —t) = 3 2 EL R P (912)

n=0
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Example:

Find the electrostatic potential for a point charge with charge ¢, located at a
distance a from the center, inside a uniform conducting spherical shell or radius
R.

The potential inside the sphere satisfies Poisson’s equation
~V%¢p =4dmp (913)

where p is only non-zero at the position of the point charge. Elsewhere, Poisson’s
equation simplifies to
Vig =0 (914)

We shall assume that the polar axis, (§ = 0 ), runs through the center and
the charge g. Then the potential is invariant under changes of the azimuthal
angle ¢, and so ¢ is independent of . Laplace’s equation takes the form

1 9 , D¢ 1 9] o9\ _
7’287‘(T 87‘>+r28in989( n980> =0 (915)

This has solutions of the form

oo

o(r,0) = > (Al rt 4+ By D ) Py(cos ) (916)

=0

where A; and B; are arbitrary constants that are to be determined by the bound-
ary conditions.

In order for the shell to be at constant potential one must have

H(R,0) = (Al R' + B, R™(U+D ) Py(cos®) = ¢o (917)
1=0
Hence, for I # 0 one finds the relation between the expansion coefficients
A, = — By RT®HD (918)
and for [ = 0 one has
Bo
Ao + — = o (919)
Thus, one can express the potential in terms of the coefficients B; via
1 I+1 R r!
¢(T,9)=¢0+Bo(r—) ZBR( )< pcmy il Pi(cos )

(920)
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for r > a. The coefficients B; can be found from the boundary condition at
the point (r = a,6 = 0). Near this point, the potential should be dominated by
the singular behavior of the point charge

o
. q a
1 0) ~ ———M— = E — 921
rlga QS(T; ) (’l" — a r o l ( )
Hence, one finds the coefficients as
By =
B, = qal
(922)

Thus, we have we have identified the contribution from the point charge ¢ as

-1y 4

=0

q
) = -
q(r,0) V12 + a2 — 2ra cosh

(cos ) (923)

<1
1\@

The induced contribution to the potential from the charge on the conducting
surface is found, from the principle of linear superposition, as

Gina(r,0) % ; ( )l Py(cosb)
1

2
\/1—2’1{30050—1- <’R3>

qR 1

=B

(924)

which is just the contribution from a point image charge of magnitude ¢’ =

—q % located outside the shell at a distance %2 from the center. Since the

expansions converge, we have found the solution.
Example:

Consider a metallic sphere of radius a in a uniform electric field, Fy. The
potential ¢ in the vacuum satisfies Laplace’s equation

VZg =0 (925)
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The electric field is chosen to be oriented along the polar axis, so the problem
has azimuthal symmetry and the potential is independent of ¢. We shall use the
method of separation of variables and assume that the potential can be found
in the form of a series expansion

¢(r,0) = > Ci Ri(r) €4(0) (926)
l

which satisfies the partial differential equation

10 ( ,00 10/ . 0\
ﬂar(fm>+rzsmeae<sm"ae>—0 (927)

On writing the separation constant as [ (I + 1) one has the radial function
R, (r) satisfying the equation

1o} 5 OR
— e =1(1 1 2
87‘(T 87“) (Il+1)R (928)
which has the solution
Ri(r) = Ayt + By r~ D (929)

The angular dependence is given by
©,(0) = Py(cosb) (930)

where [ is an integer, for ©;(6) to be non-singular along the poles.

Thus one has the solution in the form of a series expansion

oo

o(r,0) = > (Al rt 4+ By D ) Py(cos 6) (931)

=0

The coefficients A; and B; are to be determined from the boundary conditions.

As r — oo, the potential has to reduce to the potential of the uniform
electric field

lim ¢(r,0) — — Eyr cosf
r—00
= — Eygr Pi(cos®)
(932)
Thus, only the two Ay, coefficients Ag and A; can be non-zero. The potential

has the form

o0

o(r,0) = Ay — Epr Pi(cosf) + Z By =Y Py(cosh) (933)
1=0
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The metallic sphere is held at a constant potential so
¢(a,0) = const (934)

As the Legendre polynomials are linearly independent, the coefficients of the
Legendre polynomials must vanish at the surface of the sphere. Hence, we have
the set of equations

0 = — Eo a + Bl afz
0 = B forl > 1
(935)
which leads to the potential having the form
B 3
o(r,0) = Ay + =2 — Eor Pi(cost) (1 - a3) (936)
r r
If the sphere is assumed to be uncharged we can set By = 0.
Example:
Consider the solution of Poisson’s equation
V2gp = —drwp(7) (937)

in which the charge density is distributed uniformly on a circle of radius a cen-
tered on the origin, and in the plane z = 0. The total charge on the ring
is q. We shall solve Poisson’s equation in a region that does not include the
charge distribution. The effect of the charge distribution, is to be included by
specifying a boundary condition.

For points not in the plane z = 0, the charge density is zero, and so one
has Laplace’s equation
Vig =0 (938)

Since, the geometry has an axial symmetry, the potential ¢ is only a function
of (r,0). In spherical polar coordinates, one has

- Y o¢ o g 99 1 P
r? 0r<r ar ) T 2 sine ae( 0 59 )+ aanze oz 0 (939
if & = 7. Due to the axial symmetry, this reduces to

1 0 5 09 1 o ) ¢ B

7’257“(T 5‘r> * r2 sind 80(5m989 =0 (940)
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This partial differential equation can be solved by the method of separation of
variables,

¢(r,0) = R(r) ©(0) (941)
which, on dividing by ¢, leads to the equation
1 9 5 OR 1 0 ., 00
R@r(r ar) YY) ao(smeaa) (942)

Then since one side of the equation is a function of r alone, and the other side
is a function of @ alone, both sides of the equation must be equal to a constant

C
0( ,0R B
0 ., 00 .
89( sin 0 ¥l ) = — C sinf ©(0)
(943)
On writing C = n (n + 1), we find that
R.(r) = A, " + B, r~("*D (944)
and O(6) is given by
0,(0) = P,(cosb) (945)

Thus a general solution, that does not diverge at infinity, is given by the series

¢(r,0) = > Ap r~ ") Py (cosb) (946)

This series is unique and the coefficients A,, can be determined from the appro-
priate boundary condition.

A boundary condition that can be easily determined is given by the potential
along the z axis. Since all the elemental charges are located at equal distances
d from the point on the z axis

d =+ 22 + a? (947)

and in spherical polar coordinates r = z,60 = 0. The potential at a point on the
z axis (r,0) is just given by the sum of the contributions from each elemental

charge, the sum is just
1

¢(7“a0) = Q\/ﬁ

(948)
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where q is the total charge on the ring. The potential has the expansion

o) = 0 Y (1) i (1)
n=0 '

On noting that P(cos0) = 1, one can uniquely identify the coefficients A,, by
comparing the expansions in inverse powers of r as

n  (2n)! n
Agn:q(_1)22£l(71!)2a2 (950)
while
Agpi1 = 0 (951)

Hence, we obtain the potential ¢(r,6) as an expansion

> @) (o™
o(r,0) = g n:o(_ )" S (e (r) Py (cos6) (952)

Example:

As another example consider a sphere that is cut into two hemispheres of
radius a. The hemisphere at 7 = a and with # > 6 > 7 is held at a potential
¢0, while the other hemisphere at r = a and 5§ > ¢ > 0is held at a potential

- %o

Since the problem is symmetric under rotations around the z axis, the po-
tential ¢(r, @) is independent of . The potential inside the sphere satisfies
Laplace’s equation

Vig =0 (953)

which in spherical polar coordinates, and using the azimuthal symmetry, be-

comes 19 26 9 06
- 2 77 N 3] _~ —
2 ar (r ar ) * 2 sing o0 (mo a8 ) 0 (954)

The solution is found by the method of separation of variables

¢(r,0) = R(r) ©(0) (955)

after which it is found that the radial function R(r) must satisfy an eigenvalue
equation
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Then, for fixed n we have the solution

Ru(r) = (An ™ 4+ B, r~ D ) (957)
The angular part must satisfy Legendre’s equation
0 . 00(0)
89<s1n089>+n(n+1)@(9)—0 (958)

which forces n to be an integer. The solution is given by the Legendre polynomial
in cos 6

0,(0) = P,(cosb) (959)
Thus, we can form a general solution as a series expansion
$(r,0) = Y <An 4+ B, r~(FD ) P, (cosf) (960)
n=0

The coefficients B, are zero as the potential ¢(0, 6) is expected to be finite.
The coefficients A,, can be obtained from the boundary condition at r = a.
That is, since one has

¢(a,0) = Z A, a” Py(cosb) (961)

n=0
then, on using the orthogonality of the Legendre polynomials one has

2
2n + 1

A, a” / df sinf ¢(a,0) P,(cosb)
0

o ( / df sinf P,(cosh) — /2 df sinf Pn(c059)>

5 0

(962)

When this integral is evaluated, since the function ¢(a, #) is odd only the Legen-
dre polynomials with odd values of n survive, as Pa,(cosf) is an even function
of cosf. Then

oo

A2n+1 a2n+1 — QSO Z ( -1 )n+1 (

n=0

4dn +3) (2n — 1!
(2n 4+ 2)

(963)

Thus, we have the potential as an expansion

oo

o0r0) = do 3 (— 1) {

n=0

dn+3) 2n—1
(2n +2)!!

N\
<a> PQ»,L_H(COSQ) (964)
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Example:

A plane wave can be expanded as

exp [ iR ] = 3" G jilkr) Pi(cos) (965)

1=0
where 6 is the angle between the position and the direction of the momentum.
This form of the expansion is to be expected as both the Bessel function expan-

sion and the plane wave are eigenstates of the Laplacian, with eigenvalue — k2.
It can be shown that C; = it (21 + 1).

On differentiating the expansion with respect to kr, one obtains

i cos® exp [ i T ?} = Z C, jj(kr) Pi(cosb) (966)
1=0

or on using the expansion again

i cosf Z Cy ji(kr) Pi(cosf) = Z C; j;(kr) Pi(cos®) (967)
=0 =0
The recurrence relation can be used to express cosf P, (cosf) entirely in terms
of the Legendre polynomials via

(21 + 1) cosf Pcost) = (1l + 1) Py1(cosf) + 1 P_1(cosf) (968)
On multiplying by P,,(cosf) sinf and integrating one obtains

(m+1)

. m .
(g Gt (i) + 2L

— Crnt1 Jm+1(kr) ) = Cp Jp (k)
(969)
Then on using the recurrence relations for the derivative of the spherical Bessel

functions

) B m . (m+ 1) .
Jolkr) = G () = S (k) (970)
one finds
‘ m ‘ (m + 1) ‘
(g Ot s+ ) O )

(m+ 1)

m
p— m — .m_ k -
¢ < Jm—1(kr) 2m + 1

2m + 1 gm1(kr) >

(971)
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Since the two Bessel functions, of order m — 1 and m + 1, can be considered to
be linearly independent, one can equate the coefficients to yield the recursion
relation

szi(2m+1)

(2m — 1)0’"*1

(972)

The first coefficient can be obtained by examining the limit £k — 0 since in
this case only jo(0) survives, and has a magnitude of unity. Hence,

Co =1 (973)
and we have the expansion coefficients as
Cp =i (21 +1) (974)

Thus, we have found the expansion of the plane wave in terms of the spherical
Bessel functions.

Example:

In quantum mechanics, the wave function in a scattering experiment is given

by

r

w(?)zexp[i?.?]Jrf(k’e) exp{ikr} (975)

S . o -
which is a superposition of the incident or unscattered wave of momentum # k ,
with a spherical outgoing scattered wave. The amplitude of the scattered wave,
with a central scattering potential, is given by

F(k,0) = % i(zz + l)exp{i&(k)} sind,(k) Pi(cosd)  (976)
=0

where 6 is the scattering angle, & k is the magnitude of the incident momentum,
and 0;(k) is the phase shift produced by the short ranged scattering potential.
The differential scattering cross-section, 3—‘6 multiplied by the solid angle sub-
tended by the detector d2 governs the relative probability that a particle of
momentum k will be scattered through an angle 6 into a detector that subtends
a solid angle df2 to the target. The dependence on the size of the detector is
given by the factor df). The differential scattering cross-section can be shown
to be given by the scattering amplitude through
do

a0 = | f(k,0) (977)
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The total scattering cross-section is determined as an integration over all
solid angles of the differential scattering cross-section

/dQ dQ(k 0)
2m
i 2
/0 dy /0 do sind | f(k,0) |

JT(k)

(978)

On substituting, the expansion in terms of the Legendre series, and integrating,
one can use the orthogonality relations and obtain the total scattering cross-

section as

or % ST(20 + 1) sin® (k) (979)

=0
9.1 Associated Legendre Functions

The Asssociated Legendre functions, P (cos @), satisfy the associated Legendre
differential equation

2

! 6<smoapm(cow))+[n(n+1)— }P,T(cos@)zO

sinf 00 00 sin® 6
(980)
or with the substitution z = cos6 one has
9?2 m?
1 —2%) = P™xz) — 2z P™ 1) - —— | P"(z) =
(1) g PR@) — 20 PR@) + [0 (0ot 1) = 2 | ) = 0
(981)

This also has regular singular points at 4+ 1. When m? = 0, the associated

Legendre differential equation reduces to Legendre’s differential equation.

The associated Legendre functions are given by the expression

m 8m
_ 2 \%
where P, (x) are the Legendre polynomials. It can be proved that these func-
tions satisfy the associated Legendre differential equation. Let us note that the
associated Legendre functions are zero if m > n, since the polynomial P, (x)
is a polynomial of order n.
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9.1.1 The Associated Legendre Equation

The associated Legendre functions satisfy the associated Legendre equation, as
can be shown by by starting from Legendre’s equation

@Pn(x) - QxC,%Pn(x) +n(n + 1)P,(zx) = 0 (983)

and then differentiating m times. On using the formula

;;—7:1 (A(:B) B(x) ) = nz;) C(m,n) g:n% A(z) ;;n B(x) (984)

(1 - a%)

one obtains

9 a2+m aler
87’77,

+(n—-—m)(n+m+ 1)33377;@13"(@ =0
(985)

since (1 — 22 ) only has two non-vanishing orders of derivatives.

On setting
3m _m m

S Pe) = (1 - )% PP(a) (956)

and then differentiating, one obtains
am—i—l

m 0 mx m
— 2\—%F m 2 \—2 m
DT Py(z) = (1 — a7)">2 I Pl (x) + i‘jj‘;g’( 1 —a7) 2 P(2)
(987)
On differentiating a second time, one obtains
8m+2 o 82 "
W P”l(x) = ( I - 332 ) 2 @ Pn (Z‘)
mx gy_m O
m ( m + 2 ) xZ 2 \—2 7
+ ( 1 — .'172 )2 ( 1 -z ) 2 Pn”(x)
m 2 \— m
+(1_I2)(17x)2p(z)
(988)
These expressions are substituted into the m-th order differential relation, and
after cancelling the common factor of (1 — 22 )~% one has
0? 0 m?
1—2?) = P™(z)—2x — P™ 1) — | P =
(1=a%) o Pa) = 2 2 PR+ (k1) = 22 ) P2G) = 0

(989)
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Expressing the variable = in terms of the variable appropriate to the polar angle
x = cos#, the Associated Legendre equation becomes

m2

1 9 .0 " -
sin@@@(smeaopn (cosﬁ))—k(n(n—i-l)—m)Pn () = 0 (990)

This equation reduces to Legendre’s differential equation when m = 0 and the
associated Legendre function of order m equal to zero is the Legendre polyno-
mial.

The Legendre polynomial are non zero for the range of n values such that
n > m > 0, but can also be defined for negative m values in which case

n>m?2>-mn (991)

and

(n =1t (992)

P, (z) = (—1)mm n

n

since the differential equation only involves m? and does not depend on the sign
of m.

The associated Legendre equation is often encountered in three dimensional
situations which involve the Laplacian, in which the azimuthal dependence does
not vanish. In this case, one has

18<T26'1,b)+ L 8<sin96¢>+ ! azw:*kzdj

r2 Or or r2 sinf 90 a0 r2sin? 0 57902
(993)
On using the ansatz for separation of variables
U(r,0,9) = R(r) ©(0) (p) (994)

and diving by ¥ one obtains

1 g rzaj + 1 2 sinG@ +¥82£—_k2
r2 R Or Oor r2 sinf © 00 r2sin?0 ® 0p?
(995)

On multiplying by r2 sin?#, one recognizes that since all the ¢ dependence is
contained in the term

1 0%
— — 996
this must be a constant. That is, the azimuthal dependence must satisfy
%P
Fra m? ® (997)
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where m? is an arbitrary constant, (not necessarily integer). The above equation

has solutions of the form

1
P, = exp|tm 998
(%) g O [ @ } (998)
Since, with fixed (r, ), the values of ¢ and ¢ + 2 7 represent the same physical
point, one must have

Dr(p) = Pl + 2m) (999)

which implies that m satisfies the condition
exp [im?w} =1 (1000)

and therefore m must be an integer. On substituting the constant back into the
original equation one obtains

1 0 5 OR 1 0 ., 00 m? 9
= kg — 00— | — ——— = — k= (1001
r2 ROr (T 8r)+r2 sin@@@ﬁ(sm 89) 72 sin” 0 (1001)
This equation can be rewritten as
19 ([ ,0R 5 5 19 ( . 00 m?
- —_— = — — — —— (1002
Ror ( or ) A smg 6 a6 \ 055 ) T Gz (1002

The two sides of the equation depend on the different independent variables
(r,0), and therefore must be constants, say, [ (! 4+ 1 ). Then it can be seen
that the 6 dependence is given by the ©7"(#) which satisfy the equation

1 9 ., 00m m2 o

The above equation is related to the equation for the associated Legendre func-
tions. That is, the solution is given by

07" (0) = P™(cosb) (1004)

and [ must be integer.

9.1.2 Generating Function Expansion
The generating function expansion for the associated Legendre functions can be
obtained from the generating function expansion of the Legendre polynomials

o

1
VI — 22t + 2

Py (x) t" (1005)

n=0
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and the definition

Pm(z) = (1 — 22)% é%;; P, () (1006)

m
2

By differentiating the recursion relation m times, and multiplying by (1 — 22 )
one obtains

o0

@m)! (1 —a)%m Pra) £ (1007)

2nml (1 — 22t + 2)™Fs

However, the first m — 1 associated Legendre functions in the sum are zero.
Hence we have

(Qm)' ( 1 - ‘T2 )% i P"L({L') tn—m
2mml (1 — 2zt 4 2)mt:

m

(2m)' (1 - 2’ )7 — i pm ({,C) s

2mm! (1 — 2zt + 2)mFs

(1008)

9.1.3 Recursion Relations

The associated Legendre functions also satisfy recursion relations. The recursion
relations become identical to the recursion relations of the Legendre polynomials
when m = 0. The recursion relations for the associated Legendre functions
can be derived from the recursion relations of the Legendre polynomials, by
differentiating with respect to =, m times. For example, consider the recursion
relation for the polynomial, P, (x),

(2n + 1)z Py(z) = (n + 1) Pupi(z) + n Pyoa(x) (1009)

and differentiate with respect to x m times

m amfl

0
am m

= (n+1)ax—mPn+1(x)+nw

P, (x)

Pn_l(l’)

(1010)

On identifying the associated Legendre polynomial as

O Pu) = (1 - a®)% PP(a) (1011)

n
the above relation reduces to

(2n4+1)a PM(z)+m (2n+1)(1—2?)2 P Yz) = (n+1) P (z) +n P (x)
(1012)
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Likewise, on starting with

(20 4 1) Pula) = 2 Prafa) — o

and differentiating m times, one obtains

m am-‘rl 8m+1
(2n + 1) oy Po(z) = Qxm+1t Ppi(z) — Orm+1l Pp_1(z)
(1014)
or
(2n + 1) (1~ a?)2 PP(z) = P (2) — P (2) (1015)

If m is replaced by m — 1 in the above equation, it can be combined with
the previous recursion relation to yield the recursion relation

(2n+ 1)z Pl(x) = (n+1—-m)Pl(x) + (n+m)P" (x) (1016)

The above recurrence relation for the Associated Legendre functions reduces to
the corresponding recursion relation for the Legendre polynomials when m = 0.

