Topic 12 - Impedance and Energy Transport
in Waves

Impedance for sound waves in a gas

We have seen that if we define

excess pressure
7 = Specific acoustic impedance = - P — = b (T12.1)
particle velocity ¢

we get

B,k B,
Z = T poc = 1/ Bapo.

This is a constant, which is independent of the frequency of the wave: it
is a characteristic of the material itself. This tells us something about how
easy it is to get the gas moving, and is thus related to the amount of energy
stored in the gas. For the case of the gas which we treated before

Z=1x374=374kgm ?s "

Note also that the impedance is real'.

L There is a significant difference between the case of a wave and the case of a simple
harmonic oscillator.
For water, with a bulk modulus B = 2.2 x 10° Pa, density p = 1000 kg m~3, we have

Z =+/Bp=15x10°kgm~? 57!,

showing that water has a much higher impedance, is much harder to get moving, than air.

e Simple Harmonic Oscillator: real impedance means work is being done on the
system. As the energy that is put in cannot escape as a wave, it must be dissipated
in the system - in an electric circuit, for example, resistance contributes to the
real part of impedance and causes losses, whereas capacitance and impedance have
imaginary impedances and with sinusoidal input energy is stored and recovered,
not dissipated.

o Wayve: real impedance means work is being done on the system, but here the energy
is propagated away as it is put in. In a wave-bearing system, losses are denoted by
an imaginary component to the impedance.
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additional example — not done in lecture — of a string P109-110

For a wave on a stretched string, the impedance is the ratio of the transverse
force to the transverse velocity. Note that here the force is the force tending
to accelerate the string, that is the negative of the vertical component of the
tension in the string, so if the string’s displacement is

y(.’L’,t) — Aei(wt—kz)

the impedance is

—Toy/0x kT
Z = y/ =—=T/c=pc,
Oy /ot iw
where we have cancelled the common factor of the complex exponential from
the top and bottom, and used w/k = c.
In our previous piano-wire example, then, the impedance will be

Z =0.0125 x 253 = 3.16 kg s~

T12.1 Energy transport in waves

One of the reasons for spending some time at the start of the course talking
about the interchange of energy between different forms in simple harmonic
oscillators (e.g. kinetic/potential) was so that we would have a rough idea
how to treat energy in waves. A wave represents propagation of energy from
one place to another.

Kinetic energy density

As an example, consider the energy in an acoustic wave in a gas. There are
two components, kinetic and potential. Again, take a slab of gas dx thick,
with unit cross-sectional area. The kinetic energy, %va, of the volume 1dz

of density p moving with velocity £, is
1 .
Eyndx = §p0§ dz
which varies both in time and space: in fact as the wave passes there will be

times when the gas is instantaneously stationary, and in between there will
be maxima of kinetic energy. Alternatively, if we look at any instant then
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there will be points of maximum and of zero kinetic energy. Note that as we
have defined it here, Fy;, is a kinetic energy density, the kinetic energy of a
unit volume (the volume of our slab was the unit cross-sectional area times
the thickness dz. A useful quantity is the average over a wavelength (this is
enough, as what happens in one wavelength is repeated exactly in the next
wavelength). Remember that if we want an energy we need a real velocity,
SO

ot
= —w&sin(wt — kx)

é— — Re [ggoei(wtkw)]

and then the average kinetic energy per unit volume will be

Lpow?€? 3 sin® (27 (ct — x)/\)d

(B = : (T12.2)
_ 3P’ Jo 51— C;?S(‘lﬂ(ct —x)/N)dz (T12.3)
_ %pow%g (T12.4)

which is very similar in form to the average kinetic energy of a simple har-
monic oscillator?. Note that the spatial average over a wavelength has also
removed the time dependence: we could equally well average the local kinetic
energy density over a period of the wave, when we would obtain the same
constant value, independent of position 3.

2check the integral yourself before reading on. If you had difficulty, here it is

A 1 ) N
/0 cos(2(wt — ka))dr = o [sin(2(wt — k)

1 .. .
= -5 [sin(2(wt — kX)) — sin(2(wt))]

1 . .
= -3 [sin(2(wt — 27)) — sin(2(wt))]
=0

because the wavelength A = 27/k and sin(§ — 47) = sin(f) irrespective of the value of 6.
3Formally,

to+T 1 ' tod T
/ cos(2(wt — kx))dt = — [sin(2(wt — kx))],
to 2w 0
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Potential energy density - for interest only

What about the potential energy? The key quantity here is the work done
on the gas by the excess pressure in a change of volume from V; to V + v.
We can write this as

Vo+v
Epot == - PdV

Vo

Vo+v

Vo+v _
- (PO—Bau) av
Vo Vo

’ 1V Vot
— —|PV = SBore + B,V
2 "W Yo

1 (Vetv)? 1. 12
— _|(py+Byw— g0tV 1 Yo
(Po+ Ba)v — 5 IR

1. 22
= —|Pw—-B,—
oY 2 VO]

