Topic 14 — Reflection and Transmission at In-
terfaces (concluded)

numerical example

Consider a join between two strings, one of which has four times the mass
per unit length of the other. Thus the impedance of the second is double
that of the first, and we have
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Figure T14.1 shows a snapshot of the wave: we can see here that there
is a change of wavelength between the two halves of the string, and that the
transmitted amplitude is 2/3. We can also see how the incident and reflected
waves on the left combine, with their amplitudes of 1 and -1/3, to match
the displacement at the join. We can zoom in on the join, and see that it is
indeed smooth.
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Figure T14.1: A wave encountering the join between two strings: the lower
figure is a close-up near the join, showing the smoothness of the displacement.

If we look at the first derivative with respect to x, which is proportional
to the restoring force, we see that this is also continuous (upper part of
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figure T14.2), although it has a change in slope at the join. The second
derivative, however (lower part of figure T14.2), is discontinuous. This must
be so, because when we think of the differential equation
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the left-hand side must be continuous at the join (the displacement is continu-
ous, and each successive differentiation with respect to time merely produces
an extra factor of 1w, so velocity and acceleration must also be continuous
across the join). As a result, the discontinuity in wave speed ¢ must be
compensated by a discontinuity in 9%¢/0x?.
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Figure T14.2: The slope and curvature of the wave near the join.

limiting cases of incident, reflected and transmitted waves.

How does these formulae work out for a string with a fixed end? If we take
Z3 to be infinite, which would correspond to an infinitely heavy string which
would not move, we find r = —1 and t = 0 — which is just the combination
of a positive and negative-going wave of equal amplitude we saw when we
looked at standing waves.

What happens if we have a free end, Z, = 07 Then r = 1, so the
displacement of the end is double the incident amplitude — which is how
whips work.
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T14.1 Acoustic waves in dissimilar media - reflection
and transmission

a) directly

The quantities which must be continuous at a boundary are the particle
displacement (or, equivalently as the frequency is a constant, the particle
velocity) and the acoustic excess pressure (the sound pressure). As we've
already done one case, we’ll canter through this one quite rapidly.
Again, we have incident, reflected and transmitted waves. From continu-
ity of displacement we have
l+r=t

exactly as before. The pressure is —B,0¢ /01, so the pressure continuity gives

us
Baik1 — rBaiki = tBagks.

The algebra is just the same as before, and gives

_ Balkl - Ba2k2
B Bai1ks + Bagks

But Z; is B,ik;/w so
A
r—2t— 2
7+ Zy
as before.

Note: if Zy >> Z; (a hard wall) r = —1, so the total displacement at the
wall is zero. The wall will be a displacement node — reasonable enough, as
we can’t move the very unyielding wall — but as displacement and pressure
are in antiphase, this gives us a pressure antinode.

energy conservation

In many cases we would like to know the energy reflection coefficients rather
than the amplitude coefficents. Provided that the Zs are real (loss-free media)
then cancelling the factors of %wQ we have

R = I,  72,§ Zir* <Z1 — ZQ)Q
L 728 412 \Zi+ 2
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and

L, Iy Zot? I, ( 27, )2 AL,
-

Ti B 7,&? 712 Z Zy + Zy Z +ZZ)2.

Note that these values of R and T give

R+T=1, (T14.1)

which expresses the conservation of energy.

b) in terms of impedance

There is a pattern emerging here - we get similar expressions for different
systems when we express them in terms of impedances. This is a very pow-
erful result, which extends beyond mechanical waves and into electromagnetic
waves in which case the impedance is the ratio E/H of the electric field to
the magnetic field in the wave.

The reason that this works is that the continuity equations at the bound-
ary between two media can be expressed in terms of the ‘force’ and ‘response’
terms of impedance. Continuity of displacement in mechanical case implies
continuity of velocity (because the two are related by a constant factor of
iw), i.e. of ‘response’. ‘Force’ (pressure in the acoustic wave, transverse force
for the wave on the string) is Z times ‘response’. The algebra is then the
same as before, giving the expressions for r and ¢ directly in terms of Z.

There is one tricky point, however. In all our mechanical cases we have
taken wave amplitudes to be defined by the displacements. We could have
taken, for example, pressure instead of displacement amplitude — but then
the reflection coefficients would have to be rewritten with 1/Z; wherever our
present expressions have Z; (note that this is consistent with, for example,
a rigid boundary being a displacement node but a pressure antinode. The
reflection coefficient for pressure is the same as for displacement, but with the
opposite sign. The transmission amplitude for pressure, however, differs from
that for displacement by a factor of Zy/Z;). Unfortunately, electromagnetic
waves are conventionally described in terms of their electric field amplitude
(‘force’) rather than magnetic field (‘response’), and we need to recall this
when using formulae for reflection and transmission. The rule is simple,
though: for electromagnetic waves, use the formulae we have derived but
with refractive index n in place of impedance Z.
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Wave system Impedance

Transverse wave on string Flv=pc=+Tu
Pressure wave in fluid p/& = pc=+/Bp
Elastic wave on rod o/é=pc=+Yp

Electromagnetic wave E/H = \/pr 10/ €r€o
Usually p, =1, and so Z = Zy/\/é, = Zy/n
F: force; v: velocity; T': tension;

(: mass per unit length

p: pressure; 45 velocity; p: density;

¢ wave speed; B: bulk modulus

o: stress; Y: Young’s modulus

W relative permeability;

€. relative permittivity (dielectric constant)
lo: permeability of free space;

€o: permittivity of free space

Zy: impedance of free space;

n: refractive index

Table T14.1: Impedances for several wave systems.

Table T14.1 shows a few examples of wave systems and the corresponding
impedances.
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