Example:

The above recursion relation has an important application in quantum me-
chanics. The probability for an electron in an atom to undergo a transition
between a state of orbital angular momentum (I, m) to an electronic state or-
bital angular momentum (I’,m’) is proportional to the modulus squared of the
integrals

/ df sinf Pj/*(cos®) (cosf ) P/ (cosb)

0

/ df sin@ P! (cosf) (sinf ) P (cosf)
0

/ df sin® P)~*(cosf) (sinf ) P/ (cosf)
0
(1017)

for the case m’ = m and m’ = m =+ 1 respectively. Basically, in the
dipole approximation, the electromagnetic field is represented by a complex
time dependent vector

x 7 exp[iwt} (1018)
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In a non-relativistic approximation one would expect that the electromagnetic
field would be represented by a vector, with three linearly independent basis
vectors, or three polarizations. The three components of this complex vector
are

r sinf cosp |twt

7 sinf singp | twt

rcos | iwt

(1019)

The 6 dependence of the vector is responsible for the factors in parenthesis
sandwiched between the Legendre functions. It can be seen, that the first pair
of these integrals can be expressed as

o
20 + 1

I+1

/ df sinf Pj/*(cosf) <(l + m) P (cosl) +(1 — m + l)Pl”_;l(cos0)>
0

1 ™
—_— / df sin@ P (cosf) | Pt (cos) — P (cos0)
20 + 1 Jo

by using the above two recursion relations. As the associated Legendre functions
are expected to be orthogonal, since they are eigenvalues of a Stiirm-Liouville
equation, these integrals are only non-zero if I’ & 1 = [. This condition is called
a selection rule. The vanishing of the integral means that the only transitions
which are allowed are those in which the magnitude of the electrons angular mo-
mentum is not conserved! The resolution of this apparent paradox is that the
electromagnetic field carries a unit of angular momentum. The photon, which
is the quantum particle representing an electromagnetic field has a quantized
angular momentum, or spin of magnitude 1 A. Likewise, a similar consideration
of the superscript, m, also yields a selection rule of m’ — m = 41, 0r 0. The
index m corresponds to the z component of the angular momentum. The m
selection rule corresponds to the statement that the angular momentum of the
photon may be oriented in three directions, or have three polarizations. In the
non-relativistic limit, the three polarizations correspond to the three possible
values of m for which Pj™(cos#) is non-vanishing.

Homework:
Derive a recursion relation which will reduce the last expression to the sums

of integrals which only consist of the product of associated Legendre functions
with index m — 1, and the weighting factor sin 6.
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9.1.4 Orthogonality

Associated Legendre functions with the same fixed m value are orthogonal, for
different values of n. This can easily be proved from the differential equation

m2

sirl10 % ( sin 0 % P,T(cosG)) + (n(n +1) - Za ) P (cosf) = 0

(1021)
by multiplying by P77(cos) and subtracting the analogous equation with n
and n’ interchanged. Since m is fixed, the terms involving m? sin™2 @ identically
cancel, and on multiplying by the weight factor, one is left with

[Pn"?’(cosﬁ) % ( sin 6 % P,T(cos@)) — P™(cosb) % ( sin 0 % P,Z'?(cos@)) }

= (n' (n +1) —n(n + 1)) Pl (cos ) sin® P (cosf)
(1022)

which on integrating over 8 from 0 to 7, one obtains
<n' (" +1)=n(n+ 1)) / df P (cosf) sinf P (cosf) = 0 (1023)
0

since the boundary terms vanish identically, if the associated Legendre functions
and their derivatives are finite at the boundaries.

One finds that the associated Legendre functions have the normalization
integrals given by the value

/ df P} (cosf) sinf P*(cos@) = &y pn (1024)
0

2n + 1 (n—m)!

Homework:
Evaluate the normalization integral for the case n = n/'.
12.5.16

Example:

One example of the occurrence of the associated Legendre functions occurs
in the vector potential A from a current loop.
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Consider a circular current carrying loop of radius @ in the equatorial plane
(0 = %), in which the current is constant and has a value I. The magnetic

induction field, Bis given by the solution of

4
VAB =27 (1025)
c
where 7 is the current density. Together with the definition of the vector
potential
B=VaAA4 (1026)
one has

ﬁA(V‘AZ):”7 (1027)

c

Since, the problem has azimuthal symmetry B should be independent of ¢
and have no component in the direction é,. The vector potential, therefore, is
entirely in the direction é,
A = A,é, (1028)
Hence, one finds that the magnetic induction is given by
1 ér T és 7T singé,
d ) )
B = oy 2 (1029)

2 & Op
r? sinf 0 0 rsing A,

Then, the magnetic induction is given by

1 .0 . . 0 .
B = m[er(%(rmnezﬁlw) —egrw(r&nHAg,)

(1030)
which is independent of ¢.
Er T € T sinfd é,
) ol )
VAB = 5 1. ar 20 d¢
. 1 02 1 0 1 0 .
= 6wlrW<TA¢>+7"289<Sln989(81n014¢>)‘|

Thus, we have the equation

1 02 1 0 1 0 . 47
lrw(TAso)*?aae(smeae(sm”v)” = o Je (1032)




which off the § = 7 plane becomes

1 02 1 0 1 0 .
[TW(TAW) +r260(sin€89<smeAw>>1 =0 (1033)

On separating variables using

A, = R(r) ©(9) (1034)
one has
r  0? 1 0 1 0 )
R o (r R(r)) = "B ( Sl 20 ( sin @ @(9)) ) (1035)
On writing the separation constant as equal ton (n + 1) one has
Rp(r) = Ap 1™ + By r~ ("t (1036)

and the angular dependence is given by the solution of the equation

;(@;(smeewO) tn(n+1)00) =0  (1037)

sir119 % ( sin 0 869@(9)) + [n(n L1 - sml?o]@(e) — 0 (1038)

which has the solution

0(f) = Pl(cosh) (1039)
Thus, the solution is of the general form
Ap(r,0) = Z (An ™ 4+ B, r~ ("D ) Pl(cos6) (1040)
n=0
The expansion coefficient A,, = 0 for » > a as the vector potential must fall

to zero as r — oo.

The coefficients B,, are determined from the boundary condition on the z
axis where it is easy to calculate B as

I (1041)

Using
B - 1 |2 o A, ) — éor 2 ing A
2 g ér 20 r sing A, ég T o r sing A,

. cot 0 1 04, R 1 0r A,
_er(rAerrBH)eg(r r )
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one finds the general expression for the induction field. Since the derivative of
the associated Legendre function can be expressed as

0 _ . 9 1
2 P,(cosf) = — siné 5eos P, (cos®) (1043)

and on using the recursion relation

(1-22)t L pr@y = L) - L ngm) (nemr1) PP () (1044)
oz 2 2
and also
P = AL )+ (mn = 1) =0+ 1) ) PE)
— X
(1045)
one has
m x

Nl

P(a) = (1-a?)

VT " Pl(x) = (n+m)(n—m+1) P (z)

9
or "

(1046)
On substituting m = 1 one finds that
1 « .
B(r,0) = — jg%.An n(n + 1)7r ™ Py(cosh) (1047)
and
1 & B
By(r,0) = = ZO n A, r~" P, (cosf) (1048)

On substituting = 0 one has P,,(1) = 1 and P}(1) = 0, thus the field on
the z axis takes both the forms

1 o0
B(r,0) = — S Aun(n 4 1)r "
n=0

2 2
— l[ais
c (a? + r2)2

(1049)

From this one finds that, on expanding in powers of 7~! only the terms odd
in 7~™ and thus only the odd n coefficients (Asz,+1) are finite and are uniquely
given by

2n I (2n)!
¢ 2@n+1) pl (n+1)!

Agpy1 = (—=1)" (1050)

This completes the solution for the vector potential.
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9.2 Spherical Harmonics

The spherical harmonics are solutions for the angular part of Laplace’s equation.
They are composed of a product of an azimuthal function ®(¢) and a polar part
©(#) and are normalized to unity.

The azimuthal part is given by the solution of

0? 9
5oz 0e) = - m* a() (1051)
which has solutions
D(p) = \/;;; exp {i7n<p} (1052)

The value of m is integer since the function ®,, () is periodic in ¢ with period
2.

The polar angle dependence is given by

om(h) — \/ 2”2“ m P™(cos 0) (1053)

where, n > m > — n.

The spherical harmonics are defined by the product

Vir0,0) = (=1)"67(0) Pmlp)
B 2n+1 (n—m)! _ ., 1 )
= (-1) \/ 5 (+m)'Pn(COSG)meXp|:’LmQD:|
= (—1)" \/22—;15 +Z;:P”COS9 exp{zmgo}

(1054)

The phase factor ( — 1 )™ is purely conventional and is known as the Condon -
Shortley phase factor.

9.2.1 Expansion in Spherical Harmonics

Any function of the direction (0, ¢) can be expanded as a double series of the
spherical harmonics

) = > CrY"(6,¢) (1055)
l,m
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as the spherical harmonics form a complete set. Furthermore, the expansion
coefficients can be obtained from

T 2
cr o= / do / de sinf Y0, )" f(8,¢) (1056)
0 0

The completeness relation can be expressed as

l=00 m=l
(& — Q) = Z Y™ (01, 1)" Y™ (02, 02) (1057)
1=0 m=—1
where
S(Q —Q )= 8p — ¢ )(cosh — cost') (1058)
since this is equal to unity on integrating over all solid angles d2 = dy df sin 6

and 6 is uniquely specified by the value of cosd form > 6 > 0.

Alternately one can re-write the completeness relation as

— 21 + 1
M — Q) = Z s Py(cosy) (1059)
1=0

where ~ is the angle between (61,p1) and (62, ¢2). This can be proved by
choosing the spherical polar coordinate system such that (6, 2) is directed

along the polar axis. In this case 3 = 0, and so sinfls = 0, therefore,
the only non-zero associated Legendre functions and hence non-zero spherical
harmonics, Y;"(6s, p2), are those corresponding to m = 0. Then as we have
PP(1) = 1, the completeness relation simply takes the form

l=00

1 (21 1
sy = 50 L LR poggg) (1060)
27 2

1=0

where cosf; = cos~y.

If these equivalent forms of the completeness relations can be identified for
each term in the sum over [ we have the spherical harmonic addition theorem.

9.2.2 Addition Theorem

Given two vectors with directions (01, 1) and (62, 2) have an angle v between
them. The angle is given by the vector product

cosy = cosby cosby + sinfy sinfy cos(pr — @2 ) (1061)
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The addition theorem states

m=l

Pi(cosy) = 3 5-+ - j{: Y™ (01, 01)" Y™ (02, 02) (1062)

Example:

The multi-pole expansion of a potential ¢(r) obtained for a charge distribu-
tion p(r’), can be obtained from the generating function

1 e n

.
E=rais ;é; 1 Bilcos0) (1063)

for ' < r. Using the addition theorem one has

1 r/l 4 ™ m* / / m
,r/ ‘ = § : T'l+1 2 l + 1 }/l (9 7<)0 ) }/l (97 (p) (1064)
lm

Hence, one may write

A Y0, 9)
o0 = > 37 1% T (1065)
l,m
where
qlm —_ / dSI/ Ylm*(e/’(p/) T/l p(tl) (1066)

One has the symmetry

q " = (—1)" g™ (1067)
The multipole expansion provides a nice separation of the potential into pieces,
each of which has a unique angular dependence and a dependence on 7.

The multipole moments ¢;" characterize the charge distribution p(r’). The
low order moments are given by

! / &' () = (1068)

[
(=)
Il
Ei
3

where ¢ is the total charge. Also

o = - Si/d:zz'r' sin 6’ exp[iw}p(rl)
T
3 .
= sy [ (v i)

Il
\
00“;o
3
A/~
s
]
\
s
<
~

(1069)
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and

@ = - % / d3r' ' cos@ p(r')
- _ ]2
= e Pz

(1070)

where the dipole moment is given by

7 = j/ d*r' 7' p(r') (1071)
The next order contributions are given by

1 15
2 = Vs / By’ ' sin2 ¢/ eXp[ —i2 @’} p(r')

1 1 2

— 1 % / d3£/ (.Z‘/ _ Zy/) p(zl)
1 15 .

= 9 \Vaa (Qm - 2iQi 2+ Q2,2)

where we are introducing the notation which labels the (z,y,z) components
by (1,2, 23), and have introduced a tensor @; ; win which the components
are labeled by the subscripts corresponding to (z;, ;). The multi-pole moment

(1072)

corresponding to [ = 2 and m = 1 is given by
15
@ = - o / a3’ 1'% sin® cos® exp{ - igo'} p(r)
™

15
— M/d?’r’(x’—iy’)z’p(r’)
1 15 .
= ~3\V3=. <Q1,3 - 1Q2,3)
and finally the ] = 2, m = 0 component is given by
=N / B " (3 cos?0 — 1) p(r))
47 - AT

= [ (3 - ) o(r')
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N = N =



1 )
AR

in which the quadrupole moment is represented by the traceless tensor

(1074)

Qij = / d3r! ( 3z z; 2 > p(r') (1075)
where 1’/ is a position variable associated with the charge distribution.

In terms of the multi-pole moments, the potential at a position r far away
from the charge distribution is given by

LT i T
P(r) = g + ﬁTB + Z Qi,j % + ... (1076)
,J

This series is expected to converge rapidly if the r is far away from the charges.
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10 Hermite Polynomials

The generating function expansion for the Hermite Polynomials is given by

glx,t) = exp [ -t + 2t } = nio H,(x) % (1077)
10.0.3 Recursion Relations
The generating function can be used to develop the recurrence relations
Hpi1(z) = 22 Hp(x) — 2n Hyoq(x) (1078)
and 9
— H,(x) = 2n H,_1(x) (1079)

Ox

10.0.4 Hermite’s Differential Equation

Also one can use the recurrence relations to establish the differential equation
for the Hermite polynomials. First on using

0
E Hy(x) = 2n H,_1(x) (1080)
combined with
2n Hy_1(x) = 2x Hy(x) — Hpyi(2) (1081)
one has 5
Ey H,(z) = 22 Hy(z) — Hpy1(x) (1082)
Differentiating this with respect to x yields
0? OH,(x) OHp11(2)
— H, = 2 H, 2 — 1
92 (z) () + 2 o o (1083)
Finally, on increasing the index by unity one has
0
92 Hyi1(z) = 2(n + 1) Hy(x) (1084)

which can be used to eliminate the derivative of H,i(x). This leads to the
Hermite’s differential equation

62

@Hn(x) - 2z 2Hn(w) + 2n Hy(x) =0 (1085)

ox
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This is not of the form of a Stiirm-Liouville equation, unless one introduces a
weighting function

w(r) = exp[ - xQ] (1086)

This is found by examining the ratio’s of the first two coefficients in the Stiirm-
Liouville form

p) 28 4 POy o) = Aw) o) (1087)

in which case one identifies the ratio

é91(;(90)
T — —9g 1088
p(z) (108)
or on integrating
Inp(z) = — 22 (1089)
Since the integrating factor is
p(z) = exp{ - xz] (1090)

one finds the above weighting factor and the differential equation has the form

2 (o] - ] 2w + 20 o] - ] me) = 0 om

10.0.5 Orthogonality
The Hermite polynomials form an orthogonal set
/ dx Hy(z) exp{ - xQ] Hy(z) =0 (1092)
— 0o

if n # m. For n = m, one can obtain the normalization by use of the gener-
ating function. Integrating the product of two generating functions multiplied
by the weight function

j/x>chrg@gs)exp[ - xQ] gz, t)

S o A PR
5 o] | e i

(1093)
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where we have used the orthogonality relation. However, one also has

/OO dz g(z, 5) exp[ _ xﬂ gz, 1)

— 00

= / dxexp[—xz}exp{—tZ—&—Qa:t} exp{—sz—i—Qajs]
= / dxexp[—xQ—l—Zm(s—i—t)}exp[—tQ—SQ]

- ﬁexp[uuy} exp[_ 2 _tﬂ
= ﬁexp{%t}

(1094)
On expanding in powers of ( s ¢ ) one finds
Oodw (z,s) exp| — 2? (xt)—ﬁiw
ey, p g(z,t) = D
(1095)

Hence on equating the coefficients of the powers of ( s t ), one has the equality
oo
/ dx exp[ - xQ} H,(z) Hp(x) = /7 2" n! (1096)

which gives the desired normalization.
Example:

The one dimensional quantum mechanical harmonic oscillator is a state with
energy F is governed by the equation

n? 9 1

The asymptotic large = behavior is found as

. _ mw s
wli}nrloO Y(z) — exp[ 57 & } (1098)
and so we seek a solution of the form
vo) = e | = e | o) (1099)
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From this, we we find that the first order derivative is given by

15; 0
R Bl ) Pt

and the second order derivative is

o2 ’ 0,,°
oo () g g ) v
(1101)

Inserting this last expression into the eigenvalue equation, we find that ¢ satisfies
the differential equation
02 m 0 m(2E — h
¢ _ w 00 m( . w) 4 (1102)
Ox? h ox h
This differential equation can be put into Hermite’s form by introducing a di-
mensionless variable

h
= 4/— 11
z — T (1103)
Thus, we have
0?¢ ¢ 2 FE

which has the Hermite polynomial H,(z) as a solution when

2n=<;f—1> (1105)

Thus, the allowed values of the energy are given by

E:hw(n—k%) (1106)

Homework:

In quantum mechanics one encounters the Hermite polynomials in the con-
text of one dimensional harmonic oscillators. If a system in the n-th state is
perturbed by a potential V(z), the probability of a transition from the n-th
state to the m-th state is proportional to

/Oo dx exp[ - 1:2} H,(z) V(z) Hy(x) i (1107)

— 00

1
m 2ntm ploml

Evaluate the integrals

/oo dx exp[ - xQ} x H,(x) Hy(r) (1108)

—00
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" /Oo dx exp[ — x2] z? H,(x) Hy () (1109)
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11 Laguerre Polynomials

The generating function expansion for the Laguerre polynomials is given by

exp |: _ 19c7tt :| oo
t) = = L (x) t" 1110
(2. 1) — 3 Lnte) (1110)
From which one obtains the series expansion as
L SEEEE nes 1111
n(z) = ; (-1) m T ( )

11.0.6 Recursion Relations

The recursion relations for the Laguerre polynomials can be obtained from the
generating function expansion. By differentiating the generating function with
respect to t one obtains the

(1 —z —t) = n—1
N SusaTe gz, t) = 7;) Lo(z)nt (1112)
and hence on multiplying by (1 — t)? to obtain the recurrence relation

(n 4+ 1)Lypi(x) + nlp_i(x) = (2n + 1 — ) Ly(z) (1113)

Also, on differentiating with respect to z and then multiplying by (1 — ¢ ) one
obtains

—tg(zt) = (1 —t) > é% Ln(z) t" (1114)
n=0
and hence the recursion relation is found as
1o} 0
— Ly(x) = 9 Lypti(z) — 9 L, (x) (1115)

Differentiating the first recursion relation yields

(n+1) %Ln+1(f£) +n %Ln,l(x) =(2n+1—-2) % L,(z) — L,(x)
(1116)
The previous relation can be used ( twice, once with index n and the second time
with index n — 1) to eliminate the differential of L, ;(x) and the differential
of L,—1(z), giving the recursion relation
0

x %Ln(m) = nLy(x) — n Ly_1(x) (1117)
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11.0.7 Laguerre’s Differential Equation

The Laguerre polynomials satisfy Laguerres differential equation. The differ-
ential equation for the Laguerre polynomials can be derived by combining the
recursion relations. This is done by differentiating the prior relation

0? 0 0 0
x @Ln(x) + %Ln(x) =n %Ln(x) -n %Ln_l(x) (1118)
and subtracting the previous equation one has
0? 0 0 0
x @Ln(x) +(1—xz) %Ln(x) =n %Ln(az) —-n %Ln_l(x) —nLy(xz)+n Ly,_1(x)

(1119)
Finally, the right hand side can be identified as — n L, (x). Thus, we have
Laguerre’s differential equation

o O 1@ + nLla(@) = 0 (1120)
T o2 oz "\ n\®) =

This equation is not in Stiirm-Liouville form, but can be put in the form by
multiplying by exp[ — « |. Hence, we obtain

Ly(z) + (1 — z)

8% (x exp| — z | %Ln(m) ) + nexp[—z]Ly(z) =0 (1121)

The solution is defined on the interval (0, 00). Thus, the Laguerre functions are
orthogonal with weighting factor exp[ — z |.