I 1
= —|Pv+ §pv] (T12.5)
Now we expect the first term in equation T12.5 — it’s the one which corre-
sponds in an infinitesimal change of volume to

dEye, = —PydV (T12.6)

the point is that we need to concentrate on the meaning of that volume change
dV, which corresponds to v. In Eq T12.6 we are considering an infinitesimal
change in volume of a finite volume of gas, so that the volume strain (change
in volume per unit volume) is infinitesimal. In the sound wave, by contrast,
the volume we are considering is infinitesimal (the slab of thickness dz) but
the volume strain v/Vy = 0&/0x is finite, and it is integrating up to this

= L [in(2(wlto + T) - ka)) — sin(2(ato — k)]

- % [sin(2(wto + 27 — k) — sin(2(wto — kz))]
= 0

because the period T' = 27 /w and sin( + 47) = sin(f) irrespective of the value of 6.
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finite volume strain which gives rise to the factor of one half*. But we know
from before that

o€
=-B,— T12.7
P B ( )
and the change in volume v is, for unit area,
v = g—idx, (T12.8)
where
o¢ .
B k& sin(wt — kz). (T12.9)
x

Now consider the average over a wavelength of the first term in equa-
tion T12.5. P, is a constant, so we have the integral of a sine over a whole
period, which is zero. The pv term, however, gives a sin® term (from equa-
tions T12.7, T12.8 and T12.9), so, in the same way as before, and dividing
by Vi to get an energy density (energy per volume)

1
<Epot> = ZBakzgg

4 An alternative derivation works in terms of the relative compression of the gas, known
as the condensation s = —0&/0x. Consider a small mas of gas, initially with volume V4,
finally with volume V;. The corresponding values of the condensation will by 0 and s,
and at some intermediate time the volume and condensation will be V' and s. Then each
small change in condensation ds corresponds to a change in volume

dV = —Vpds.
The total pressure, P, is
P = P+p
= PO - BaS,
and so the potential energy is
s1
Eyt = / (Py — B,s)Vods
0

1
= DBVysi + §Ba%5%'

Now take the volume V; to be the infinitesimal volume (unit cross-section)xdz, and note
that when we integrate over a wavelength the first term, linear in s;, will have cancelling
positive and negative regions, leaving only the term involving the square of s;.
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but k% = w?/c? = w?py/B,, so

1
(Epor) = 7P0w’& (T12.10)

which is the same as the average kinetic energy in Eq T12.4.

Total energy density

We find that the potential energy density in the sound wave is equal to the
kinetic energy density.

Overall, then, the energy density in a sound wave is

1 1
(Eyor) = 5p0w2£§ = §Zw2§§/c. (T12.11)

You may see expressions written in terms of rms (root mean square)

values. Here 1
r2ms = _/ 6(.7),t)2d$
AJo

and I will leave it to you to show that
1
V2

So far, this is similar to the Simple Harmonic Oscillator. There is one
significant difference, though. Remember for the Simple Harmonic Oscillator
that the energy swapped between Kinetic Energy and PE, and the two were
out of phase. In the wave, both Kinetic Energy and Potential Energy involve
sin?(wt — kx), that is they are in phase. The energy density varies along a
wavelength, and it is the passage of this energy which drives the wave. Note,
though, that in a standing wave the sum of the kinetic and potential energies
is constant.

frms = fO-

Energy flux

We know the energy density (energy per unit volume) in the wave, but we
also know that the wave is travelling: the energy flux, energy per area per
second, must surely be the energy per volume times the rate of movement of
the energy.
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The rate at which energy is transferred, the energy flux, is the product
of energy density and wave velocity,

1
I=c(E) = 5“’2253' (T12.12)

Remember that the velocity with which energy is transported is the group
velocity.

Examples: sound in air and water

How big are sound pressures and displacements? We know that the cone
of a loudspeaker does not move very far, and this gives us the displacement
amplitude. Let us suppose that & = 0.01 mm. With a density of 1.3 kg m=3,
a wave speed of 330 m s~! and a frequency of 1kHz this gives

1 1 2 2
I= Epw2£§c =5 X 13x (27T><103) X (0.01 X 10—3) x 330 = 0.85W m 2.
A sound intensity of order 1 Watt per square metre is quite loud. We can
translate the amplitude into a pressure amplitude by using

23
= _B, >
p a5

giving the pressure amplitude as
po = B.k& = Bawéo/c = cwpeéy = 330 x 2710° x 1.3 x 107° ~ 27Pa.

This is less than 1/1000 of atmospheric pressure — the excess pressure in
a sound wave is a very small fraction of the ambient pressure. The limit of
audibility at the same frequency corresponds to about 10~!° atmospheres —
the dynamic range of the ear is astounding.

In water, we can easily generate much bigger pressures. The bulk modulus
for water is 2.2 x 10° Pa, and the density is 1000 kg m~3. The sound velocity
is then 1500 m s~!. Note that this is not much bigger than that of sound in
air - the extra resistance to compression of the water is balanced by its higher
density. For the same sound intensity of 1 W m~2 the pressure amplitude at
1kHz would be

[2(EY B [21
po = Bk&y = Bk <z=— — =17x10% Pa
Pow ¢\ poc
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which is about 2 percent of an atmosphere. It is easy to achieve powers in wa-
ter which bring py up to about 1 atmosphere, which leads to the phenomenon
of cavitation, the alternating creation and collapse of bubbles. The collapse
of bubbles once the pressure becomes less negative is almost instantaneous,
leading to local pressure pulses which are much greater than the pressure
amplitude of the wave.
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