Topic 7 - Derivation of Wave Equation - Beaded
String

In a single oscillator (a pendulum, say) energy is constantly exchanged be-
tween potential and kinetic forms. The energy, though, stays in one place
— where the oscillator is. If we couple several pendulums® together it is
possible for energy to move from one to another, and this is essentially what
wave motion is (some additional material on coupled oscillators is available
at T7.4).

T7.1 Mass on a string — transverse vibrations

2a

Figure T7.1: A single bead on a stretched wire acting as a simple harmonic
oscillator.

To start with, look at a single mass on a string stretched under tension 7T’
between two points a distance 2a apart (see figure T7.1). If the sideways
displacement of the mass, y, is not too great, so that the angle § made by
the string with the horizontal is small, we can write the equation of motion
of the mass as

d2
meY £ 9Tsing = 0

dt2
vy
dez2  ma”® 7

'For pedants who object that I should use the plural ‘pendula’ I offer the story of
an academic who invited a colleague to tea on Sunday so that they could ‘discuss some
conundra concerning pendula.” His colleague declined, at the same time hoping that ‘we
can find some better way of spending our weekend than sitting on our ba doing sa.’
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where we have used the fact that for small angles

sin(f) =~ 0 ~ tan(f) = g

a

This is just the equation for simple harmonic motion,
d?y

ol wyy =0,

thus a single mass oscillates with characteristic frequency given by

wy = 2T /ma.

T7.2 Regularly loaded string P84-90

Figure T7.2: Displacements on a regularly beaded string.

Now build a regularly loaded string by putting N equal masses m at equal
horizontal spacings a, as in figure T7.2. Put the string under constant tension
T. Now focus in on one section of string, with masses labelled r—1, r and r+1.
Then mass r is pulled towards the undisplaced position by forces T sinf,_;
and T sin #,, so its equation of motion is (again using sin(f) ~ 6 ~ tan(#))

d2
dty; = —T(sinf,_1 +sinb,)
- _7 (yr — Yr—1 4 Yr+1 — yr)
a a
d?y, 1,
ds2 = §w0 (Yr—1 = 2Yr + Yry1) -
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Let us ask whether a wave-like motion will propagate along this chain.
As we are only ‘sampling’ the disturbance at the positions of the masses, we
will replace the position x with the position of a typical mass, ra. Then we

set
y _Aei(lcra—wt)
r = .

Straightforward subsitution in equation T7.1 gives

_w2Aei(kra7wt) — %wg [Aei(k(rfl)afwt) _ QAei(krafwt) + Aei(k(r—kl)afwt)

7

which we may divide by Ae'*r%=«! to obtain

1 , )
2 _ - 2| _ —tka _ tka
W= 5w [e 2+e ]
1
= §w§(2 cos(ka) — 2)
w? = wi(1—cos(ka))

k
= 2wjsin® (;) .

This shows that we can have a wave-like motion, and it gives us an equa-
tion relating the frequency of the wave to its wave-vector — an equation
quite different from w = ck.

T7.3 Dispersion relation

Note that there is a functional dependence of w on k£ which leads to a velocity
w/k which depends on the frequency. This is the phenomenon of dispersion
which we have already discussed. In fact waves in a crystal have dispersion
relations which are very similar to the one we have just described. Further-

more, the fact that

w2

cos(ka) =1 5
tells us that w/wy is limited between 0 and V2. There is an upper cutoff
frequency above which a wave cannot be transmitted through the system. Of
course, when w takes this maximum value, cos(ka) = —1 which corresponds
to successive masses moving in antiphase. We clearly can’t get a wave with
any shorter wavelength than this, because we don’t have beads to ‘mark’ the

T7-3



displacement at any shorter spacing. At this minimum wavelength, ka = 7,
or A = 2a.
For long wavelengths, though (that is, small ka) we may expand

, (ka) ka
sin | — | & —

2 2
ka = 2w /wy

w_wn _ fj2ae [T
E v2 Vmav2 \m/a

In this limit, then, we have regained a non-dispersive wave, with the fre-
quency directly proportional to the wavevector.

so that

or the wave speed

T7.4 Supplementary Material - Coupled Pendulums

two stiff pendulums, joined by spring

Figure T7.3: Two pendulums, coupled by a spring.

Consider two identical pendulums (figure T7.3), each with a mass m on the
end of a light rod of length /. Hang them side by side, and join the masses
by a light spring, which is unstretched when the pendulums hang vertically.
Let the displacements of the masses be = and y, so that the spring will be
stretched by (z — y). In the usual small oscillation approximation we have

T

M = ~Mgy - k(x —1vy)
d*y y

mdt2 = —mgi +k(zx—y)

T7-4



or, substituting in for the fundamental frequency of the pendulums

d%z

e = e ey
d%y , k
Eg—-—%y+a@—y)

normal coordinates

The equations are more neatly solved if we take the sum and difference of
these equations:

d2

Lt = e+
fate-n = ~(@+2)@on

What this shows us is that whereas the motions of  and y are coupled, if
we define normal coordinates by

X=x+y
Y=2-y

and the motions of these coordinates are not coupled:

d?X
d2y , ok
@ —Q%+2a>y

If Y = 0, the pendulums swing together and the spring does not alter in
length; as a result, of course, the frequency is unaltered. On the other hand,
if X =0, the spring stretches and extends as the pendulums swing, and the
frequency is increased to w' where w'> = w? + 2k/m.
energy interchange
Of course, any motion of the system may be represented by

X =z +y = Xjcos(wot + ¢1)

Y =12 —y="Y,cos(w't + ¢o)
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as an example, take both X and Y as a, both phases to be 0, then

T = %(X +Y) = %a(cos(wot) + cos(w't))

y=3(X=Y) = Jalcos(unt) - cos(w't)

but these are expressions we have seen before, giving beats:

"— t ! t
(W' — wy) cos (W' + wo)

r = 2cos
2 2
"— wo)t ! t
y = 2sin (w 2w0) sin G —;wo).

In fact, if we look at the displacements in more detail (as in figure T7.4, we
see that both the carriers and the envelope functions for the two pendulums
are exactly out of phase. The energy is regularly interchanged between the
two. Of course, once the energy has moved from one pendulum to the other
the only place it can go is back again (effectively, if we think of it as a wave,
it is reflected backwards and forwards). If we add more pendulums, though,
it can carry on down the line - which will give a wave.

Displacement x

Displacement y

Figure T7.4: Interchange of energy between two coupled pendulums.

We have seen how it is possible for linked oscillators to transfer energy
amongst themselves. We now move on to look at how this energy transfer
can propagate through a series of oscillators to form a wave.

T7-6