11.1 Associated Laguerre Polynomials
The associated Laguerre polynomials are defined by

oP

L (z) = (—1)17@

e (1122)

11.1.1 Generating Function Expansion

A generating function can be obtained by differentiating the generating func-
tion for the Laguerre polynomials p times. This yields the generating function
expansion

exp[ . 1964 - i L7 (2) t* (1123)
(1 —t)rt =

A pair of recursion relations can be derived as

(n+1)L7 4(x) = (2n+p+1—a)Lj(@)— (n+p)Ly_(2) (1124)
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and

v DIp@) = n L) ~ (n + p) y(@) (1125)

From these, or by differentiating Laguerre’s differential equation p times, one
finds

0? 3}
a2 _ ey P —
x aszn(x) +(p+1—-2a) aan(a:) + n LP(x) 0 (1126)

The weighting function is found to be
xP exp| — z | (1127)

The orthogonality condition is found to be

/000 dr 2P exp| — x| LP(x) LP () = Opmp ——— (1128)

Example:

The associated Laguerre polynomials occur in the solution of the Schrédinger
equation for the hydrogen atom. The Schrédinger equation for the electron wave
function has the form

R 7Z e?

- = vy —
2m ¥

Y = E (1129)

which involves the spherically symmetric Coulomb potential of the nucleus of
charge Z e acting on the electrons. On separation of variables, and finding that
due to the spherical symmetry, the angular dependence is given by the spherical
harmonic Y;"(6, ), then the remaining radial function R(r) is given by

2m 2 or

| R 1(L+ 1 Z e?
a(ﬂ?ff) Url)p 295 - BR (1130

2m T T

where the second term is the centrifugal potential. This equation can be put
in a dimensionless form by defining a characteristic length scale ry by equating
the centrifugal potential with the Coulomb attraction. (This just corresponds
to the radius of the circular orbit in Classical Mechanics.) The radius is found
as 2

T YmZe (1131)

Then, introducing a dimensionless radius p as the ratio of the radius to that of
the circular orbit
p = — (1132)



one sees that the on expressing the Laplacian in dimensionless form the energy
term is given by the following constant
2mEr3  ER 1

= = — — 1133
B2 2m Z2 et 4 a? ( )

which must also be dimensionless. The second equality was found by substitut-
ing the expression for ry. The dimensionless constant must be negative, since
an electron that is bound to the hydrogen atom does not have enough energy
to escape to infinity. The minimum energy required to escape to infinity is zero
energy, since the potential falls to zero at infinity and the minimum of the ki-
netic energy is also zero. That is the minimum energy F is that in which the
electron comes to rest at infinity. Thus, since F is less than this minimum it is
negative. In terms of the variable, p and the constant o one has the differential
equation

1283p<p233(f”“0)>+<1_l(l+1)_ L )R(pro)—0(1134)

p dp P p? 4 a?

The form of the solution can be found by examining the equation near p —
0. In this case, the centrifugal potential is much larger than the Coulomb
potential so one can neglect the Coulomb potential. Also, for the same reason,
the energy constant ﬁ is also negligible compared with the centrifugal barrier.
The equation reduces to

1 0 5 OR(p 10) I(l+1)
= 2 S S = 11
S (2 S Rpro) = 0 (1135)
near the origin, and has a solution
R(r) « p! (1136)

since the other solution is proportional to p~(*1 which diverges at the origin.
It is not acceptable to have a solution that diverges too badly at the origin.

The form of the equation at p — oo simplifies to

1 0 5 OR(p 19) 1
- 2 — = 11
s (2 e Rlpr) = 0 (1137)
which can be written as
9*R(p ro) 2 OR(p ro) 1
z _ = 11
apz + p ap 4 ag R(p TO) 0 ( 38)
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which for large p simply becomes

52R(p 7"0) 1
90 T Ta R(pro) =0 (1139)
which has the solution
R(p r9) o< exp - % | (1140)

as the other solution which diverges exponentially a

»n

p

—_— 1141
e (1141)

R(pro) x exp| +

is physically unacceptable for an electron that is bound to the nucleus at a dis-
tance rg. Thus, we have found that electrons are bound at a distance of 2 « rg
from the origin.

This motivates one looking for a solution with the right forms at the origin
and at infinity. This form can be expressed as

Ripm) = e | = o= | 0(2) (1142)

To substitute this form into the differential equation, one needs to evaluate the
first and second order derivatives of the form. First note that

o) exp[_;’a}pl [(-Lﬁ)”fi”;”(i)} (1143)

and then note that

(+252) - 2]

dp dp 2 «
127(l;1) l(l;rl) L<§>
:<{<4? + 21+p2>L/(p) j_ 13/(/’)] (1144)
a? xe @ a? @

Thus, one finds that L satisfies the equation

1 I+ 1
Lrr(2i+2-2)-1+ <1—(+)>L:0 (1145)
« [0 « «

or

gL”—i—(Ql—l—Q— g)L/-l- <a— (l+1)>L:O (1146)
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Hence L(z) is the associated Laguerre polynomial L((flfll) _ 1(2), when o is an

integer. If the function is to be normalizable, it is necessary for the series to

terminate, and hence @ — [ — 1 must be an integer. It is usual to set n = «,
and have the condition n > | 4+ 1. The radial wave function is given by
l o r (21+1) r
R(r) « r' exp [ e ] Lo iy (n 7"0> (1147)
Example:

The energy eigenvalue equation for a three dimensional harmonic oscillator
is given by
[ 1 2 2
- — V'Y + -mwrtyYy = B¢ (1148)
2m 2

On using separation of variables

Y = R(r) Y,""(0, ) (1149)
one has
1 9 [ ,0R RPL(L+ 1) m w? r?
_— — — _— —_— _— = E
2m7’23r( 81")R+ 2 m r2 B+ 2 R R
(1150)
On writing
R = ot e | - 5 20) (1151)
with a dimensionless variable
p = mh” r2 (1152)

one has

OR(r) _ , [mw R I U
5 = 2 P exp{ 2](2;) 2+8p)L (1153)

and the second derivative is given by

0%R(r) mw 2 p I(1 - 1) 20 + 1 1
o2 4 no exp[—2}< 4 p? 4y Ty
20 + 1 o) 0?
( T, >€9p+(3p2>L (1154)
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This leads to the equation

7p8p2

%L (21+3>6L_<E 21 + 3

5 5 ~ \zne ~ 1 >L(1155)

which is the differential equation for the Associated Laguerre polynomials in

which p = % and the quantum number n is given by
E 20 4+ 3
n_<2hw_ 7 ) (1156)
Homework:

A quantum mechanical analysis of the Stark effect in parabolic coordinates
leads to the differential equation

0 du 1 m? 1 9

where F' is a measure of the strength of the electric field. Find the unperturbed
wave function in terms of the Associated Laguerre polynomials.
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12 Inhomogeneous Equations

12.1 Inhomogeneous Differential Equations

Inhomogeneous linear differential equations can be solved by Green’s function
methods. For example, if one has an equation of the type

0 0¢
ge (PO 52 ) 4 (@) = A o) = S@) (uss)
where A is a control parameter, and the solution is defined on an interval (a, b)
and which satisfies boundary conditions at the ends of the interval, say of the
type

p(a) = ¢(b) = 0 (1159)
The solution of this equation can be found using Green’s functions. The Green’s
function G(z, ') is defined as the solution of the equation

) (p(x) 0G(z, ')

oz Ox ) + (q(z) — Nw(x)) G(z,z") = d(z—2') (1160)

in which the inhomogeneous term is replaced by a delta function which is non-
zero at the value of z given by x = z’. The Green’s function must also satisfy
the same boundary conditions as ¢ , which in this case is

G(a,2') = G(b,2') = 0 (1161)

Since we can write the inhomogeneous term of our original equation in the form
of an integral

b
flx) = / da' §(x — ') f(a') (1162)

then we can view the original inhomogeneous equation as a linear superposition
of equations with ¢ function source terms, but in which the various terms are
weighted with a factor of f(x’). That is, the solution can be expressed as

b
o(r) = / dr’ G(z,2') f(z') (1163)

This expression satisfies the equation for ¢(z), as can be seen by direct substi-
tution. This means that once the Green’s function has been found, the solution
of the inhomogeneous equation, for any reasonable f(x), can be found by inte-
gration.
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12.1.1 Eigenfunction Expansion

One method of finding the Green’s function is based on the completeness re-
lation for the eigenvalues of the Stiirm-Liouville equation in which the control
parameter A has been set to zero

5(x — ') Z i ( ) ¢n () (1164)

Due to the completeness relation one can find an expansion of the Green’s
function in the form

= 3 Gul@!) dula) (1165)

where G, (2’) is an unknown coefficient. As ¢, (x) satisfies the same boundary
conditions as G(z,x’), this expansion is satisfies the boundary conditions. On
substituting these two expansions in the equation one obtains

D (A = X) Gula)) w( Z i ) ¢n(z)  (1166)

n

where we have used the Stiirm-Liouville eigenvalue equation. On multiplying
by ¢F, (x) and integrating with respect to « and using the orthogonality of the
eigenfunctions (where in the cases of degeneracies the eigenfunctions have been
constructed via the Gram Schmidt process), one finds that

(Am = A) Gm(a) = ¢7,(2") (1167)

Thus, if the control parameter is chosen such that A, # X for all n, we have
found that the Green’s function is given in terms of a sum of the eigenfunctions

f) = 3 Bl (168)

12.1.2 Piece-wise Continuous Solution

Alternatively, for one dimensional problems the Green’s function which satisfies

% <p(:17) W) ¥ (q(z) — Aw(@)) Gla,2') = 8z —a') (1169)

can be obtained from knowledge of the solutions of the homogeneous equation

5o (00 255 ) 4 (o) = A o) =0 )
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utilizing the arbitrary constants of integration. In one dimension, the point
x’ separates the interval into two disjoint regions. The solution of the Green’s
function in the two regions bz > 2’ and 2’ > x > a coincide with the solution
of the homogeneous equation with the appropriate boundary conditions. Then
in the first region, b > x > 2/, one can have

G(z,2") = C1 ¢1(x) (1171)
which satisfies the boundary condition at z = b. In the second region one can
have 2’ > =z > a

G(x,2") = Cy ¢o(x) (1172)

where ¢o(z) satisfies the boundary condition at z = a. The arbitrary constants
C4 and C5 can be obtained from consideration of the other boundaries of the two

intervals, that is the point x = z’. The Green’s function must be continuous
at x = 2/, which requires that
C1 ¢1(2") = C2 ¢2(2') (1173)

Furthermore, the Green’s function must also satisfy the equation at x = z’. On
integrating the differential equation for the Green’s function from x = 2’ — ¢
and x = 2’ + € and taking the limit ¢ — 0

0G(x,x") 0G (x,x")
n 2\ _ N 2\ —
pe) T ) T = (1174)
which leads to
8¢1(I) 8¢2(J$) - 1
Cl ax . CQ ar e = pi(x’) (1175)

The above pair of equations for the constants C; and C5 has a solution if the
Wronskian determinant is non-zero

W (1, b2) :’ aix) Hlz) ‘ (1176)

ox ox

However, the Wronskian is given by

W(d1,¢2) = péiq (1177)

where C is yet another constant. From linear algebra one has

(1178)

821, — g(a)
A
(cl>(ax|m ¢<>>( 0 )

Cy W (1, ¢2)
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So the constants C; and Cy are found as

,
o = ¢<C>
(1179)
and so the Green’s function is given by
Gla,a') = = & oi(e) ba(e) (180)
forb > x > 2’ and
Glaa') = ~ 5 hi(&) dal) (1181)

for /’ > x > a . Thus the Green’s function is symmetric under the inter-
change of z and x’.

The solution of the inhomogeneous equation is found as

b
o@) = [ @’ Gle) )
= L[ waw e @) - L [ w e ew @)
- o [ @ e 1) - Low [ e aw) i@
(1182)
Example:
Show that the Green’s function for the equation
32
=5 o) = (@) (1183)
subject to the boundary conditions
¢(0) = 0
0
g 0| =0
(1184)

195



is given by
G(z,t) = —«x for 0 <z <t
G(z,t) = —t for t <z <1
(1185)

This is solved by noting that for z # 2’ the equation for the Green’s
function is given by the solution of

0?G(x,z")
——— =0 1186
92 (1186)
This has a general solution
G(x,2') = ax + b (1187)
The Green’s function in the region ' > 2 > 0 must satisfy the boundary
condition at # = 0. Thus, the Green’s function has to satisfy the boundary
condition
G<(O,SC/) = O« 0 + b< =0 (1188)
Hence, we have b = 0 so the Green’s function in this region is given by
Go(x,2') = ac (1189)
In the second region, 1 > = > 2/, we have the boundary condition
oG !
9G> (@, 2)| (1190)
ox 1
which leads to G- (z.2")
>\T, T
“J = =0 1191
Oz ) a> ( )
G> ($7£L'/) = b> (1192)
Continuity of the Green’s function at x = z’ yields
A< x/ = b> (1193)

Furthermore, on integrating the differential equation between the limits (2’ —
€, 2’ + €) we have

x4 82G($,$/) x'+e
[ (55E) = [ e

0G (z,z") alte

Ox =1

x’'—e

(1194)
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This leads to the second condition

0— ac =1 (1195)
Hence, we have
G(z,2') = —=z
Gs(x,2") = —a
(1196)

Example:

Find the solution of the equation

32
5.2 ) + o(z) = flz) (1197)
b
subject to the boundary conditions
¢(0) = 0
0
9z P(x) . =0

(1198)

The Green’s function can be obtained from knowledge of the solutions of the
homogeneous equation. The general solution of the homogeneous equation is
given by

G(z,2') = a sinz + b cosz (1199)

In the first region ( < ) where 2’ > x > 0 the Green’s function has to satisfy
the boundary condition

G<(0,1‘/) = Q< sin 0 + b< cosO = 0 (1200)
Hence,
G<(z,7') = a< sinx (1201)
In the second region ( > ) where 1 > z > 2z’ we have
!
0G (z,2) = a> cosl — bs sinl = 0 (1202)
Ox o1

Continuity, leads to the condition

G<(x7xl) = G>("T7x/)
ac sing’ = as sina’ + bs cosz’

(1203)
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and since G(x, ') satisfies the differential equation at x = 2’ one finds on
integrating the differential equation

0Gs (z,2') G (z,2")
_ R A =1
al‘ v (9l‘ 2
ac cosz’ — as cosz’ + bs sinz’ = 1 (1204)
Eliminating a~, using the relation a~ = b~ tanl, one obtains the pair of
equations
a< sinz’ cosl = bs cos(z’ —1)
ac cosz’ cosl + bs sin(z’' —1) = cosl
(1205)
On solving these one finds the coefficients as
cos(z’ — 1
W - sl =D
cos 1
b~ = sina’
sinz’ sin1
as = —
cos1
(1206)
Hence we have the Green’s function as
sinz cos(z’ — 1)
G N =
< (33, x ) cos 1
sina’ cos(zx — 1)
G ) [ ——
> (@) cos1
(1207)

The solution of the inhomogeneous differential equation is then given by

T

d(z) = / dr’ Go(x,2") f(2') + / dr' Gs(z,2") f(2) (1208)

0

Example:

Find the Green’s function G(z,2’) that satisfies the equation

ch(x%gff’)):s(x_x') (1209)

subject to the boundary conditions | G(0,2’) | < oo and G(1,2') = 0.
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The homogeneous equation has the solution
G(z,2') = alnxz + b (1210)
The solution has to satisfy the boundary conditions
G.(0,2") = ac In0 + b # + 0 (1211)

and
G>(17$/) = a> ln]. + b> = 0 (1212)

The continuity condition leads to
G- (2',2") = G(a,2) (1213)

or
as Inz’ = bo (1214)

On integrating over a region of infinitesimal width € around 2/, yields

z'+e 9 8G(£L‘, (E/) z'+e ,
/m, dmmq(x&c)—/w,_e de 6(xz — ')

—€

(EI 8G>(£C,.’EI) o 6G<(£C,.’EI) =1
ox o ox "
(1215)
Thus, a~ = 1 and from the continuity condition one has b = Inz’. Hence,
we find
Go(z,2') = Ina'
Gs(z,2') = Inzx
(1216)
Example:

Find the series solution for the Green’s function which satisfies the equation

% =6z — ) (1217)
with boundary conditions
G0,2') = G(1,2') = 0 (1218)
The eigenvalue equation )
8;;(;7) = X ¢(z) (1219)
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satisfying the same boundary conditions has eigenfunctions ¢, (x) given by

bn(x) = V2 sinnmzx (1220)

and eigenvalue A = — 72 n2. On writing the Green’s function as a series

expansion in terms of a complete set of functions
o0
G(z,2') = Z Gn(z') ¢n(x) (1221)
n=1

then the expansion coefficients can be found by substitution into the differential
equation

— Z 7% n? Gu(2)) ¢n(z) = 6(x — 2') (1222)
n=1
On multiplying by ¢,,(z) and integrating over x we obtain
P (2)
/
Gula) = — 5 (1223)
Thus, we have
=, _ sinnmz sinnmz’
Gz, a) = = > 2 — (1224)
n=1
This can be compared with the expression
Go(z,a') = z (2" — 1)
Gs(z,2) = (xz — 1)
(1225)

Example:

Consider a bowed stretched string. The bowing force is assumed to be trans-
verse to the string, and has a force per unit length, at position x given by f(x,t).
Then, the displacement of the string, u(x,t) is governed by the partial differen-

tial equation
0%u 1 0%u

We assume a sinusoidal bowing force
f(z,t) = f(x) Real exp { —fw t] (1227)
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The forced response is given by

u(z,t) = u(z) Real exp { —fw t] (1228)
where u(z) is determined by
0?u w?

The string is fixed at the two ends, so
w(0) = u(l) = 0 (1230)
The Green’s function G(z,z") satisfies the equation

0?G(x,z") w?

52 + oz G(z,2') = §(xz —a') (1231)
along with the boundary conditions
G(0,2") = G(l,2') = 0 (1232)
The solution can be found as
A sink x x < 2
G(z,z') = (1233)

B sink (z — 1) z > a

where & = #. On integrating the differential equation over an infinitesimal

region around the delta function yields

9 ) z'+e
9 G(z,z") o =1 (1234)
Thus,
kB cosk (2’ — 1) —k A coskz’ =0 (1235)
Continuity of the Green’s function at x = x’ yields
G +¢,2) = G’ —¢12") (1236)
or
B sink (2’ — 1) = A sink 2 (1237)
This, leads to the determination of A and B as
sink (2’ — 1
sink x
Ay

(1238)
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Hence, the Green’s function is given by

sink ro sink (x> — [
G(z,2") = = - sinli l> ) (1239)

which is symmetric in z and z’. The solution of the forced equation is given by

l
u(r) = /Oda:' G(x,2") f(x')
_osink(x — 1) [* . , ,
= e /0 dx’ sink ' f(z')

: !
ksl:iiﬁ;l / da’ sink (' — 1) f(2')

(1240)

12.2 Inhomogeneous Partial Differential Equations

The Greens’ function method can also be used for inhomogeneous partial dif-
ferential equations. Examples of inhomogeneous partial differential equations
which often occur in physics are given by

V2 g(r) = —4mpr)
Vot - 5 20— e
Vo) -+ P )

(1241)

subject to appropriate boundary conditions. These three equations can be
solved, for arbitrary source terms p, from knowledge of the respective Green’s
functions which satisfy the differential equations

V2 G(r,r') = &8@r-r)
1 9*°G(r,t;r', 1) ,
2 . byl _ 3
\Y G@tf#)fzg——j%r—* = (r—r)ot—1t)
1 i /
V2 G(r,tr' t) — p W = Sr—1)st—t)

(1242)

with the same boundary conditions. In these equations we have introduced a
three dimensional delta function. These are defined via

/ Br () f(r) = F() (1243)
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The three dimensional delta function includes the weighting function appropri-
ate for the coordinate systems. In Cartesian coordinates one has

Br—1) = 6@x—2)dy—1v)d(z—2) (1244)

while in spherical polar coordinates

Pr-r) = U =D ) (1245)

It can be seen that on integrating the delta function over all three dimensional,
the denominator cancels with the weight factors giving a result of unity. On
finding the time dependent Green’s function one obtains the solution of the
inhomogeneous equation as

o(r,t) = —477/ dt’ / &' G(r,t;r', ) p(r',t) (1246)

which is valid for any arbitrary source, p(r,t).

