Topic 10 - Acoustic Waves

Let us now move away from the problem of transverse waves on a string to
talk about waves in solids and in gases. First, consider an elastic rod. Here
the displacements we will consider are along the rod - longitudinal polarisa-
tion - and correspond to compressing and expanding the rod.

T10.1 Elastic waves in a rod FGT387, AF754-757

Here we consider longitudinal waves, that is waves in which the displacement
of the material is in the same direction as the direction of travel of the waves.

Consider a thin solid rod, cross-sectional area A, with Young’s modulus Y,
so that under a force F' the rod extends by a fraction F//AY (note dimensions:
elastic moduli all have units ML™'T~2 whereas F is MLT™?). Let the
density of the rod be p.

Suppose that at a point x along the rod an element of the rod (a thin
disk) has been displaced by £ as a result of wave passing down the rod (see
figure T10.1). If at a point a little further along, at x + dz, the displacement
is £ 4+ d¢, then the element which was of length dx has been stretched. The
amount of the stretch is

%,

o Z.

Remember that £ is the change in position of a marker on the rod. The force
at each point, then, is given by the local strain (change in length divided by
length), i.e.

23

If we had a rod under constant tension, of course, the fractional extension
would be constant along the rod, and & = %x.
If the amount of stretching is not constant along the rod, the force will

not be constant either. In fact the force at z + dx will be

de =

oF
F'=F+dF =F+ —dx
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and the nett force on the element dz is therefore
F
F'—F= 8—dar:,
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so that o2
The mass of the element of thickness dz and area A is pAdx, and its change

in position is given by &, so

0*¢ 0*¢
or
8% Y 0%

Thus waves of compression and expansion can travel along an elastic rod

at a velocity /Y/p.

For steel, with Y = 2x 10! Pa, p = 8000 kg m~3, we find ¢ = 5000 m s,
a typical wave speed in a solid.

T10.2 Elastic waves in a bulk solid

In a bulk solid, there are two possible ways in which sound waves can travel:
as compression waves (longitudinal) rather like the waves in the rod, or as
shear waves (transverse). The expressions which relate the forces to the
strains are rather more complex than for a gas, as a solid has a structure
and compressing it along one axis is not the same as compressing in along all
axes (if you compress a solid along one axis it will spread out along the other
two: the rod is free to expand in this way, but the bulk solid is constrained
so that it cannot) and this extra stiffness increases the speed of waves. The
compression and shear wave speeds ¢, and ¢; are determined by two elastic
moduli, bulk B and shear G.
Examples of waves in materials are shown in figure T10.2.

COl'IlpI‘eSSiOII waves and shear waves

In each case the derivation is very similar to that for the waves in a rod:

e Consider an element of volume and its displacement (longitudinal or
transverse)
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e Calculate the difference in forces between the ends (compression or
shear forces)

e Relate the force to the distortion (F = (B + %G)A% or F'= GA%)

e hence wave speeds

typically, ¢, ~ 2c¢q

Earthquakes: different arrival times of different waves (but note
that most of the damage comes from surface wave, which keep
the energy of the quake close to the surface where it can damage
buildings).

You should be able to derive the shear wave speed by following the 'recipe’

above.

T10-3



| x+§ [dx+d & |

Figure T10.1: The displacement and associated force in a rod supporting a
wave.
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Figure T10.2: Waves in action: the earth’s structure as revealed by the prop-
agation of seismic waves; the destructive effects of an earthquake; ultrasound
used for nondestructive testing of a pipe; the image of a foetus revealed by
ultrasound. T10-5



