Topic 24 — Diffraction

L24.1 Diffraction by an aperture

Origin

Figure L.24.1: Diffraction of a wave through an aperture. Each element dS’
of the aperture contributes to the total field at the observation point O.
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When a wave is diffracted by an aperture!, as shown in Figure L.24.1, so that
the original wave is plane in the aperture, each spherical wave starting from
r’ and observed at r, is of the form
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where the secondary source strength, A, is proportional to the amplitude of
the primary wave at r'’.
If the primary wave has a constant amplitude over the relevant region,
we can write the total field at r, as a sum over all the secondary wavelets,
or, in the limit, as an integral
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where r' is a point on the primary wavefront S and dS’ is the area element
of S at r'.
Phase and amplitude

One further detail that Fresnel found necessary was to write the constant Ay
as ikEy/2m, where Ej is the magnitude of the electric field on the diffracting

! The science of diffraction took a major step forward with the publication in 1665 of
the snappily titled A Physical and Mathematical Thesis on Light, Colours, the Rainbow,
and Other Related Topics by Father Francesco Maria Grimaldi (1618-1663). Grimaldi
observed coloured diffraction fringes at the boundaries of shadows using white light. New-
ton, repeating Grimaldi’s experiments, asked ”are not the rays of Light in passing by the
edges and sides of Bodies, bent several times backward and forwards, with a motion like
that of an Eel? And do not the three Fringes of colour’d Light mention’d arise from such
bendings?” Newton never got to the bottom of this, and never acknowledged the wave
theory of light even though it was available 14 years before he published his Optiks in
1704. He did not take up the wave theory in later editions of Optiks in 1717 or 1721, or in
the 1730 edition ”corrected by the Author’s own Hand, and left before his Death with the
Bookseller.” Nevertheless, some of his speculations have (no pun intended) strong wave
overtones. For example, in his discussions of the ether he asked ”Query 23: is not Vision
perform’d chiefly by the Vibrations of this Medium, extended to the bottom of the Eye by
the Rays of Light, and propagated through the solid, pellucid and uniform Capillimenta
of the Optick Nerves into the place of Sensation....?”
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surface. Note that there is a phase change of 7/2 in the expression. We can
ignore this detail, as we shall always look at intensities in the end, so this
phase information will be lost.

That gives us a recipe for computing the field at any point as a result of
a known primary wave.

Kirchhoff’s correction

The second problem is that there no backward-going wavelets — why does
the wave keep moving forwards? The basic answer is that that if we do the
maths properly (Kirchhoff) we find an extra factor in the integral involving
the angles of the source-primary wave surface vector and the primary wave-
surface-observation point vector with the wave surface — if the source is in
line with the centre of the aperture this obliquity factor works out to be

K(0) = %(1 + cos())

where 6 is the angle of the outgoing wave from the normal to the primary
wavefront.

As long as we avoid large angles, we can take K () to be 1, and the
approximation
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is adequate as an approximation to an exact solution of the wave equation
with the appropriate boundary conditions.
If we ignore the distance dependence of the amplitude,

E(rO; t) = constant ei(wt_k|r0_r")dsl

primary wavefront S

or, in compressed notation

E = constant ™! / e *rds
p

rimary wavefront S

where r is the distance from the primary wavefront to the point of observa-
tion.
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Diffraction pattern at long range

For simplicity, take the origin of the coordinate system at the centre of the
aperture. Then the distance from the point (2,4, 2') on the primary wave-
front to the observation point Q is r = |r, — r'| so that

rf =g+ (o — )" + (2 — &),

and if we define D as the distance of the observation point from the centre
of the aperture

D? = mi + yg + zg
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which is, expanding,
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where the notation O() denotes ‘terms of order’. If the aperture is small, we
may ignore the terms in 32 and 2.

Then, ignoring the variation of amplitude with distance, and absorbing
the phase change on the path length D into the constant term, we have the
comparatively simple result
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2A crucial point is that if the integration over S can be evaluated in Cartesian coordi-

nates, the integral can be factorized. For brevity, write a = % and 8 = 25, so that

Ymax Zmax
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and if we remember that in the spirit of the Fraunhofer limit we are treating the waves as
if they were plane, so that we may write

ka =k,
and
so that

Ymax Zmax
E= constant/ ethvy dy'/ e*=2)dz!.

Ymin Zmin
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slit AF939

To see how this works out in practice, let us look first at the diffraction
pattern of a single slit. If we observe at an angle 6, and the slit is parallel to
the z axis and very long, the diffraction pattern will depend only on y,/D. If
we observe at an angle  to the normal, y,/D = sin(f). Then we may write,
for a slit of width d,
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That is, the intensity varies as
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The resulting intensity pattern is shown graphically in figure 1.24.2, and
as a pattern of light and dark bands in figure 1.24.3.
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Figure 1.24.2: The variation of intensity with angle in the diffraction pattern
of a narrow slit.

L24-5



Figure L.24.3: The light and dark bands in the diffraction pattern of a narrow
slit.

The intensity will be zero whenever the argument of the sin function in
the numerator is a multiple of 7, that is when

kd

5 sin(f) = mm

where m is an integer. The first zero of intensity is at

kdsin(6
s12n( ) .
or, as the angle # will be small,
0 =2r/kd = \/d.

Note that the central peak is the highest, and broader than the subsidiary
peaks. The subsidiary peaks decrease in amplitude with distance away from
the centre.

The successive peaks (different m) are known as different orders of diffrac-
tion.
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