12.2.1 The Symmetry of the Green’s Function.

The Green’s function is symmetric in its arguments (r,7’), such that
Gt/ 1) = GO\t ) (1247)

This can be proved by examining the Stiirm-Liouville Green’s function equation
with a source at (r',t)

V.| plrt) VGt t) | + Xq(r,t) G(r, t;r',¢)

1 82G(Lt;f/vt/) 3 / /
- 672 T =90 (ﬂ_f)é(t_t>

(1248)

and the similar equation with a source at (r”,t”). Multiplying the equation
for G(r,t;r',t') by G(r,t;r",t”) and subtracting it from G(r,¢;r’,t') times the
equation for G(r,t;r”,1”), one obtains

G(r,t;7”, ")V . | p(r,t) YV G(r, ;7' t) | — G(r,t;7',t") V. | p(r,t) ¥ G(r, t;17,17)
1 - 82G(z, t;r' ) 1
2 G(r,t;r”,t") a2 + = G(r,t;r',t')

62G(£’ t, f” , t77)

— G(E’t;£777t”) 53(£7£/) 5(t 7t/) _ G(ﬂ,t;£,7t,) 53(£7£77) 6(t 7t77)
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On integrating over r and ¢, one obtains

/ dt / @S Gr, 07,17 | [pw)ve(r,t;r’,t’)}

| [ escenr. [pmt)vcv*(r,t;r”,t”)}

1 3 7 49 8G(£ata£/7t/) e
_ ? / dﬂG(Dt;z it ) T t=—00

1 3 A OG(r, t;r",17) =
+ =2 / dEG(Dt?f’t) Tt:foo

— G(ﬂl,t/;fnﬂf”) _ G(f”,t”;f/,t/)
(1250)

On imposing appropriate boundary conditions, the surfaces terms in space time
vanish and one finds that the Green’s function is symmetric in its variables

G(Zl,t/;f”,t”) — G(ﬂ”,t”;f/,t/) (1251)

‘We shall now illustrate the solution of the equation for the Green’s function
of Poisson’s equation and the Wave Equation, in several different geometries.

Poisson’s Equation
Example:

The Green’s function for Poisson’s equation inside a sphere is given by the
solution of
V2 Gr,r) = 8 (r—1') (1252)
In spherical coordinates the delta function can be written as

5(r—1") 6(6—0')

3 (e _ 0 — o
6 (r —1') - g Sle—¢)
S(r—r) & om m
= S N ) i)
=0 m=-I

(1253)

where we have used the completeness condition for the spherical harmonics. The
Green’s function can also be expanded in powers of the spherical harmonics

oo  m=l
Gr,r') = > Y Gimlr,r) Y (0,9) (1254)
=0 m=-I
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On substituting the expansion for the Green’s function into the differential equa-
tion one obtains

10 ( ,0 I(1+1) -
Z <’I“28T(T (97“Gl’m> - TQGZ,M)YI (aaSD)

lm
6T—T/ * 1M m
-2 - LS Y 0.0 Y 0.0)
l,m
(1255)

On multiplying by the spherical harmonics, and integrating over the solid angle,
the orthogonality of the spherical harmonics yields

1o [ ,0 L(1+1) Sr—r)
7“72 5 <T aTGl,m> - TGlm = TYZ (0/790) (1256)

Since the left hand side has no explicit dependence on the angle (6’,¢’), one can
separate out the angular dependence

Gl,m(nﬂl) = gl(T’ TI) Y*;n(e/a(pl) (1257)
and find
1 0 5 0 I(l+1) _O(r—r")
2 or <7" ar gl,m) -2 gim = 2 (1258)

This is the equation for a one dimensional Green’s function. For r # 1/, the
inhomogeneous term vanishes so one has solutions of the form

Art + B2 r < ¢/
no_ RESY)
qulrr’) = { Crit Doy >0 (1259)

The boundary conditions that G(r,r’) is finite at r = 0 and vanishes at r = a
implies that

B =0
Cd + D al—il =
(1260)
Thus, the purely radial part of the Green’s function is given by
Art o< o
R C Il (1261)
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The two remaining coefficients A and C' are determined by continuity at r = r

and by the discontinuity in the slope. That is

alr’ +er) = g —er)

/

(1262)

and by integrating the differential equation over the singularity one obtains

a |: , :| r'4e
> | au(r,) = 5
or ’ e r'2
From these we, obtain the matching conditions
20+1
1" a "no_

C|:7“ _TIIH} - Ar" =0

n—1 a’t -1

C[lr —l—(l—i—l)r/H_z} — Alr =z

These two equations can be solved for A and C, yielding

T/l

(20 + 1) a1

T/l a 20+1
4= @rpam [1 N <r’) ]

Hence, the radial part of the Green’s function is

21+1
{1 _ () ] r<
Pt r
T (20+1) a?] 2041
[1 - (‘j) ] r > r

In terms of this function, one can write the Green’s function as

C:

qi(r,r

oo m=l
Gy = 3 aln) YT Y0,0)
=0 m=-—1
0o m=l
21 +1
= > (2it+1) qi(r,r") Py(cos7)
=0 m=-—1 dm

(1263)

(1264)

(1265)

(1266)

(1267)

where we have used the spherical harmonic addition theorem and - is the angle

between r and r’.
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In the limit that the boundaries are removed to infinity, a — oo, the Green’s

function simplifies to
204+1
(3,) r <
rl 7A/l

/ — —
alrr) = (20 4+1) 2+1

(i) r > 7
IS SR AN
N 20+1)r~ \re

Thus, the Green’s function in infinite three-dimensional space is given by the
familiar result

G(r,r') = 4W1T> i (T<>1Pz(cosv)

(1268)

=0 \'<
_ 1
B 47r\/r272rr’cosv+r’2
_ 1
T 4dnm|r -1

(1269)

which is the Green’s function for Laplace’s equation.
Example:

The solution of Poisson’s equation in two dimensions, for the potential ¢(r)
confined by a conducting ring of radius a can be obtained from the Green’s
function. The Green’s function satisfies the partial differential equation

13( aG@r)> 1 G, o(r — o)

— = 0 — 0 12
r Or Oor r2 002 r J ) (1270)

On using the completeness relation

50 —0) —QL i exp[ 9—9’)- (1271)

and the series expansion

exp [ im0 (1272)

- 1
= Z Gm(r,z’)m
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one finds that the coefficient G,,, must satisfy the ordinary differential equation

10 OG (1, 1) m?2 N O0(r —1") 1 . ,
a( o )‘r?GmW)— rabve e i
(1273)
Introducing the definition
1
Gm(r,r') = gm(r,1") ———= ex { im@’} 1274
() = gulrr) = exp (1274)

which isolates the angular dependence of G,,(r,r’), one finds that g, (r,r’)
satisfies the ordinary differential equation

19 (HW) m? 8(r —1") (1275)

r or or T2 g (r 1) = r
Form = 0and r # 7’ the differential equation has the general solution
go(r,7") = Ap + Bp Inr (1276)
while for m # 0 and r # 7’ the equation has the general solution
gm(r,r’) = Ap ™ + Bpr™™ (1277)

The boundary conditions at » = 0 leads to the vanishing of the coefficients of
r~™. Hence, the solution close to the origin must be of the form

gm(r <7v') = Ay ™ (1278)

The boundary condition at » = a leads to a relation between the coefficients
of r™ and r~". The solution close to the edge of the ring has the form

G -G e

gm(r>71") = Cp

for m # 0. The solution for the Green’s function for m = 0 is given by
go(r<7r’) = A (1280)
close to the origin and
go(r>1") = Cy lng (1281)
close to the ring. The boundary conditions at r = r’ are
g (T + 1) = gn(r —e1)
N +e
Lm;:,r ) - % (1282)
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The boundary conditions at the intersection of the two intervals determine the

remaining two coefficients via
a 7/

/ m m
(T> +(a,) ]—mAmr””zl (1284)
a T

These two equations can be solved resulting in

Cpp = — (”)m (1285)

Ay = ‘;_;L [(’;)m - (;L/)m] (1286)

and

m Cp,

and

oo 2N (Y (e
gm(r<r’) = 2m(@> l(a 7
A G A A
gm(r>r) = 2m<a a r
(1287)
and
7,,/
go(r<r’) = In—
a
go(r>1r") = In =
a
(1288)
The Green’s function is given by
1 & _
Gr) = 5o 3 gulr) e im (0~ )]
— L / = / o
= 271_{90(7"77“) +2m2::1gm(r,r)cosm(0 0)}
(1289)
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In the limit that the boundaries are removed to infinity a — oo one has

gm(r,r") = - L ( < )nl (1290)

2m \ rs

SO

G(r,r") = ;[lnt— an@(k) cosm(@—e’)]

r
m=1 >

3

1 r> + 12 —2r¢ cos (6 — 0)
= — In

47 a?
- i1n|£_£/|

2m a

(1291)

which is the Green’s function for the Laplacian operator in an infinite two di-
mensional space.

The Wave Equation.
Example:

Consider the forced drum head, described by the inhomogeneous partial
differential equation
1 0% 1
Vig — — L ) = — — ,t 1292
( 2 Ot? ) 2o o t) ( )

where f is the force per unit area normal to the drumhead and o is the mass
density. The boundary condition on the displacements is ¢(r,t) = 0. We shall
assume that the driving force has a temporal Fourier decomposition

ﬂhﬂ::[i)waf&M)wp{—iwt} (1293)

Due to the linear nature of the equation one can find the solution ¢(r,t) from
the temporal Fourier transform ¢(r,w) defined via

o(r,t) /00 d o(r,w) e [ iw t} (1294)
} = - L X -
T Y Vor p
On Fourier transforming the differential equation with respect to ¢ one has
ot 9 1 0% .
[m Tﬂ(v (b—C—Qﬁ exp| + twt

= _i/, d;ﬂf(r,t)exp{—i—iwt]

(1295)
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On integrating the second derivative with respect to time by parts, twice, and
assuming that lim;_,4+., &(r,t) = 0, one obtains

( VQ ¢(£,W) + % ¢(£,W> ) = — 5 _ f(fa W) (1296)

To solve this equation we introduce the frequency dependent Green’s func-
tion, G(r, r';w), which satisfies

2
( V2 G(r,r'sw) + %2 G(r,r';w) ) = \/% 8 (r—1') (1297)
which is the Fourier transform of the equation for the real time Green’s function.
Note that this holds only because the homogeneous equation is only a function
of t — ' and does not depend on ¢ and ¢’ independently. This is expected to be
true for most physical phenomenon due to the homogeneity of space time. The
Green’s function satisfies the boundary condition G(r,r;w) = 0, at the edge
of the drum head.

The solution for ¢(r;w) is found in terms of the Green’s function. From the
partial differential equations one has

/ d’r ( ¢(r,w) V2 G(r,1'50) — G(r,r';w) V2 ¢(r,w) >

_ ) L e G Frw)

vVor 2o

(1298)

Also, using the two dimensional version of Green’s theorem, this is equal to

= / di (‘WW) % ~ G(r,r';w) W) (1299)

where the integral is over the perimeter of the two dimensional area and the
derivative with respect to n ia taken along the normal to the perimeter. For a

circular area of radius a, one has dl = a df and % = %. Since both terms
vanish on the perimeter of the drumhead, ¢(r,w) = 0 and G(r,r’;w) = 0,
one has , )

dew) L o) frw) (1300)

vor o 2o

or using the symmetry of the Green’s function

P(r',w)

= - % / d’r G(r',ryw) f(r,w) (1301)
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Thus, the solution of the forced equation can be obtained from the Green’s
function and the forcing function. In particular one has

P(r,t) = /O:O\/%Mr,cu) eXp{iwt}
|

o [ @ Gl Sw) e [ —iw t]
(1302)

The Green’s function can be obtained by expanding it in terms of a Fourier
series in 6,

exp [i7n/0} (1303)

m=—0o0
The two dimensional Green’s function can be expressed as

o(r—1")

B2(r—r) = - 50 -6
- 5(7";7‘/) % m;m eXp[im(Q - 9’)]

(1304)

where we have used the completeness relation for the Fourier series to expand
the delta function of the angle.

On substituting these into the equation for the Green’s function, multiplying
by the complex conjugate basis function

1
V2T

and integrating over €, one obtains

exp [ —im } (1305)

10 OG (1, 1) w? m? N1 ) ,
Tar<rar>—|—<— Gm(rr') = — exp| —imb | —

c? r2 2

On factoring out the 6’ dependence via

Gm(raf/) = gm(rm, T/)

V[;A%, exp { —im 9/} (1307)
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one finds that g,,(r,r’) satisfies the equation

1 0 OGm (r, ") w? m? N 1 o(r—1")
r Or (T Oor + 2 y2 gm(r,77) = Vo r

(1308)

The inhomogeneous term is zero for both regions r > 7/ and v/ > 7, so that
the solution is

gm(r,r’) = A Jm(% r) ro< 7
gm(r,r’) = FJm(% r) + GNm(% T) ro> 7
(1309)
since the Green’s function must be regular at » = 0. The boundary condition
atr = ais
gm(a,7’) = 0 (1310)
Hence, we have
/ w ’
gm(r,7") = AJm(Er r<r
gm(r') = B (Nm(j @) Jn(5 1) = T @) Noo(= 1) ) ro>
(1311)
The matching conditions at r = 7’ are given by
gm(r' +e,7") = gn(r' —er)
/ r’+e
1 1
m(r,r") - - (1312)
or e vor 7

Hence, the coefficients A and B satisfy the linear equations

ALy = B(NM?@JMiW)LAi@NMin

o

1 1
va2r r

ol &

The solution of these equations can be simplified by noting that the Wronskian
of the solutions of the Bessel functions is given by

Im(2) Np(2) = Jp(2) Nn(2) = (1314)
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The solution can be written as

1 7 Jn(27r) w
m ! = - S x Nm - m\ N - m Nm =7 !
mnirt) = = = 5 (NG @) I ) = T N ) s
1 7 (2 w
(1316)
which is symmetric under the interchange m = — m. Then, the frequency

dependent Green’s function can be written as

oo

Glerie) = 3 gnrn) xp [ im (0~ 0')
- = () + 2 S () cosm (0 2
" (1317)

The time dependent Green’s function is given by

> dw

Gerit—t) = [ 2 Glrie) exp[ Ciw(t - t')] (1318)

12.2.2 Eigenfunction Expansion

The Green’s function can also be obtained by expanding the Green’s function in
terms of eigenfunctions of an appropriate operator and using the completeness
relation for the delta function. The expansion coefficients can then be deter-
mined directly, using the orthogonality relation.

Poisson’s Equation.
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We shall consider examples of the eigenfunction expansion solution for the
Green’s functions for Poisson’s equation, in various geometries.

Example:

The Green’s function for Poisson’s equation in an infinite three dimensional
space can be obtained by an eigenfunction expansion method. The Green’s
function satisfies the equation

V2 G(r,r) = 8@ —1') (1319)

The eigenfunction of the Laplacian satisfy

V2 oi(r) = A d(r) (1320)
and has eigenfunctions
1 )
op(r) = —— exp {z k. 7’] (1321)
SN EESE:
and have eigenvalues
e = — K? (1322)

The Green’s function can be expanded as

G(r,r') = / &’k Gi(r') or(r) (1323)

and the delta function can be expanded using the completeness relation for the
eigenfunctions

B —r') = / &k G(r) dulr) (1324)

Inserting both of these expansions in the equation for the Green’s function we
find the expansion coefficients of the Green’s function satisfy the equation

- / Pk K2 Gu(r) dulr) = / @k $5(r") du(r) (1325)

Multiplying by ¢, (r) and integrating over r one has the orthogonality relation

[ o ot = 86— x) (1326)
one projects out the coefficient Gy (r) so

— K2 Gp(r) = op () (1327)
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Hence, the Green’s function is given by

G(ﬁa Z/) = — / dgk —_— k2 —

(1328)

It is seen that the Green’s function only depends on the difference of the posi-
tions, 7 — 1/, and not on r and r’ separately. This is because we have assumed
that space is homogeneous. To simplify further calculations we shall re-center
our coordinates on the source point at r’. In this case, the Green’s function
only depends on r.

In spherical polar coordinates, one has

ik .r
& exp[z }
Gl = "”/" (27 )3 2
o W oo 9 exp[ikrcos@]
= —/ d(p/ do sin@/ dk k
0 0 o (2m)3 k2

(1329)

where the polar axis has been chosen along the direction of r. The integral over
 and cos # can be performed as

Gr) = —/0277 dip /_lldcose /0°° (le;)
_ _/oo ( dk exp[ikr] —exp[_ikr:|
0

3 exp{ikr COS6‘:|

27 )2 ik
(1330)
On writing k& = — k in the second term, one can extend the integration to
(—00,00), yielding
exp|ikr
« g |t
Glr) = /00(27r)2 ikr
(1331)
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where the integral over the singularity at & = 0 is interpreted as being just the
principal part. That is, the integral is evaluated over two regions (—oo, —) and
(€,00), which end symmetrically around the singularity at k& = 0. The integral
is evaluated by taking the limit ¢ — 0. The integration can be evaluated by
Cauchy’s theorem to yield 7 7 times the residue. Hence, we obtain

1

G = — —

() (4mr)
(1332)

or re-instating the source position at r’
1
G N = -
(r,r') e —

(1333)

as expected from Coulomb’s law.
Example:

The Green’s function for the Laplacian in an infinite d-dimensional space
satisfies
V2 G(r,r') = §'(r—1) (1334)

where in ultra-spherical polar coordinates one has the delta function

6d(7‘ —T‘I) . (5(7“ — 7“’) 5(9(1_1 — 9&71) 5(0d—2 — 9:172) 6(92 — 6’2)
- =/ pd-l sin?26,_, sin 36,5, sinb

d(p—¢')
(1335)

One can solve for the Green’s function using the eigenfunction expansion method.
The Green’s function is expanded as

G(r,r') = / (derk)‘; Gi(r') exp {zk . r] (1336)

The delta function can also be expanded using the completeness relation
d?k
§r—r1') = /weXp{ik-(rr’)] (1337)
These are substituted into the equations of motion, which then gives an equation

involving all the Green’s function expansion coefficients. The orthogonality
relation of the eigenfunctions

/(;lj:)deXp[”'(k—k/)} = 8k~ k) (1338)
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can be used to obtain the expansion coefficients as

Gy (') = exp{u;]:;r/] (1339)

Hence, we find that due to the isotropy and translational invariance of space
the Green’s function is only a function of the spatial separation r —r’ and does
not depend on r and 1’ separately

or

G(r) = - / (;l(;k)d exp[;flr} (1341)

The integration will be evaluated in spherical polar coordinates, in which the po-

lar axis is chosen along the direction of r. The integration over the d-dimensional
volume d%k can be expressed in spherical polar coordinates as

dk = dk k1 dfg_y sin? %0y 1 dBg_s sin? 30,5 ... dfy sinby dp (1342)

Thus, we have

_ i k1T cosfg_q
* dk kit T 4o eXp{Z }
G(ﬁ) = - /0 WA dfq_1 sin Oa—1 2

T ™ 27
X / dby_o sin® 30,5 ... / dfy sin 6 / dyp
0 0 0

(1343)

The angular integrations which only involve the weight factors can be performed

using the formula
L)

df sin™ 0 = /7
/ raE

where the I" function is the generalized factorial function defined by

(1344)

I'(z) = /OOO dx exp{ - x] A (1345)

One can show that, by integrating by parts with respect to x, the I' function
satisfies the same recursion relation as the factorial function

T(z) = (2 — 1)T(z—1) (1346)
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and as -
1) = / dx exp [ -z } =1 (1347)
0
Thus, for integer n the I" function reduces to n factorial
I'n+1) = n! (1348)

Hence, the Green’s function is expressed as

< dk k43 [T . d—2 .
G(r) = — ; W ; dfg_1 sin®" “04_1 exp | i kr cosfy_q
P(452) r()
x /T 2 . VT =2 2nx
L(45H) L(3)
(1349)

The integration over the angle 641 can be performed using

d—2
i d—1./ 2\ 7
/ dfy_1 sin?26,_1 exp {ikr cosﬁd_l] = /rl'(—) <) Ja—z (kr)
0 2 kr p)

(1350)
Thus, we find
d—2
* dk k43 1\ 2
= — — | — Ja—2(k
@ J (27)7 <kr> 72 (0]
1\T [~ dk
= <> / — k% Jﬂ(kﬂ’)
r 0 ( 2 m )E 2
(1351)
Finally, the integral over k can be evaluated with the aid of the formula
00 o F(u+l2/+1)
/O dk kﬂ J,,(k?") = 7’/“"‘"1 W (1352)

2

which yields the Green’s function for the d-dimensional Laplacian as

G(r) = - s ( ! > (1353)

4 7% rd=2

The d-dimensional Green’s function for the Laplacian operator reduces to the
three dimensional case previously considered, as can be seen by putting d = 3
and noting that I'(3) = /7.

