Topic 25 — Diffraction and Resolution

L25.1 Resolution of a slit

We have seen that the central maximum of the diffraction pattern of a slit
of width d illuminated with light of wavelength A has the first minimum an
angle \/d away on each side.

Now suppose that light shines on a slit from two slit sources which are
separated by a distance such that their separation subtends an angle 6 at the
slit. Then each slit source will give rise to its own diffraction pattern, and
the central maxima of the patterns will be separated by an angle 6.

To decide whether we can distinguish between two diffraction patterns,
we use a (somewhat arbitrary) criterion due to Lord Rayleigh:

two peaks in an interference pattern can be distinguished if the central
maximum of one peak falls on or beyond the first minimum of the other.

Figure L.25.1: Rayleigh’s criterion for the distinguishability of two diffraction
peaks, illustrated by peaks separated by 0.8, 1.0 and 1.2 times the Rayleigh
distance.

As figure L25.1 shows, this rule does give a perceptible dip in intensity
between the two peaks. If we apply Rayleigh’s criterion, this tells us that
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the diffraction patterns of the slits will only be distinguished if

0>

ul >

L25.2 Resolution of a circular aperture
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Figure 1.25.2: The diffraction pattern ¢(f, ) of a circular aperture compared
with s(f,0) for a slit, where f is md/\. The wavelength is A and d is the
width of the slit or the diameter of the circular aperture.

The pattern produced by a circular aperture is described in terms of special
functions known as Bessel functions!. The diffraction pattern is a little wider
than that of the slit, as shown in figure [.25.2, and for our purposes the
important result is that

! Basically, Bessel functions play the same role in terms of standing waves in circular
cavities as sine and cosine functions do for one-dimensional systems and for rectangular and
cuboidal cavities. They are oscillatory functions, but decrease in amplitude with distance
from the origin, in line with our earlier conclusion that energy conservation required waves
from a line source should fall off as the square root of the distance.
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the diffraction patterns of two sources with an angular separation viewed
through a circular aperture of diameter d at wavelength A can be distin-
guished if

A
6 >1.22—.
- d

This limits the resolution of all optical devices, ranging from telescopes
to the eyes of living creatures.

Abbe theory Hecht562-564

The discussion of resolution above looked at the overlap of diffraction pat-
terns in terms of their intensity patterns only. This involves an implicit
assumption that the two light sources are not mutually coherent, so that
there is no interference pattern. When we look at microscopes, however, it is
quite likely that signals from nearby points will be coherent. To study this
case, consider forming the image of a diffraction grating. We know that in
the far field of a grating with spacing h illuminated by a plane coherent wave
of wavelength A the three maxima of the diffraction pattern closest to the
axis are the straight-through signal and the first-order diffraction peaks at
angles +6 where

) A
sin(f) = 5
Without the first-order peaks, there is no information about the grating
spacing: in other words, if the light from the grating passes through an
aperture the spatial information will be lost if the aperture subtends an angle
less than 26 at the grating (see figure L.25.3). In the case of a microscope,

the aperture is often the diameter of the obejctive lens. Turning this round,

if the angle subtended at the object by the objective lens is 26,, the finest
scale that can be resolved with a wavelength A is

A
sin(6,)

hmin =

It may be noted that an argument based on Rayleigh’s criterion gives rise
to the very similar criterion

1.22)

hmin = S A
2sin(6,)
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A little thought shows that the finite aperture acts as a spatial filter, as
it is the larger angles, corresponding to smaller spacings, which are cut out
by the aperture.

L25.3 Fraunhofer diffraction AF939-945

Now that we know about the diffraction pattern of a slit, and indeed about
the general expression for the diffraction from a screen with any pattern,
we can see what happens if we include the sizes of the slits in the grating
pattern.

In our previous treatment we included a term (E;) which represented the
angular pattern of each element of the grating. At that point we assumed
that each element was infinitesimally narrow, so each slit radiated uniformly
in all directions. Suppose, now, that those elements are replaced by identical
slits: keep the slit spacing at h, but replace F; with the field pattern for a
slit of width d. Then the overall intensity will be

2

sin (54520077 [ gip (Nkhsin@)) 77
1(0)=I(0)[ (* )][ (%5 )]

kdsin(9) N sin (kh si2n(0))

We will give here a slightly more detailed treatment which shows that the
factorisation, which was implicit in that way of writing the result, is correct.
Note that this derivation was not given in the lecture: it is included here for
completeness, but you need not learn it.

grating FGT1051-1055, AF945

The grating is a pattern of N slits, each of width d, and spaced at a distance
h between their centres along the y axis, so that we may write the total field
at a point a distance D in front of the screen at an angle # to the axis in the
form

. a2
E= C ez(wt—kD) [/ e—zkys1n(0)dy

—d/2

/h+d/2 e~ hysin(0) gy
h—d/2

. /2h+d/2 o—ikysin(9) dy + ...
2h—d/2
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(N—1)h+d/2

+ e—iky sin(ﬁ)dy] )
(N—1)h—d/2

Now each integral is of the form

nh+d/2 —ikysin(0) e—ikzsin(g)'nh+d/2
Jia <% = |y | o
Moy o ( kdsin(0)
— 6—ilmhsin(9) M
k sin(6)

that is, there is a common factor

sin (kd si2n(0) )
)
2

which is the diffraction pattern of each slit (our previous E}), and a geometric
series with typical term

e—iknh sin()

1.e. a common ratio

e—zkh sin(0)

which we have dealt with before. We can sum this geometric series to a N
terms.

Overall, then, the diffracted amplitude from the grating is the product of
the pattern from the arrangement of slits and the pattern from each slit (as
we assumed before), and the intensity has the form

B sin (£050(0) 17 T gip (Nehsin)) 1*
1(9)4(0)[ zE0 ] [Nsin (khs;n(a))].

finite size of grating FGT105/

This shows that when the finite slit size is included, the pattern of principal
maxima and minima, and the dependence of the sharpness on the pattern on
the number of slits, are unaffected.
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Figure L25.3: The lowest-order diffraction maxima of a grating passing
through a finite aperture, such as the objective lens of a mircoscope. The
upper diagram shows a simple aperture, whereas the lower diagram shows
the focusing effect of the lens.
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