The Wave Equation
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The Green’s function for the wave equation can be obtained by expansion
in terms of eigenfunctions.

Example:

The Green’s function for the wave equation, inside a two dimensional area,
satisfies the inhomogeneous equation

2
<V2 -5 % ) Glrr'st—t') = &*(x—1') o(t — ') (1354)
C

which on Fourier transforming with respect to ¢ according to

o dt
G(r,r';w) = / G(r,r'st—t) exp| + iw (t — t') | (1355)
T o V2T T

yields

w? /. o 1 o
<V2 + 02> G(r,r',w) = X3 82(r —1) (1356)

The eigenfunctions of the operator satisfy the eigenvalue equation

2 w?
(V + cg> Gem(r) = Mesm Grm (1) (1357)

where k, m label the eigenfunctions. The explicit form of the eigenvalue equation
is given by

1 8 6 m 1 82 m °
< - <T ¢k7> + — ¢k’ -+ % d)k,m) = )\k,m ¢k,m (1358)

r or or r2 062

The eigenfunctions that satisfy the boundary conditions at the origin and vanish
on a circle of radius a are given by

1
m(r,0) = Ny, Jn(kr exp| im0
(1359)
where the normalization N, is given by
a -1

Ny = | —= J/ (ka 1360
|5 )| (1360)

and the number k is given by the zeroes of the Bessel function
Im(ka) = 0 (1361)
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The eigenvalues are given by

Mem = —5 — k2 (1362)
C

The frequency dependent Green’s function is given by

—_

/
G(r,r'iw) = Z ZN %m—(]lc(zmcxp im (0 —6)
2

m=—0o0

— N
3

Z NG Jo(k”") Jo(kr’)

G(r,1';
(r,75) 2 w2 k2

— N
3
ol

(1363)

where we have used the symmetry of the product J,,(z) J,,(y) under the inter-
change of m and — m.

Example:

The Green’s function for the wave equation in an infinite three dimensional
space can be found from the temporal Fourier transform

w? ’ - 1 /
<V2 + c2> G(r,r'w) = T 83 (r—1") (1364)

We expand the Green’s function in terms of the plane wave eigenfunctions which
satisfy

(v2+‘;’)¢k<>=(—k2+‘;)¢k<> (1365)

in which the eigenfunction is found as
ou(r) = ——— exp [ +ik. r} (1366)

One obtains the expression

G(r,r';w) =

1
NoTa / (27 ) T (1367)
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and hence

> dw d3k

tor' ) = — —
(1368)

The angular part of the integration over k can be performed by using r — 1’ as

the polar axis. In this case one finds

dk k2 eXp[Jriklr—?“’l} —eXp{—iklr—r’]

G(r,t:r',t) = /
e R T ey
/OO do exp[ —dw(t — t')}
X o 2
oo 2T % — k2
B /OO dk k exp{+ik|r—r’|]
S (272 lr — 1|
/oo do exp{—iw(t—t’)}
X - S
feo 2T %2 _ k2
(1369)
The integration over w can be performed using Cauchy’s theorem of contour
integration. The contour has to be closed in the lower half complex w plane for
positive ¢, and in the upper half complex plane for negative t. There are poles
at w = =+ ¢ k in the lower half plane. This leads to
ot —1t o dk
Gr,t:r',t) = _iT7“(—7”) /_OO (272 exp{ik;|r — r’|] sin ck(t —t)
c
) — | —c(t =t
(1370)

Example:

The Green’s function for the wave equation in an infinite d-dimensional space
can also be obtained using this method. First, the Green’s function equation
is Fourier transformed with respect to time. The frequency dependent Green’s
function is then defined as the solution of the inhomogeneous partial differential
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equation

<V2 + % ) G(r,r'iw) = %W §(r — 1) (1371)

This can be solved by using the completeness relation of the plane wave eigen-
functions of the Laplace operator. On expanding the Green’s function in terms
of plane waves and also using the representation of the d-dimensional delta
function

or — 1) = / d'h e ik.(r —1") (1372)
- = —— X . -

- - (27 )d R -

one finds that the frequency dependent Green’s function can be written as

e | ik (2~ 1)

w2 1.2
c? k

G(r,r',w) = S J/ d’k (1373)

(27 )(d+%)

The time dependent Green’s function is given by the inverse Fourier Transform
of the frequency dependent Green’s function

1 . exp[ik.(r—r’)—iw(t—t’)
/ A d
G(r,r',t—t") = 7(2#)(5“‘1) [m dw/dk 2 g2

c2

(1374)
Note that because space time is homogeneous ( we have no boundaries ) the
Green’s function is invariant under translations through time and space.

The integral over the d-dimensional volume d?k in ultra-spherical polar co-
ordinates is given by

o) T T T 2w
b/m dk k41 j/ dfg_q sin®26,_, ]/ dfg_o sin? 304 "'j/ dfy sin b j/ do
0 0 0 0 0

(1375)

The integral over the solid angle involves an integral over the principal polar
angle of the form

1 /97T
/ do sin“=2 9 exp [ iw cos@] = ﬁf(dT) (x) J%(x) (1376)

where I'(x) is the factorial function
Mz+1) = zT'(x) (1377)
and for integer n, with I'(1) = 1, yields

T'(n+1) = nl (1378)
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The subsequent angular integrations are performed using the formula

o r(=)
/ df sin™ 0 = 1 25 (1379)
0 I(#3=)
Thus, the angular integrations produce the factor
-1 (2\'7 r(dz?) %R L)
VT D(—) <> Jaz(z) VT VT —2 VT =22
2 z ? F(d?) L(452) L(3)
d—2
e (2 %
= 272 (1}) Jd;z(x)
= (27 )% T Jd2;2($)
(1380)

as the I' function is defined such that I'(1) = 1.

Also the integral over w can be performed, using contour integration. Since
we only want the causal part of the Green’s function for physical reasons, the
poles on the real w axis at w = = ¢ k are displaced into the lower half complex
plane, giving

o exp{—iwt} 9 r e
/_DO dw %2 — = — O(t) sin ckt (1381)

where O(t) is the Heaviside step function defined by

1 t >t
o) = { 0 P (1382)
This leads to the expression
t—t
Gr—r';t—t') = — c O / dk kT Ja z(k|z—£’|) sin ck(t—1t")
(2m)f |z — o |

(1383)
For convenience of notation we re-center the origin of our coordinate system
on the source at (r/,t’), so the Green’s function only explicitly depends on the
field point coordinates. The integral over k can be evaluated with the aid of the
formula

/OOO dx x¥ J,(ax) exp [ - x} = \/(7?2(0;2) +(52 )é) i (1384)

2
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where I'(n + 1) = nl! is the factorial function. However, to ensure that the
integrals over k converge we add a convergence factor of

lim exp { — k €:| (1385)
e—0

to the integrals. Thus, one finds the integral

lim dk k¥ J,(kr) sinkr exp{ - ks} =
e—=0 Jo
. , T35 1 1
= 11111(27‘) ,2 : 2+l . 2v+l
0 20T | [12 4 (—ict + )]s [r2 + (ict +¢e)?]
(1386)
Then on defining
s =14+ (—ict + ¢)? (1387)
and using the identity
-n n 1 an—l —
one has
. -n 1 1 o n—1 . -1
T2+(—th+€)2:| :(71—]_)'(_27‘87’> |:T2+(_7/Ct+€)2
(1389)

After some elementary manipulations one obtains the time dependent Green’s
function

G(r;t):—cg(t)<—271”887“){123{5”_”)} (1390)

4 7 r

The term involving a second delta function has been dropped as it does not
contribute, due to the presence of the Heaviside function. The Green’s function
is retarded, in the sense that the solution at point (r,t) only experiences the
effect of the source at the point (r/,¢") only if ¢ is later than ¢'. Thus, the re-
tarded Green’s function expresses causality. However, it also shows that the an
effect at point (r,t) only occurs if the signal from the point source at (r',t') ex-
actly reaches the point (r,t), and that in between the signal travels with speed c.
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13 Complex Analysis

Consider a function of a complex variable z = x + ¢ y. Then the function
f(2) of the complex variable also has a real and imaginary part, so
f(z) = u(z,y) + iv(z,y) (1391)

where u and v are real functions of x and y. The derivative of a complex function
is defined by the limit
df (2) . fz+Az) - f(2)

dz Al,lzrgo Az (1392)

provided that the limit exists and is independent of the path in which the limit
is taken. For example, if one considers

Az = Az + i Ay (1393)

then one can take two independent limits, either Ax — 0 or Ay — 0. In

general
Af  Au + i Av

S — 1394
Az Az + i Ay ( )
On taking the limit Az — 0 one obtains
. Af ou . [ Ov
Am Xy = (m:) i (ax) (1395)
while on the path Az = i Ay the derivative takes the value
Af ou v
li = —i| = — 1396
Ay=0 i Ay ' (31/) i <5y> (1396)
If the derivative is to be well defined, these expressions must be equal, so one
must have 5 5
U v
— ) = | = 1397
(&) - () 9
and

)

These are the Cauchy-Riemann conditions. They are necessary conditions, for if
a unique derivative is to exist the Cauchy Riemann conditions must hold. Note
that a function that satisfies the Cauchy Riemann conditions automatically is
a solution of Laplace’s equation.

Conversely, if the Cauchy Riemann conditions are satisfied then f(z) is con-
tinuous, and the derivative exists. This can be formulated as a theorem.
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Theorem.

Let u(z,y) and v(z,y) be the real and imaginary parts of a function of a
complex variable f(z), which obey the Cauchy Riemann conditions and also
posses continuous partial derivatives ( with respect to x and y ) at all points in
some region of the complex plane, then f(z) is differentiable in this region.

Proof.

Since u and v have continuous first partial derivatives there exist four num-
bers, €1, €2, 01, d2 that can be made arbitrarily small as Az and Ay tend to zero,
such that

0 0
u(z+Az, y+Ay) — u(z,y) = (az) Az + (8;) Ay +e; Az + 6 Ay (1399)

and

0 0
v(z+Az, y+Ay) —v(z,y) = <8;)‘> Az + <8Z> Ay + €2 Az + 02 Ay (1400)

Multiplying the second of these equations by ¢ and adding them one has

ou ou . [ Ov . [ Ov
fz+Az) — f(r) = ((%) Az + (63/) Ay + 1 (63:) Az + i <8y> Ay
+ € Az + (51 Ay + 4 €2 Az + 4 (52 Ay

(1401)

Using the Cauchy Riemann conditions one has

ou Ov . (Ov . [ Ou

—+ €1A$+§1Ay+Z€2A’I’+’L§2Ay

() ()

+ ele+§1Ay+i62Ax+i52Ay

flz+Az) = f(2)

Ax + i Ay

(1402)

Thus, on dividing by Az, and taking the limit one has

#ﬁ): CZ)+i(;» (1403)
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Example:

The function f(z) = 22 satisfies the Cauchy Riemann conditions, at all
points in the complex plane as

u(z,y) = a* — o (1404)
and
v(z,y) = 2ixy (1405)
Hence,
ou v
<ax) S (ay) (1406)
and

(gz) 9y = (g;) (1407)

However, the function f(z) = (z*)? does not satisfy the Cauchy Riemann
conditions, but is still continuous.

On applying the Cauchy Riemann conditions to a function which is assumed
to be expandable as a Taylor series in some region around (zo, yo) one can show
that

u(z,y) + iv(z,y) — w(wo,y0) — iv(To,%0) =
— 1 . N L ‘
= Z I R R U Iy u(zo,90) + i v(zo,Yo)
el n! l‘o

(1408)

That is, the function only depends on z = z + ¢ y and not on the complex
conjugate z* =z — i y. It should be noted that not all functions can be Taylor
expanded about an arbitrary point, for example the functions

1
1) = (1409)
and )
flz) = exp[ - z] (1410)
can not be Taylor expanded around the point z = 0. The partial derivatives

do not exist, and the Cauchy-Riemann conditions do not hold at z = 0. The
radius of convergence of the Taylor expansion about the origin is zero.

Analytic Functions
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A function f(z) is analytic at the point zg if it satisfies the Cauchy Riemann
conditions at zo. If f(z) is analytic at all points in the entire complex z plane
it is defined to be an entire function.

13.1 Contour Integration

The integration of a complex function, is defined as an integration over a curve in
the complex plane. The curve is known as a contour, and may be parameterized
by

x = x(s)

y = y(s)
(1411)

The integral of f(z) over a specific contour C' can be evaluated as

/C dz f(z) = /3:1 ds ( df;:) + 1 dZis) ) f(z(s))

- [ () - B ot )

Lo / i (2 )6 + D atats) oo )

(1412)

which reduces the contour integration to the sum of two Riemann integrations.

Example:

Consider the integration of the function f(z) = 22 over an open contour
from z = 0toz 1 + 4 along two different paths, the contour C; which is a
parabola

x(s) = s
y(s) = s
(1413)
and a second contour Cy which consists of a straight line segment
x(s) = s
y(s) = s
(1414)
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The integral over contour C is evaluated as

/Qldzf(@ = (Alzm (dzf)) ((a@ — ) 1 i2xg/>

(1415)

z¥dzﬂ@ - Alﬁ<#§?)(( 2 _ 2)+i2xy)
_ tél<m (dZS) n zd%:)) ((xQ-—gﬁ) + i2x3/>
e )
= Zlds(-2§ +i232>
- (-5
G

(1416)

Thus, the integration over an entire function appears to be independent of the
contour on which it is evaluated.
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Example:

Important examples of contour integration are given by the integration of
a mono-nomial z™ over a closed circle of radius r centered on the origin of the
complex z plane. The integral can be evaluated as

1 n 2T
/dzz”zr— d@exp{i(n—l—l)@} (1417)
c

2w 27 Jo

where we have used the polar form for the complex number

z = rexp[i@} (1418)
and on the contour one has
dz = rexp{i@] i do (1419)
The integral is easily evaluated for integer values of n as
! /dzz” A P i(n+1)0
= — X
271 Jo 27 Jo P
pntl 27
= 271_/0 d@exp[i(n—&—l)ﬁ}
rn+1 27
= — i 1)6
omi(n + 1) eXp{Z(” +1) h
=0

(1420)

for integer n, n # — 1. This occurs since the exponential is 2 7 periodic, and
the result is independent of the radius r of the contour.

A second important example is found by examining the case wheren = — 1.
In this case, the closed contour integral is evaluated as
1 1 27
_ / dz 27! = — do
274 Jo 27 Jo
1 2m
= —940
27T |,
=1
(1421)

It is noteworthy, that the function z=! does not satisfy the Cauchy Riemann
conditions at the origin, and the contour wraps around the origin once. The
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function and the derivatives are not defined at the origin.

Both of these examples yield results which are independent of r, the radius
of the closed circular contour.

A contour integral of function, that satisfies the Cauchy Riemann conditions
at every point of a region of the complex plane which contains the function, is
independent of the path of integration. There is an analogy between integration
of analytic functions and conservative forces in Mechanics; the analytic func-
tion plays the role of a conservative force and the integral plays the role of the
potential. Alternatively, there is an analogy between integration of an analytic
function and functions of state in thermodynamics.

The contour integral of an analytic function f(z) can be calculated as the
difference of a function F'(z) evaluated the end points,

/C dz f(z) = F(z1) — F(20) (1422)
where the function F'(z) satisfies
)~ s (1423)

The function F(z) is the primitive of the function f(z). This is the content of
Cauchy’s Integral Theorem.

13.2 Cauchy’s Integral Theorem

If a function f(z) is analytic and its partial derivatives are continuous every-
where inside a (simply connected) region, then the contour integration over any
closed path entirely contained within the region is zero

7{ dz f(z) = 0 (1424)
c

A simply connected region means a region in which there are no holes.
Stokes’s Proof.

Consider the integration over the closed loop

fcdzf(z) _ }{C((u+iu>(d:c+idy)
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_ fc(udxvdy> +z'fc<udx+udy)

(1425)

The integration consists of two line integrals. Each line integral can be thought
of as a integration of a scalar product of a vector with the vector displacement
around the loop in the (z,y) plane. That is, the integration can be considered
as an integration representing the work performed by a force.

The real part of integration involves the scalar product of a vector
A =¢éu— év (1426)
and a displacement. The displacement is represented by
dr = é1dx +éxdy (1427)

and the integration is given by

j%) dr . A (1428)
C

The contour integration can be evaluated by Stokes’s theorem

jidz.A:/d?ﬁ.(zAA) (1429)

in terms of an integral inside the area of the (z,y) enclosed by the loop or
Ov ou
dr — vd = — d d — — 1430
f (v —var) == [ far(Ge5r)  am

The imaginary part can be evaluated in the same way, but this time the
vector B in the loop integral

dr . B (1431)

c

is identified as
B =¢é v+ éu (1432)

leading to

7§C<vdx+udy)=/dx/dy<gz—gz> (1433)

where the last integral is evaluated over the area enclosed by the loop.
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Since the functions u and v satisfy the Cauchy conditions inside the region
enclosed by the loop, both integrands vanish. Hence, we have Cauchy’s integral
theorem

74 dz f(z) = 0 (1434)
C

if f(z) is analytic at all points enclosed by the loop.

Since the contour integration around a loop contained entirely in a simply
connected region where the function is analytic, one finds that the integration
along two segments C7 and Cs of our arbitrary closed loop cancel

%C dz f(z) = /B dz f(z) + /A dz f(z) = 0 (1435)

A Cy B C»

Then, on reversing the direction of the integration on one segment, the integrals
in the same direction are equal

/B dz f(z) = /B dz £(2) (1436)

A Cy A Co

Since the integral of the analytic function between A and B is independent of
the path, the integral can only depend upon the end points. Hence, we have

/A dz f(2) = F(zp) — F(za) (1437)

which is independent of the path of integration (as long as it is entirely con-
tained inside the simply connected region where f(z) is analytic).

Multiply Connected Regions.

A contour that lies within a simply connected region can be continuously
shrunk to a point, without leaving the region. In a multiply connected region
there exists contours that can not be shrunk to a point without leaving the
region. Cauchy’s integral theorem is not valid for a contour that can not be
shrunk to a point without the contour leaving the region of analyticity.

A multiply connected region can be reduced to a simply connected region
by introducing one or more lines connecting the disjoint regions in which the
function is non-analytic, and demanding that the contours can not cross the
lines. That is the lines are considered to cut the plane, so that the region is
simply connected. Due to the cut lines, Cauchy’s theorem can be applied.

Example:
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Consider the integral
1

dz ———— 1438
c z(z+ 1) ( )
around a contour C circling the origin counterclockwise with | z | > 1.
The Cauchy Riemann conditions are not satisfied at two point z = and
z = — 1 where the derivative is not defined. The function is analytic at

all points in the surrounding area. The region is multiply connected. Two
cut lines can be chosen linking the singularities to infinity, making the region
simply connected. We shall choose the line running along the positive imagi-
nary axis from the origin and the parallel line running from z = — 1 to infinity.

Cauchy’s theorem can be applied to the contour C' and its completion run-
ning along oppositely directed segments on each side of the line cuts extending
to the singularities, and two small circles C; and Cy of radius r circling the
singularities in a clockwise direction.

Then, from Cauchy’s theorem one has

1
Y{Cdzz(z+1)+Cldzz(z+l)+02dzz(z+1) 0 (1439)

since the contour is in a singly connected region in which the function is ana-
lytic. The contributions from the anti-parallel line segments cancel in pairs, as
the function is single valued on these lines.

The integral around C enclosing z = — 1 in a clockwise direction is
evaluated on the contour

z = —1+4 rexp[if] (1440)

and 6 runs from 0 to — 2 . The integral around C is given by the limit r — 0

1 - 1
de——1 = lm i d 0
ey Bl R S e e e S ey
—27
. . 1
= 313%2/0 BT owli0])
= 127

The integral around the contour C5 running clockwise around the origin is
evaluated along the curve
z = r exp[if] (1442)
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and 6 runs from 0 to — 2 w. The integral is evaluated as

1 - 1
d . ; df ;0
yi,z Zz(z—l—l) rl—%l/o rexpli ]rexp[iG](l—l—rexp[iH])

-2
1
= lim 4 do
rl—%l/o (1+ rexp[if])
= —i2m

Thus, we have the final result

1
dz ——— 271i — 27wi =0 1444
?izz(z—l—l)—’_ T i ( )
or )
dz ———— =0 1445
fc z(z + 1) ( )
This can be verified by explicitly evaluating the integral over a circular contour
z = R exp[i 0] of very large radius, R — oo. In this case one has
fd ! ! /%de [—i0] + O(R™?)
z2 — ~ = exp| — @
=0
(1446)
Example:

Consider the integral
2 1
jfi P (1447)
c z(z+1)
around a contour C circling the origin counterclockwise with | z | > 1.

The Cauchy Riemann conditions are not satisfied at two point z = and
z = — 1 where the derivative is not defined. The function is analytic at all
points in the surrounding area. The region is multiply connected. Two cuts
can be chosen linking the singularities to infinity, cutting the region so that it
is simply connected. We shall choose the cut running along the positive imagi-
nary axis from the origin to 7 oo and a parallel cut running from z = — 1to ¢ co.

Cauchy’s theorem can be applied to the contour C' and its completion run-
ning along oppositely directed segments on each side of the cuts, and two small
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circles C7 and C5 of radius r circling the singularities in a clockwise direction.

Then, from Cauchy’s theorem one has

2 1 2 1 2 1
%dzL+7{ dZL—i_j{ dzL:()(leg)

c z(z+1) c, z(z +1) Cs z(z+ 1)
since the contour is in a singly connected region in which the function is ana-

lytic. The contributions from the anti-parallel line segments cancel in pairs, as
the function is single valued on these lines.

The integral around Cj enclosing z = — 1 in a clockwise direction is
evaluated on the contour

z = —1+4 rexp[if] (1449)

and 0 runs from 0 to — 2 w. The integral around C1 is given by the limit » — 0

1 -2 — 1 '
7{ dz2z7+ = limi/ df r expl 0 ] 21 explif]
o (z+1) r=0 - Jo (

—or . .
_ limi/ o 1+27‘6Xp[.29]
r—0 0 (=14 rexp[if])

= —i27

The integral around the contour C; running clockwise around the origin is
evaluated along the curve

— 1+ rexp[if])r exp[if]

z = r exp[if] (1451)
and 6 runs from 0 to — 2 w. The integral is evaluated as
2 1 -2 1+ 2 i 0
7{ PR limi/ df r exp[ 0 ] ,+ r expl i ]
Cs z(z +1) r—0  Jo rexp[if] (1 + rexplif])

—am 1 + 27 exp[if]
~ lim i
rlg(lJZ/O d9(1+rexp[i9])

= —i27

Thus, we have the final result

2. 4 1
j{dzL 2mi—27i =0 (1453)
c 2(z+1)
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or

2 1
7( de =25~ yn (1454)
c z2(z+1)

13.3 Cauchy’s Integral Formula

We shall assume that f(z) is a function that is analytic in a simply connected
region containing a contour C. Cauchy’s integral formula states that

| -
— ji dz = f(20) (1455)

2 z — 2

if 29 is a point inside the contour C.

Although the function f(z) is analytic in the region, the function

_f) (1456)
zZ — 20
is not analytic everywhere inside the region. The function diverges at z = zj

if f(z0) # 0 and the function and derivative is not defined at zy. Cauchy’s
theorem can not be applied until the region is converted into a simply con-
nected region. This is performed by introducing a line from zy to co, which
runs through the region of analyticity.

A contour can be constructed that runs around a contour C that almost
encloses the point zg, but continuous along both sides of the line towards zy and
traverses around a small circle C” of radius r in the opposite sense of rotation.
Thus, the contour excludes the point zg.

The contour integration lies within the simply connected region of analyticity
and, thus, Cauchy’s theorem can be applied. The integral is evaluated as four

segments
z+e
0= f /(2) o [ /(2)
C zZ — 20 20 zZ — 20

f(z) * f(z)
—&—f”dz’z7zo+/z dz2720

—€

(1457)

Since f(z) is single valued, the integral along both sides of the line cancel. Hence

we have
B f(2) f(2)
0 = ﬁdziz_zo—i-]{”dziz_zo
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On reversing the direction of the contour C” around zg such that C”? = — ',
then
]{ dz e = 7{ dz ) (1459)
C zZ — 20 ’ zZ — 20

where both contours are traversed in the same sense of rotation. The contour
C' is evaluated over a path of radius € around zg, i.e.

z = 20 + 7 exp[if] (1460)

We shall assume that the contour C and hence C’ both run in a counter clockwise
direction, so that 6 runs from 0 to 2 7. Hence, in the limit » — 0 one has

flz) Zﬂi S f(zo + rexplif])
fé;dzzfzo B /0 d0 p[i 6] r expl 0 |
2m
=i [ a5
0
= 2mi f(2)
(1461)

since f(z) is analytic and continuous at zp. Thus, Cauchy’s integral theorem
has been proved.

Cauchy’s theorem can be expressed as

1 & _ f(z0) zp interior
ji dz = { (1462)

2779 z — 2 0 zo exterior

corresponding to zg either inside or outside the contour C.
Example:

Evaluate the integral

1 1 3

el T L (1463)
274 Jo z — 1 271 Jo z — 1

over two contours which run counterclockwise, the contour C’ enclosing the
point z = 1 and another C” which does not enclose z = 1.

From Cauchy’s integral formula one obtains the result

1 flz) 4
Mifcdzz_l_{o o (1464)

which can be verified by explicit integration.

Thus, Cauchy’s integral formula avoids any need to explicitly construct and
evaluate the integral.
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13.4 Derivatives

Cauchy’s integral formula may be used to express the derivative of a function
f(2) at a point zy in a region which is analytic. The point z( is assumed to be
enclosed by a loop C contained inside the region of analyticity.

The derivative is defined as
flzo +Az) — f(z0)

Jim, B0 (1465
on using Cauchy’s integral formula at zg + Az
1 f(z)
27rij€~dzzfzofAz fzo +A2) (1466)
and zq
1 f(2)
d = 14
2w fg * Z — 20 f(z0) (1467)
So one has
PG W U ) R C R O
Az =0 Az Az -0 271 Az Jo z — 29 — Az z — 2

= lim

L 7()
Az =0 27 Jo (z — 20 — Az) (z — 2)
1
S e 2
27i Jo (z — 20 )2
Thus, we have the derivative given by the contour integral

dflzo) _ 1 j[ dz [ (-f(z)] (1469)
C

(1468)

dzo 21 z — 29 )?
where C encloses zg, and f(z) is analytic at all points of the region enclosed by C.

The higher order derivatives can also be evaluated in the same way. This
procedure leads to

dm !
fo) _ b j{ dx | — B (1470)
dzp 27i Jo (z — zp )"t!
which is basically the n-th order derivative of the Cauchy integral formula with
respect to zgp.

240



Thus, Cauchy’s integral formula proves that if f(z) is analytic then all the
derivatives are also analytic.

Example:
Explicitly evaluate the integral

1 z"
dz ———— 1471
271'1'?{; Z(z—z0)2 (1471)

where the integral runs over a clockwise contour enclosing 2y and compare the
result with Cauchy’s integral formula for the derivative.

The integral can be evaluated on the circular contour
z = 2o + 7 expl[if] (1472)

traversed in the counter clockwise direction. The integral is evaluated through
the binomial expansion of z™ about zg
n
(zo +r exp[i@])

1 Z" I
2wi£dz(z—zo)2 N ﬂ/o 40 r exp[i 6]
1 o S n—m ,m-—1 -
= 5= i dGmXZ:OC(n,m)ZO T exp[i(m — 1)80]

= Z C(nym) 2™ 7™ 6
m=0
= CO(n,1) 2571
n 2yt
dzy
dzy
(1473)

since only the term with m = 1 is non-zero. The result coincides with the
derivative of z™ evaluated at zg.

Example:

Evaluate the integral

1 1
dz ——— 1474
27rifc ZzQ(z—i—l) ( )

over a contour that contains the point z = 0 but excludes the point z = — 1.
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This can be evaluated by using Cauchy’s integral formula for derivatives as

1 1 1
ol R e e ey d (475)

Alternatively, on expressing the integrand in terms of partial fractions

1 1 1 1
S 1476
22(z 4+ 1) 22 z+z—|—1 ( )

and then performing a direct integration over a circle of radius € around z = 0
one obtains the result

1 1
dz —— = —1 1477
27m'féc ZzQ(z—i—l) ( )

which agrees with the previous result.

Cauchy’s integral formula for derivatives automatically provides the result
of the integral.

13.5 Morera’s Theorem.

Morera’s Theorem is the converse of Cauchy’s theorem. That is, if a function is
continuous in a simply connected region and

74 dz f(z) = 0 (1478)
C

for every closed contour C' in the region, then f(z) is analytic in the region.

This is proved by noting that since the integral on every closed contour is
zero, an integral on an open contour (in the region) can only depend upon the
end points

zf
Flz) — F(z) = / dz £(2) (1479)
Furthermore, as
. zf
fla) = LG / dz (1480)

Zf T Z

i

one has the identity

Pl = PGy = [ [T T gy

Zf T Z4



In the limit z; — z; the righthand side goes to zero as f(z) is continuous.
Hence, the left hand side is equal to zero. Thus,

F(zp) = F(z)

lim — f(z) =0 (1482)
Zf — Zi Zf T Z
and

Zf = zZi Zf T % dz

2z

Since F(z) is analytic, then Cauchy’s integral formula for the derivatives shows
that all the derivatives of F'(z) are analytic, in particular the first derivative
f(z) is also analytic.

Cauchy’s Inequality

If one has a Taylor series expansion of f(z)
flz) = > Cy 2" (1484)

and the function is bounded such that
| f(z) | < M (1485)

for all values of z within a radius r from the origin and where M is a positive
constant, then Cauchy’s inequality provides an upper bound on the coefficients

|G | 7" < M (1486)

This can be proved using the Cauchy integral

1 f(z)
C, = d 1487
271 szl_r < Z’Vl-‘rl ( )
since only the term proportional to z~! gives a finite contribution to the integral.
Then ) £(2) )
z T
Cnl| = — d —_— 1488
| Cn | 2T 7{_7” “ Zntl 2 7 rntl ( )
which leads to the inequality
| Cn | ™ < M (1489)

243



Liouville’s Theorem

Liouville’s theorem states that if f(z) is analytic and bounded in the com-
plex plane then f(z) is a constant.

This is easily proved by using the Cauchy inequality.

M
[Cal < = (1490)

and let 7 — oo be an arbitrarily large radius in the complex plane. Then for
n > 0 one has
C, =0 (1491)

Hence, the only non-zero coefficient is Cy and the function is just a constant.
Conversely, if the function deviates from a constant the function must have

a singularity somewhere in the complex plane. In the next section we shall con-
sider properties of more general functions of a complex variable z
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14 Complex Functions

We shall first examine the properties of a function that is analytic throughout
a simply connected region.

14.1 Taylor Series

Consider a function that is analytic in a simply connected region containing two
point z and zy. Then Cauchy’s integral formula at the point z yields

f(z) = ! ]{Cdz’ ,f(zl) (1492)

2w

The contour C has to enclose z and we choose it such that it also encloses zg.
Then on writing

1 f(@)
= — dz’ 1493
1) 2772'7{; Z(z’—zo)—(z—zo) ( )
The denominator may be expanded in powers of ( z — zp ) if the contour is
such that for all points 2’ we have | z — 2z | < |2 — 2z |- In this case

the series may be expected to converge. From this one finds the Taylor series
expansion

_ 1 N f) N

f(Z) - 2w Cdz 7;) (Z/ . Zo)n+1 (Z ZO)
o~ 1 d"f(x) n
- z_;) n! dzfo ( %)

(1494)

where Cauchy’s integral formula for the n-th order derivative has been used. If
f(2) is analytic at zp the Taylor expansion exists and is convergent for z suffi-
ciently close to zp.

Schwartz Reflection

The Schwartz reflection principle states that if a function f(z) is analytic
over a region that contains the real axis, and f(z) is real when z is real, i.e,
z = x, then

fz5) = [ (2) (1495)
That is, in this case the complex conjugate of the function of z is a function of
the complex conjugate variable z*.
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The Schwartz reflection principle can be proved by using the Taylor expan-
sion about some point xy on the real axis. Then

f(Z)*;H(Z*iEO) Tl (1496)
Since f(z) is real on the real axis, then so are all the derivatives. Hence,
f(z)n;on!((zw()))dx}}
1 dnf(l‘o)
— — (2 — ) Y
nz:% n! dxf
= f(z) (1497)

where the last line is obtained by identifying the Taylor expansion as f(z) with
the replacement z = z*.

14.2 Analytic Continuation

If two functions f1(z) and f(z) are analytic in a region R and agree in a smaller
region R’ that is contained in R, then the functions are equal everywhere in R.
This allows the function f;(z) which is only known explicitly in some smaller
region to be found in a much larger region.

A function f(z) may be analytic in some region of space, around a point zg.
The region, by definition does not include the closest singularity, which may be
at zs. In the region around zp the function may be Taylor expanded, however it
can not be expanded for values of | z — 2o | which are larger than | z; — 2z |
since the contour C involved in the proof of Taylors theorem must encloses a
point 2z’ which is nearer to zy than the singularity at z,. That is there is a radius
of convergence which is given by the distance from zy to the closest singularity
Zs.

However, since f(z) is analytic inside the radius of convergence we may
choose to Taylor expand about another point, z9 inside the radius of conver-
gence of the expansion about zg. The point zo can be chosen to be further from
the singularity than zg is. Hence, the expansion about zo; may have a larger
radius of convergence.

Thus we have a region in which the both Taylor series converge, and yield the

function. However, the second expansion defines the function at points which
lie outside the original circle of convergence. Thus, the function f(z) has been
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expressed as an analytic function in a region that contains points not included
in the original circle. Thus, the analytic properties of the function has been
continued into a different region of the complex plane.

This process is known as analytic continuation and may be repeated many
times.

It should be noted that analytic continuation can take many different forms
and is not restricted to series expansion.

Example:

Consider the function

1
= 1498
Fe) = (1495)
which can be expanded around zy; = 0 as
fz) = > (=1 =2n (1499)
n=0

and the radius of convergence is determined by the distance to the nearest sin-
gularity, which is at z;, = — 1. The radius of convergence of the expansion
about zg = 0 is unity. The Taylor expansion converges for all the points inside
the unit circle.

This function can be analytically continued, by expanding about any other
point inside the circle of radius 1 from the origin.

Let us first choose to expand about the new point zo = + 1. The function
can be expanded about z3 = 1 by writing

@) = o0 (1500)

) = (1 (s - ) (1501)
n=0

and has a radius of convergence determined by the distance to the closest sin-
gularity which is at z;, = —1, so the radius of convergence is 2. Thus, the
analytic properties of the function been extended to a circle of radius 2. The
new circle of convergence includes the point z = 3. We can now iterate the
process, an define the function over the whole positive real axis.
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Alternatively, one may wish to examine the function on the negative real
axis, or some other region. In this case, one might choose another point inside

the original circle of convergence, say zo = i. The expansion about this point
is expanded about zo = 1 via
7(2) : (1502)
2) =
14+ i+ (2 —1)
as
ﬂ@:;y*U(Z*U(TTWH (1503)
which has a radius of convergence determined by the distance to the closest
singularity which is at z; = —1. The series converges within the region
lz — | < |1 4+i| =z —i|l =2 (1504)

so the radius of convergence is v/2. By choosing a suitable series of overlapping
circles, one can analytically continue the function to the negative real axis, but
the circles always have to exclude the point z = — 1.

It should be noted that a function f(z) may have more than one singularity,
in which case the circle of convergence for an expansion about some point is
limited by the closest singularity.

Example:

A function that can not be analytic continued is given by the Taylor expan-
sion about z = 0, of the function

flz) = 1+ Z 22"
n=0

= 14+ 22 4+ 2% + 28 + 216 4+ .

(1505)
It can be seen that the function satisfies the relation
) = 2+ f(2) (1506)
Furthermore, at the point z = 1 one has
f(1) =1+ f(1) (1507)
which makes f(z) singular at z = 1. Furthermore, since
fz2) = 22 + f(z) (1508)
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and the term f(2?) on the right hand side is singular when 22 = 1, one finds
that f(z) is singular at all the roots of 22 = 1. This process can be iterated to
show that f(z) is singular at all the roots of 22" = 1 for each integer value of
m. There are 2" such singularities for each integer value of m and the singulari-
ties are uniformly distributed on the unit circle. The singularities corresponding
to m — oo are separated by infinitesimally small distances. Hence, the ra-
dius of convergence for z values on the unit circle is infinitesimally small. Thus,
it is impossible to analytically continue the function f(z) outside the unit circle.

14.3 Laurent Series

Some functions are analytic in a finite area but is not analytic in some inner
region. That is the area of analyticity may not be simply connected. For
example, one may have
R
flz) = —2— + 2 4+ 22 + ... (1509)
zZ — 20

in which case one can not obtain a simple Taylor series expansion about the
point zg.

More generally, the function may be analytic inside a ring shaped area of
inner radius r and outer radius R, where R > r. The the area is not simply
connected. It is possible to introduce a line which cuts the plane making it into
a simply connected region. A particular line can be chosen which runs from
a point on the inner perimeter to a point on the outer perimeter. Since the
area is now simply connected one can apply Cauchy’s integral formula to any
contour in the annular region which does not cross the cut we have chosen. In
particular let us choose a contour that consists of two circular segments which
are concentric, the center of the circles is denoted as the point zy3. The radius
of the circles r; and ry are such that R > r; > 7o > r. The contour is
completed by anti-parallel paths running along opposite sides of the cut.

For any point z inside the singly connected region where f(z) is analytic one

has
1 / f(z/) 1 ! f(Z/)
= d + dz) ——
f(z) - 7401 Z féjz z (1510)

271 — z 2w -z

where the first circular contour is traversed in the counter clockwise direction
and the second contour is traversed in the counterclockwise direction. The con-
tribution from the oppositely directed paths along a segment of the cut has
cancelled, since our function is analytic and single valued in the entire annular
region. That is the function f(z) has the same value at points immediately
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adjacent to the cut.

The denominator in both of the integrands of the above expression can be
written as
2 —z= (7 —2)—(z—2) (1511)

and can be expanded. However, it is important to note that for C; one has
|2 — 20| =71 > |2 — 20| (1512)
while for the Contour C5 one has
|z — 20| > |2 — 20| = 12 (1513)

This has the consequence the expansion on contour C; only converges if it

consists of a power series in
zZ — 20
W E— 1514
( — ) (1514)

whereas the expansion on contour Cs is in powers of

Z - z
_ 1515
( zZ — 20 ) ( )
Hence we have,

o 1 - / ’ (Z—Zo)n

flz) = 27”;_:0%01 dz f(z)m
1 - / / (z/_ZO)n

N 2m’7§f@ 2 fZ) = e

oo

= iA (Z_ZO)H‘FZL
-~ n ~ (Z - 20 )nJrl

(1516)
where
1 /
A, = . 7{ ar —IE)__ (1517)
27 Jo, (2 — zp )"t
in which the contour C; runs clockwise. One can define
B,.1 = A_, (1518)
and have A_,, given by
1
A—n — d ! / /7 n—1 1 1
27ri]€~2 2D (= 20 ) (1519)
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and the contour C5 runs clockwise. Thus, we have the Laurent expansion of the
function

fz) = > An(z = 2)" (1520)
Example: :
The function )
flz) = - 1) (1521)
has a Laurent series expansion about z = 0. The simplest method of obtaining

the expansion consists of expressing the function in partial fractions and then
expanding about z = 0

O

1 oo
= —_ - — E Zn
o n=0

1 1
z

(1522)

Hence, the non zero coefficients are A_; and A, for n > 0 and are all unity.

A1 = Ay = 4 = ... =1 (1523)
The Laurent series differs from the Taylor series due to the occurrence of nega-
tive powers of ( z — zp ), which makes the series diverge at z = z.
Example:

The Fermi-Dirac distribution function of Statistical Mechanics has the form

1

flz) = ool = 1 (1524)

find the Laurent expansion about z = 0.

14.4 Branch Points and Branch Cuts

In the above analysis, the functions f(z) were single valued. That is they have
a unique value at each point in the complex plane. This is ensured by the func-
tion only having positive or negative integral powers in the Laurent or Taylor
expansions. Certain functions of a complex variable are multi-valued, in that
more than one value of f(z) is assigned to each point in the complex plane.

251



As a primitive example, consider the function
f(z) =zm (1525)

for integer m. What this equation actually means is that f(z) is described by
the solutions of

m
(f(z)) = z (1526)
The solutions are found by expressing the complex number z in polar form
z = 1, exp [ 10, ] (1527)
and the solution are found in the same form
f(z) = ry exp [ i0; ] (1528)
This leads to the relation between the positive magnitudes
rio= T, (1529)

which has a unique solution

[~

ry =1 (1530)

However, the phases are not uniquely defined. They are only defined up to a
multiple of 2 w. Hence, on equating the phases one has

mby =60, +2mn (1531)

where n is an undetermined positive or negative integer. From this we see that
the function is given by

: 27n ] (1532)

L 0
flz) = ry exp{iz] exp[z
m m
which involves the undetermined integer n. Hence, there exists more than one
solution. Ome can see that there are m different solutions corresponding to
n = 0 and every integer up to and including n = m — 1. These solutions

1
form m equally spaced points on a circle of radius r7* in the complex z plane.
. 1. .
Thus, the function zm is multi-valued.

In general a function such as z®, where « is either an arbitrary rational or
irrational number, the function is expected to be multi-valued.

The function z= has m different values, but on changing z continuously each
of the values change continuously. That is, the function has m branches which
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are continuous in z. Each branch can be considered to define a single valued
function, as long as two branches do not give the same value at one point. How-
ever, we see that if z traverses a contour wrapping around the origin exactly
once, then 6, increases by exactly 2 7, and one branch merges with the next as
the phase of f(z) has increased by 27” In this case, the origin is a branch point
of the function.

The function can be converted into a single valued function by introduc-
ing a branch cut and agreeing that the contour shall not cross the branch cut.
However, it should be noted that the function does not have the same value on
either side of the branch cut, as the phases are different by + 2?“

Since a function is not single valued on any contour that wraps around
z = 0, the branch cut is chosen to start at the branch point z = 0 and runs to
infinity, where the function is not analytic. For convenience we might choose the
cut to run along the positive real axis. In any case, once a branch cut has been
chosen 6, is restricted to be greater than 0 and less than 2 7 so there should be
no confusion as to which value of the function belongs to which branch. With
this convention, each of the branches define singly valued functions. Again, it
should be stressed that the function does not have the same value on both sides
of the branch cut as the phases are different.

If the contour where chosen to cross the branch cut, the function would be
identified with the value on the next branch etc. In this case, one could de-
fine the complex plane to consist of several copies, (in which the phase of z is
advanced by 2 7 between otherwise identical points in successive copies). The
function in this enlarged complex plane is single valued.this manner of extend-
ing the complex plane to different phases, is akin to cutting identical sheets
representing the complex plane, and joining the edge of the cut adjoining the
lower half complex plane of one sheet to the edge of the cut adjoining the upper
half complex plane of the next sheet. Thus, one has a spiral of continuously
connected copies of the complex plane. The function Zm is single valued on this
spiral sheet, and also repeats after m sheets have been crossed. The m-th sheet
is identified with the zeroth sheet, and this construct is the Riemann surface of
zw. The Riemann surface consists of m sheets.

If a contour is chosen to wind around the origin by 2 7 then, starting with
the phase given by n = 0, one has

2
% dZ Z# = 1 Tm:;l / do exp |:’l M 0:|
c 0 m

mt1 m ( {,27r} )
= rm —— | exp|t— | — 1
m + 1 m
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1 m 2T 1
= m X — —
zrerl epzm

This integral is non zero if m # 1 and is zero when m = 1 for which the func-
tion is single valued. The multi-valued nature of functions can make Cauchy’s
theorem inapplicable.

(1533)

Example:

Another important example is given by
f(z) = Inz (1534)
or in polar coordinates
fy=Inr + 146 (1535)

Thus, In z is infinitely multi-valued. Furthermore, it is the multi-valued nature
of In z that makes the integral

dz

= 271 1536
. T ( )

= Inz

when integrating around a contour circling about the origin once.
Example:

The function .
flz) = (22 = 1)2 (1537)
can be factorized as

Fiz) = (z—1)2(z+ 1)2 (1538)

The first factor has a branch point at z = 1 and the second factor has a branch
point at z = — 1. The branch cut has to connect the two branch points. For
convenience one can represent

z —1=mr exp{igpl] (1539)
and
z+ 1 =rmr exp{igog] (1540)
Then the phase of f(z) is given by
% (1 + ¢2) (1541)
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The introduction of the branch cut makes the function single valued. Con-
sider a contour starting at + 1 running down to — 1 in the upper half complex
plane and returning to 4+ 1 below in the lower half complex plane just below
the branch cut.

As the contour rotates around the branch point + 1 the phase ¢; changes
from 0 to m while 9o = 0. As the contour rounds the branch point — 1, the
phase o changes by 2 7. Secondly, as the contour returns to the point + 1 and
circles around it back to the start ¢; changes from 7 to 2 7. In this loop the
total phase changes by 2 m, hence, the function is single valued.

14.5 Singularities

An point zy where a function is not analytic or single valued, but is analytical
at all neighboring points is known as an isolated singularity. In this case one
can draw a contour around the singularity on which the function only has no
other singularity within it. The Laurent expansion yields a series which exhibits
isolated singularities.

A function that is analytic in the entire complex plane except at isolated
singularities is known as a meromorphic function. Examples of meromorphic
functions are given by entire functions, ( as they have no singularities in the
finite complex plane ), functions which are ratios of polynomials ( as they only
have isolated singularities ) and functions like tan z and

fz) = exp[z]%l (1542)
This function has isolated singularities at
z =1i2mn (1543)
for integer n.
Poles
In the Laurent expansion one has
f(z) = i an (2 — 20 )" (1544)

Let the highest negative order for which the coefficient is non zero be — n. That
isa_, # 0, and the higher order terms a_,, are zero for — n > — m. In this
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case one has a pole of order n. In this case, one has

a, Ay
e e P e

A pole of order one is called a simple pole. It should be noted that the function
is single valued on a contour going round a pole, as it does return to its original
value after it has completed the contour, and f(z) varies continuously on the
contour.

Example:

The function

sin z
f(z) = 5 (1546)

has a pole of order 5 as

) oo N 22n+1

n=0

SO

sinz i( 0 (1548)

26 _n:O (2n 4+ 1)!

which leads to a pole of order 5.
Essential Singularities

If the Laurent expansion has terms of negative orders running up to — oo
then the function has an essential singularity. The behavior of a function near
an essential singularity is pathological.

Example:

The function

1
f(z) = exp [ ~ } (1549)
has an essential singularity at z = 0. The function has the expansion
1 /1\"
= — | - 1550
e =% 5 (3) (1550)

which contains terms of arbitrarily high negative orders. The pathological be-
havior of this function is seen by examining how the function varies as z tends
to zero. If z approaches zero from the positive axis then f(z) tends to infinity,
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on the other hand if z tends to zero along the negative real axis, then f(z) tends

to zero. In fact by choosing an arbitrary path to the point z = 0 one can have
lim,—o f(z) = b for any complex b. For example, on inverting the equation
one can find solutions 1
z = —— 1551
2win +1lnbd ( )

where n are integers, as n approaches to infinity z approaches zero, while the
function remains equal to b.

Branch Points

A point zq is a branch point of a function if, when z moves around the point
zp on a contour of small but non-zero radius, the function does not return to
its original value on completing the contour. It is assumed that f(z) varies
continuously on the contour.

Example:

The function

flz) = 22 — a? (1552)
has branch points at z = + a. The function does not return to the same value
if the contour warps around one pole once, say z = a, but does return to the

same value if the contour encloses both branch points.
Singularities at Infinity

If one makes the transformation

- % (1553)
and
f(z) = g(§) (1554)

then, if the function g(§) has a singularity at & = 0 the function has a singu-
larity at infinity.

Example:

The function

f(z) = sinz (1555)
has an essential singularity at infinity since
1
g(§) = sing
( 3
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o0 ( -1 )2n+1 1
= 2 (2n + 1) @ntD) (1556)

n=0

has terms of all negative orders.
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15 Calculus of Residues

15.1 Residue Theorem
If a function f(z) which has a Laurent expansion
fz) = > An(z— 2)" (1557)
n=-—oo

then if f(z) is integrated around a counterclockwise contour that only encloses
the isolated singularity at zy one has

1 dz f(z) = A (1558)

2mi J,

where A_; is the coefficient of ( z — 2 )~! in the Laurent expansion is known
as the residue of f(z) at the pole z9. We shall denote the residue at the polezg
by R(z0).

The residue theorem states that the integral of a function around a contour
C that only encloses a set of isolated singularities, then the integral

1
jé dz f(z) = En: R(zn) (1559)

2w

is just the sum of the residues of the enclosed poles.

The Residue Theorem can be proved by using Cauchy’s theorem on the
counterclockwise contour C' supplemented by segments C,, that run from C to
the isolated poles and circle them in the opposite sense of rotation. The straight-
line portion of the segments C,, cancel in pairs, leaving only the contributions
circling the poles in the opposite sense of rotation. The circular integral around
any singularity C,, can be evaluated on an infinitesimal circle around the pole,
leading to the result — R(z,). The negative sign occurs, because we have
evaluated the integral on a clockwise contour. Hence, Cauchy’s theorem leads
to

1
fg dz f(z) — zﬂ: R(z,) = 0 (1560)

2T

Thus, the problem of evaluating the contour integral is reduced to an algebraic
problem of summing the residues.

Example:
Evaluate the integral
o r
/ v (1561)

—00
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This can be evaluated by decomposing the integrand as partial fractions

r 1 1 1
_ _ 1 _ 1562
@) = a1 Qilx—iF x+iF] (1562)

which shows the poles at * = =+ ¢ I with residues F % 1.

The contour integral can be evaluated by closing the contour on a semi-circle
at infinity in either the upper or lower half complex plane. The contribution
from the semi-circular contour at infinity vanishes since if

z = Rexp[i@} (1563)
then r
ngnoo | f(z) | ~ = 0 (1564)

Hence, the contour at infinity is given by

™ r
R/O do | f(z) | ~ 7 5 (1565)

which tends to zero as R — oo.

One completing the contour in the upper half complex plane one encloses

the pole at z = 4 I in a counter clockwise sense and obtains the final result
> r 271
d = 1 = 1
/_Oo N Y " (1566)

If the contour had been evaluated in the lower half plane, the contour would
enclose the pole at z = — i I' in a clockwise sense, since the residue at this
pole is negative, and the clockwise contour produces another negative sign, we
obtain the same result.

15.2 Jordan’s Lemma

Consider the integral on an open curve C'g consisting of the semi-circle of radius

R in the upper half complex plane. The semi-circle is centered on the origin.

Let the function f(z) be a function that tends to zero as % as | z | — oo,
then

lim -

R—o00 2m1

fCR dz exp[ikz} fz) = 0 (1567)
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where k is a positive number.
Proof
On the contour one has
z = Rexp[i@} (1568)

so the integral can be expressed as

’23”, fCR dz exp[ikz}f(z)

= QE / dﬁexp[—kRsinﬂ—i—ikRCOSG}f(Rexp[i@])‘
n 0
R [T . .
< —/ dﬂexp[kRsmH] ‘f(Rexp[zG])‘
2w 0
< i/ d@exp[—kR29] ‘f(Rexp[iG])‘
27 Jo m

i (1ol o]

which tends to zero as R — oo.

(1569)

It should be noted that any attempt to evaluate the integration on a semi-
circle in the lower complex plane may diverge if k is positive. Likewise, if k
is a negative number the integration may diverge if evaluated on a semi-circle
in the upper half complex plane of radius infinity, but will tend to zero on the
semi-circle in the lower half complex plane.

15.3 Cauchy’s Principal Value

The Principal Value of an integral of a function f(z) which has only one simple
pole at xg on the real axis, is defined as

+oo To—€ e}

Pr / dzr f(z) = lim / dz f(z) + / dz f(z) (1570)
—00 e—=0 —00 xo+e

The integral is independent of € since the contributions to the integral within e

of the pole are of the order of the residue and have opposite sign. Furthermore,

as the intervals are symmetrically located about the pole the contributions can-

cel to order e.

261



Integrals of this kind can often be evaluated using contour integration.

For example, if the function only has simple poles in the upper half complex
plane and can be evaluated on the semi-circle Cr at infinity in the upper half
complex plane. The principal value integral can be evaluated by integrating over
a contour that runs from — co to (9 — & ) then follows a small semi-circle of
radius € around the pole at xg, joins the real axis at ( g + & ) then follows
the real axis to + oo and then completes the contour by following a semi-circle
of infinite radius (R — o0) in the upper half complex plane.

Then the principal value integral and the integral over the small semi-circle
of radius ¢ around z( is equal to 2 7 i times the sum of the residues enclosed
by the contour.

For example, if f(z) is analytic in the upper half complex plane on the
semi-circle at infinity in the upper half complex plane we have

Foo x z
Pr / dx @) + ]{c dz O = im f(zo) (1571)

r — X9 zZ — X

— 00

It does not matter if the semi-circle of radius ¢ is taken to be in the upper half
complex plane or the lower half complex plane.

If the small semi-circle is chosen in the lower half complex plane the inte-
gral runs counter clockwise and runs half way around the pole, and contributes
7 i f(xo) to the left hand side, but the right hand side has the contribution of
2w f(zo) as the pole at xz( is enclosed by the contour.

On the other hand if the contour is closed in the upper half complex plane,
the semi-circle is in the clockwise direction and contributes — 7 ¢ f(xg) to the
left hand side and the right hand side is zero, as the pole at z( is not enclosed
by the contour.

Example:

Consider the integral

I = / dz 222 (1572)
0 m
this is evaluated as
I i dxexp[—f—zx]—exp[—zx]
21 Jo T
1 too j
= e [ ol (1573)
21 oo T
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However, on using Jordan’s Lemma and the Cauchy Principal value formula one
has

+oo ;
Pr/ dacm:iﬁexp[O]:iﬂ (1574)
o T
Hence, we have shown that
e sin x m
I = d = — 1575
[ (1575)

An alternate method of evaluating a Cauchy Principal integral consists of
deforming the contour. The contour is deformed to lie € above the real axis. In
this case, the integral becomes

/ R (G (1576)

(E‘f‘Z’E—CE(]

— 00
on changing variable from x to z one has

A Ny L P C R

zZ — x9 + 1€ oo z —x9 + 1€

— 00

since f(z) is continuous at all points on the contour.

This is equivalent to the principal value integral and the small semi-circle,
or

+oo
Pr / dx e i 7 f(xo) (1578)

zZ — X9

— 00

Hence, we have
+00 Foo
/ dz & = Pr / dz ION. im f(zo)  (1579)
oo zZ — Ty + 1€ 0 zZ — To

which yields the identity

1 1
im — = Pr—— - 1
egHOz—xo—i—is rz—xo imd(z — xo) (1580)

The truth of this result can also be seen by writing

1 z — X 5
= — 4 1581
z — a9 +ie  (z — m)? + 2 Z(Z—$0)2+82 ( )
in which the first term on the right not only does not diverge at z = xzg but

is zero. This term cuts off at a distance € from the pole, and thus corresponds
to the Principal value. The second term on the right is a Lorentzian of width e
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centered at xp. As the integrated weight is 7, this represents the delta function
term in the limit ¢ — 0.

Example:

Evaluate the function

o) = 271”, [ —L (1582)

where ¢ > 0.

For £ > 0 the integral can be evaluated by completing the contour in the
upper half complex plane as the semi-circle at infinity vanishes, whereas for
k < 0 the contour can be completed in the lower half complex plane. If & > 0
we close the contour in the upper half complex plane, and the integral encloses
the pole at z = ic. Hence, we have

21 r — 1€ 2w zZ — 1€

1/+°° exp[ikx}+ ! ﬁRMexp[ike} (1583)

— 00

or on using Jordan’s Lemma

1 too exp[ikz]
el (1584)

Hence, for k& > 0 one has

o) = 1 (1585)

On the other hand, when k£ < 0, the integral must be closed in the lower half
complex plane. The contour does not enclose the pole and Jordan’s Lemma
shows the contour at infinity yields a vanishing contribution. Hence for &k < 0

one has
Ok) =0 (1586)

Thus, O(k) is the Heaviside step function.
Example:
Evaluate the integral
00 exp { 1t ]
/ dz _ (1587)

2 _ 12
—so T k
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First we write

/Z e (z ixpk{)i(t;l k) (1588)

The integrand has two poles, at x = =+ k. The integral can be evaluated as a
principal value integral and the contribution on two small semicircles of radius
€ about x = £ k.

For ¢ > 0 the integral can be evaluated by completing the contour in the
upper half complex plane, in which case no poles are enclosed. The contour at
infinity yields zero by Jordan’s Lemma. Hence, one has

oo exp{itx} exp{—z’tk] exp[—i—itk]
Pr[wdmw—ﬂiT—wiTzo
(1589)
Hence, for ¢ > 0, we have
e exp[itm] 7 sint k
Pr /_OO dx o k (1590)

For ¢ < 0 the integral can be evaluated by completing the contour in the
lower half complex plane, in which case no poles are enclosed. The contour at
infinity yields zero by Jordan’s Lemma. Hence, one has

oo exp{itx} exp{—z’tk] exp[—i—itk]
(1591)
Hence, for ¢ < 0, we have
o exp[itm] 7 sint k
Pr /_OO dx ot + - (1592)
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Thus, combining these results we have the single formula

i exp[itm} mosin| t |k

— 00

15.4 Contour Integration

Example:

Evaluate the integral

2
de
1 = _ 1594

/0 a + b cosb ( )

Using the substitution
z = exp [ id ] (1595)

one can write the integral as a contour integral around the unit circle in the
complex plane

7{ dz 1
I = -3 — 5
c za+3(z+ 271
2
= —9 d
’f{; b2+ 2az + b
214 1
= - — z
b Jo 22+ 232+ 1
(1596)
The denominator has zeroes at
a a\?
= — - + - -1 1597
s= -5 (3) (1597)
For a > b the solution
a a\?
= — = — -1 1598
z b + <b) ( )
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lies inside the unit circle. As can be seen directly from the coefficients of the
quadratic equation, the product of the solutions is equal to unity. Thus, the
second solution has to lie outside the unit circle. In the case a > b, one has

21 1
I = —— dz a AV a a\o
bJo (z2+F5 +VE?P-1)(z+§ — V()2 —-1)
2 27
B b2/ (92 -1
_ 27
a aZ — b2
(1599)
Example:
Evaluate the integral
2
I = / df cos®™ 6 (1600)
0
by contour integration.
On the unit circle
z = exp { i0 ] (1601)
one has
-1 2n
I = —; dz (z + z )
c < 2
C(2n,n)
= 27 92n
B T (2n)!
22n=1 pl nl
(1602)

where we have used the binomial expansion and noted the integral only picks
up the term which gives rise to the pole at z = 0. The binomial coefficient of
the term z° in the expansion is C'(2n,n), which leads to the final result.

Example:

Evaluate the integral

2
1
df —— 1
/0 a + b sind (1603)
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with a > b.

We shall change variables from 6 to z via
z = exp [ i6 ] (1604)

so the integral can be written as a contour integral over the unit circle

dz 1

iza+b%

- Q%d 1
IR AR W R

I =

(1605)
The denominator has poles at
2
) a
zz—z:bz“(b) -1 (1606)
The pole at
2
a a
= —iZ iy (5) -1 1
z 1 b + 1 (b) (1607)

is inside the unit circle. The integral can be written as

1

. dz[ :
T (o o/(3) 1)

2w
2 _ a2

The last line of the integral is evaluated by noting that only the pole of the first
term is inside the unit circle.

Example:
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Evaluate the integral

27 do
I = 1
/0 (a + b cosb)? (1609)

Using the substitution
z = exp [ i0 ] (1610)

one can write the integral as a contour integral around the unit circle in the

complex plane
d 1
I = —i 7( i
c

(1611)
The denominator has double zeroes at
a a\?
i=—7 + (b) -1 (1612)
For a > b the pole at
a a\’
z:zaz—g—i— <b) -1 (1613)

lies inside the unit circle. The other pole is located at the inverse of the position
of the above pole, and therefore lies outside the unit circle. In this case, one has

49 z
B A P () N P NV

87w d z
b2 dz\ (2 + + (02 — 1 )2

e




2ma
(a2 — 12)3

(1614)

where Cauchy’s integral formula for derivatives has been used to evaluate the
contribution from the pole of order 2.

Example:

The function
2 sin*w T
T wT
occurs in the derivation of the Fermi-Golden transition rate, in second order
time dependent perturbation theory. In the limit 7' — oo this becomes a
Dirac delta function expressing energy conservation. Evaluate the integral

o) 2
sin“w T
dw ———— 1616
|t (1616)

(1615)

— 00

The integral can be expressed as

e 1 - 2wT e 1 - L w T *° 1 - —twT
/ do cos2 w :/ o exp[ + i w ]+/ dw exp[ —iwT|

4w2T
(1617)
The two contributions can be expressed as contour integrals, the first can be
closed by the semi-circle at infinity in the upper half complex plane, and a small
semi-circle of radius r around the double pole

7{ dzl - exp[2—|-izT]

s 2w2 T . 4w2T e

o 4w T 4r T
=0
where we have Taylor expanded the function about » = 0, and the contour
does not enclose the pole. Hence, we have
o 1 — exp[+iwT] .
[ N w 12T i (1619)

Likewise, the other term can be evaluated by closing the contour in the lower
half complex plane

(1620)

=1

e 1 — exp[—iwT]
d
k/ w 12T

PP

— 00

270

oo _ : 0
/ dwl exp[+sz]+i/ df exp| — i 0] ! (—irTexp[—i—iG])

(1618)



On adding these two contributions one has the final result

o sin?w T T

dw ———— = = (1621)
/_ o w2 T 2
which shows that the function has weight unity. Furthermore, the weight is
distributed in a frequency interval of width given by %, so for T — o0 one
obtains the energy conserving delta function

) 2 (sinw T
Example:
Evaluate the integral
o) 3
sin® x
/_ _ dx 3 (1623)
As the function is analytic at z = 0 the integration along the real axis can

be deformed slightly near the origin in a semi-circle of radius ¢ in the lower half
complex plane. This contour does not contribute to the integral in the limit
€ — 0. The integrand can be expressed as

exp[+3ix] — 3exp[+ix] + 3exp[—ix] — exp[—3ix]
8 3 z3

(1624)

and the contribution to the small semi-circle from the terms with the positive
phases cancel to order € with those with the negative phases.

The contour can be closed in the upper half complex plane for the terms with
the positive phases. The contour encloses the pole of order three at x = 0,
while the contour for the term with the negative phases must be closed in the
lower half complex plane. This contour excludes the pole at x = 0. The end
result is that the integration is determined by the residue at x+ = 0 which is
evaluated from Cauchy’s formulae for derivatives as

6
1625
16 4 ( )
Hence, the integral is evaluated as
o sin® z 37
/ dr —5— = — (1626)
oo T 4
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Example:

Evaluate the integral

[~ expl a x|
s /_DO i SE S (1627)

where 0 < a < 1.

The integral is convergent as when x — oo the fact that a < 1 makes the
integrand tends to zero. Also, when z — — oo the integrand also tends to zero
asa > 0.

The integration is evaluated on a contour which runs along the real axis
between (—R, R) then up to R + 2 7 ¢ and then runs anti-parallel to the real
axis from R + 2 7 ito R — 2 w4 and then back down to — R. This particular
contour is chosen due to the fact that the integration on the upper line has

1 1

= 162
explz +i27] — 1 exp[z] — 1 (1628)

The two vertical segments vanish as R — oo as the integrand vanishes as
exp[ —a R]orexp] — (1 — a) R]. Thus, the contour integral is given by

]{dz expl a z | _ /°° i expla z ] _/°° d$exp[ax+i27ra]
exp[z] + 1 oo explz] + 1 oo exp[z] + 1
) > expl a x ]
= (1 - 2 dr —————
( exp| @ Wa])[m xexp[x]—i—l
(1629)
This contour encloses the pole at z = 7 4, which has a residue given by
exp[(a — 1)7mi] = — exp[inma] (1630)
Hence, we have
) ° expl a x| . .
1 - 2 do —PL2T]
( expl @ 7ra])/_oo xexp[:c]+1 miexplimal
(1631)
or in final form, one has
oo
j/ gp S®laz] o (1632)
oo exp[z] + 1 sin 7 a
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Example:

The gamma function is defined by

I'z+1) = / dt t* exp [ — t} (1633)
0
for x > — 1. Show that
/ dtt* sint = T(z+1) cos =2
0 2
/ dtt* cost = —T(z+1) sin%x
0

(1634)

Consider the contour integral defined by

fc dz ot exp{ _ z} (1635)

where C' starts at the origin and runs to infinity, then follows a segment of a
circular path until the positive imaginary axis is reached. The contour is closed
by the segment running down the positive imaginary axis back to the origin.

This integral is zero, as no singularities are enclosed

?{ dz 2* exp{ - z] =0 (1636)
c
In addition, due to the presence of the exponential factor

exp [ - R 0059} (1637)

in the integrand, integral over the quarter circle of radius R — oo vanishes.

Thus,
/ dxa:texp{—x} :i/ dyitytexp{—iy} (1638)
0 0

or on using the definition of the Gamma function

rt+1) = iwp[it;}b/ dyfexp[—iy} (1639)
0
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On multiplying by a factor of
exp [ - — } (1640)
one obtains
.t . [ . .
exp | — i Lit+1) =4 dyy' exp| — iy (1641)
0

and on taking the real and imaginary parts one obtains the results

dtt* sint = T(zx+1) 005772—%
0
oo
/ dtt* cost = —T(z+1) sin%
0
(1642)
as was to be shown.
Example:
Evaluate the integral
o0 I‘oé
1 = de——— 1643
/0 TE 22 ( )

fora < 1.

The function has a branch point at x = 0. A branch cut can be drawn along
the positive real axis. A contour can be drawn which performs a circle of radius
R at infinity and a counter clockwise contour at radius r and two anti-parallel
segments on opposite sides of the real axis.

The contribution from the circular contour at infinity vanishes as the inte-
grand vanishes as R*~2. The contribution from the clockwise contour around
the origin vanishes as r**! as r — 0. The contribution from the two anti-
parallel segments do not cancel as the function just below the real axis differs
from the function just above the real axis by the phase exp[ ¢ 2 m « ]. Hence,
the integral around the contour reduces to

idz%ﬂz(l—exp{iQwa})/o dmxzxi—i—l (1644)
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The contour encloses the two poles at x = =+ i which have residues

exp{iugl)ﬂ'a}

R =
+ + 24

Hence, one has

1—e 12T /mdmixa T ex i—ﬂ-a e igﬂ-a
— ex = — eX
P s Pl Pl

and on factoring out exp[ ¢ m « ] from both sides, one has the result
> o sin &
[t - (22)
0 ¢ + 1 sinm «
s
= _ 1647
(2 cos 5% ) ( )

Example:
Prove that - N (1 )
x m -«
d = 1648
o ng(1Jr202)2 4 cos 2 ( )
Example:

Evaluate the integral

e In x

The integrand has a branch point at x = 0. A branch cut can be introduced
along the positive real axis. The integral can be represented as the sum of
a clockwise semi-circular contour around the branch point of radius r and a
counter clockwise semi-circular contour at infinity of radius R, and an integral
just over the entire real axis. The contour at infinity yields a result of the order
R~! which vanishes as R — 0o . The contour around the semi-circle of radius
r has the magnitude r Inr which vanishes as » — 0. The remaining integral
over the real axis result in the expression

In z e Inp e 1
dr —— = 2 dp —— ) dp —— (1650
fcngﬂﬂ /0 pp2+a2+”/o Py 1650)
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where we have used the polar representation of the complex number z
p exp[i0].

The contour encloses the pole in the upper half complex plane at z = i a.
The residue at the pole is

R =

1 us
1 i — 1651
QZ_a(na—i—zz) (1651)

Hence, the contour integration is evaluated as

> Inp .o ™ s
2/0 dpp2+a2+2ﬂ'2a=a<lna—|—z>

5 (1652)
Thus, we have the final result
e Inz T
/0 dmm = 54 <1n a> (1653)
where a > 0.
Example:
Prove that - W2 2
/0 dx < T+ 2 > =3 (1654)
Example:
Show that

Am“<1:w>:aﬁ%

n

(1655)

by integrating over a contour composed of the real axis an arc at infinity of
length R (£7), and a straight line back to the origin.

The segment of the contour at infinity vanishes. The two straight line seg-
ments are evaluated as

[ar(orw) o0 [ o (v5) oo

1 + s»

where

z = s exp {2 h} (1657)
n
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along the second segment. The contour integral is equal to the residue of the
pole at

2 = exp {2 T ] (1658)
n
which is enclosed by the contour. The residue has the value
1 1
Rlexp{iw} (1659)
nz"" n n

Thus, we have

<1—exp[i2n7r]) /OOO da:(l_:xn> - —2;i exp{iﬂ (1660)

which on dividing by the prefactor can be re-written as

/OOO dx ( 1—|—1x"> _ sn(l:();;) (1661)

as was to be shown.

15.5 The Poisson Summation Formula

The sum

> fn) (1662)
n=0

can be evaluated as a contour integration using the Poisson summation formula.
The method is based on the fact that the function

exp{i27rz]+l 1

- (1663)
. 1 tanT 2
exp [ 1272 ] -1
has simple poles at z = n for positive and negative integer values of n, with
residues 1
R, = — (1664)
T

The summation can be written as a contour integration, where the contour
encircles the poles and avoids the singularities of f(z). Thus, the summation
can be expressed as

> ) = 5 )z L 49 (1665)
n=0

tanm 2
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and the contour can be deformed as convenient. If the contour at infinity van-
ishes, the integration can be evaluated along the imaginary axis.

Example:

Express the sum
=1
E — (1666)
nm
n=1
for m > 2, as an integral.

One can express the sum as a contour integrations around all the positive

poles of cot 7 z,
o0

1 1 1 1
Yo — = — ¢ dz — (1667)
= n" 21 Jo tanm 2z 2™

The function f(z) has no poles except the simple pole at z = 0, so the contour
of integration can be deformed. The integrations can be deformed from C to
C' which is an integration along both sides of the positive real axis, running
from 1 to co. The small anti-parallel segments cancel, so the infinite number of
circles of C have been joined into the closed contour C’. The contour can then
be furthered deformed to an integral parallel to the imaginary axis

1
= + iy (1668)

and a semi-circle at infinity. The contour at infinity vanishes as m > 2. Hence
we have

= 1 i [ 1
— = = dy tanhmy ———
;nm 2/4>o Y EEEE
i [ 1 1
= - dy tanhm y - - -
2/0 [(éJrzy)’" (é—zy)m]
/Ood tanh I L
= y tanh7y Im | 4
0 (3 —iy)™
(1669)
Thus, for example with m = 2 one has
— = dy tanhmy —————
R T
(1670)
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Example:

Evaluate

> m (1671)

n=—oo

where a is a non-integer number.

This can be evaluated as a contour integral

1 1

007(71) = — 2 CSCTM 2 ————
;(a+n)272i Cd (a + 2)2 (1672)

in which the contour runs on both sides of the real axis, but does not enclose
the double pole at z = — a. The function cscw z has poles at z = 7 n and

has residues 1
—(=1) (1673)

™

The contour can be deformed to infinity, and an excursion that excludes the
double pole. The excursion circles the double pole in a clockwise direction. The
contribution from the contour at infinity vanishes. Thus, we find that the sum
is equal to a contribution from the clockwise contour around the double pole.
The residue at the double pole z = — a is

— 7w cesema cotwa (1674)

Hence, we have evaluated the sum as

o~ (—1)"
Z (axn) = nlcscma cotma (1675)
n=0

Example:

Evaluate the sum

3 T (1676)

22 + n2 72

Let

o

f(z) = Z ﬁ (1677)
n=1
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then

oo

2x 1
Z (22 % nZ 2] = 3.3 %Cdzcotﬂ'z f(z) —
n=-00 poles of f(z
(1678)
where C is a closed contour enclosing the real axis and the poles of f(z). The

contour integral vanishes as the contour is deformed to infinity since | f(2) | —
0. Hence, as the poles of f(z) are located at

and the residues are coth x, one has

oo

2 x
or
th - - = 1681
coth x ;:1 g n2 = ( )
On integrating this relation from x = 0 to x = 6 one obtains
n=1
or

slnh@ ad 62
H ( —3 ) (1683)

On analytically continuing this to complex 6, such that § = i ¢ one obtains a
formulae for sin ¢ as a product

o0 2
. ¥
sing = ¢ I | (1 ~ e > (1684)

in which the zeroes appear explicitly.

15.6 Kramers-Kronig Relations

The Kramers-Kronig relation expresses causality. The response of a system can
be expressed in terms of a response function. The response of the system A(t)
only occurs after the system has been perturbed by an applied field B(¢') at an
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earlier time ¢'. The general relation between the response and applied field is
given by linear response theory and involves the convolution

At) = /Oo dt' x(t —t') B(t) (1685)

where the response function is defined to be zero for ¢ > ¢, i.e.
x(t) =0 t <0 (1686)

The response x(t) represents the time variation of A(t) if the applied field, B(t),
consists of a delta function pulse of strength unity occurring at time ¢’ = 0.
When Fourier transformed with respect to time, the linear response relation
becomes

Aw) = x() B) (1687)

which relates the amplitude of a response A(w) to the application of a time
dependent applied field with frequency w and amplitude B(w). The quantity
X(w) is the response function. Causality leads to the response function being
analytic in the upper half complex plane and on the real frequency axis. The
response function x(w) usually satisfies the Kramers-Kronig relations.

Consider a function x(z) which is analytic in the upper half complex plane
and real on the real axis. Furthermore, we assume that

lim x(z) — 0 (1688)

|z| —o0

so that the integral on the semi-circle at infinity in the upper half complex plane
is zero. The Cauchy integral formula is given by

(z0) = 1 7{cdz X(Z)ZO

2w z —

(1689)

if zg is in the upper half complex plane. Since the semi-circle at infinity vanishes

x(z0) = — /oo g X2 (1690)

271 J_ o zZ — 20

On varying zg from the upper half complex plane to a value wy on the real axis,
the integral becomes the sum of the Principal Value and a contour of radius ¢
around the pole. Hence,

Pr ™ x(z) X(wo)
_ d 1691
X(wo) 277@'/,00 Zz—woJr 2 (1691)
or p oo
X(wo) = — 4z XG) (1692)
T J_ oo Z — wp
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On taking the real and imaginary part of this equation one has the two equations

P o0 I
Real x(w0) = - doo T X(W)

— 00 W — Wwo

(1693)

and P - Real
Im x(wo) = — — d Bealx(@) (1694)
T w — wo

— 00

which are the Kramers-Kronig relations.
Symmetry Relations

An applied field of frequency w can usually be expressed in terms of an
amplitude A(w) or A(—w), since for a real field A(¢) one has

A*(w) = A(—w) (1695)
Hence, one expects that the response function may also satisfy
X'(w) = x(-w) (1696)

This implies that the real and imaginary parts, respectively, are even and odd
as

X(w) = Real x(w) + i Im x(w) (1697)
X*(w) = Real x(w) — i Im yx(w) (1698)
Hence
x(—w) = x"(w) = Real x(w) — i Im x(w) (1699)
and thus
Real x(—w) = Real x(w)
n x(—w) = —Tm ()
(1700)

These symmetry relations can be used in the Kramers-Kronig relations

P > I

Real y(w) = °F P {C)]
X

T J_ w — Wwo

[eS] e8] _
L mmwwy_g/ Ly Imx(=w)
T Jo w — wo ™ w + wo
1 e I 1 I
:,/ dwm+,/ do X (W)
T Jo w — wo T w + wo
2
us

/ Y Im y(w)
0

2 _ 2
w w;

(1701)
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and similarly for the imaginary part, one can show that
Pr [ Real x(w)
_ - o A

o) = - [ do X
_ 2 / d 20 2Real ng)
T Jo w? — wj

(1702)

This representation of the Kramers-Kronig relation is useful as perhaps only ei-
ther the real or imaginary part of the response function may only be measurable

for positive w.

15.7 Integral Representations

The generating functions can be used to develop an integral representation of
the special functions. For example, if

gla,t) = Y falz) t" (1703)
n
then the function f,,(x) can be identified as a contour integral
1
W(z) = dt g(x,t) =+ 1704
fu@) = 57 gt (1704)

around a contour C running around the origin, but excluding any singularities
of g(z,1).

Hence, one can express the Bessel functions as

1 €T -1 —(n+1)
_ Ty - 1
o) = 5 jg dt exp { (it )} ¢ (1705)
The Legendre functions can be expressed as
1 1
Py (z) = - ¢ dt =+ D) 1706
(@) 2w1% V1-2zt+ 12 (1706)
The Hermite polynomials can be written as
1
H,(x) = . }1{ dt exp [ — 2+ 2at ] (1) (1707)
2mi
and the Laguerre polynomials can be written as
exp | — 13”_’5 ;
Ln(z) = ! jg dt = (D) (1708)
" 2ma 1 -t
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