Topic 5 - Single-Frequency Waves and Disper-
sion

For a frequency w we want to form a function which contains the combina-
tion z & ¢t and in which the time variation has the form e™!. We start by
converting the combination x — ct, which has the dimensions of length, to a
quantity with the dimensions of radians. We can do this if we multiply it by
27 /A, and take
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Figure T5.1: The propagation of a sinusoidal wave, the real part of e!(k*—«%)
as a function of time (top) and position (bottom).

Why did we pick that particular combination of 7 and A\? The spacing
between successive peaks in space (see figure T5.1) is A, the wavelength, and
in one wavelength the wave makes one complete cycle, so that when the
position changes by one wavelength the phase changes by 27. Similarly the
spacing between successive peaks in time is A/c, the period, so the frequency
is ¢/, often called v or f, the angular frequency w is 2w¢/A. The combination
27 /X is called the wave vector, or wave number, often denoted by k.

We can write the general form of the wave in a number of equivalent
ways:

Tb5-1



Y(x,t) = aetx (@ct)
eiQﬂ'(%—Ut)

a
i2m( & —
— (1,6127r(>\ ft)

iw(Z—t)

ae

a ez(kx—wt)

As with the harmonic oscillator, we may choose to make a real, in which
case we may need to include a phase shift in the exponent, or ¢ may be
complex, and itself include any phase shift, in which case we could write

a= Ae"?,

where A is the real amplitude and ¢ is the initial phase.
We have a series of relationships

c=Av=\f=

> €

As we know the wave velocity may depend on the frequency, we have to
be a little more precise about what we mean by the velocity.

The quantity we have defined by ¢ = w/k gives, in a sinusoidal wave, the
speed at which peaks and troughs (points of constant phase) move through
the medium - it is called the phase velocity.

linearity /superposition

We know that as the wave equation is linear, we may superpose solutions
and still get a solution which is a solution of the wave equation.

running waves

The solutions which we shall from now on write as functions of the form
eitkztwt) and e k2wt are running waves - they travel along the x axis either
left to right (—) or right to left (4). The direction of travel is determined by
the relative sign of the x and ¢ terms.
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T5.1 Phase and group velocity AF772-77}

Now that we are happy with the treatment of any arbitrary signal as a sum
of sinusoidal signals, we are in a position to ask how a pulse might change in
shape if the phase velocity is not constant, but depends on frequency.

Refractive index of materials

First, consider the physical reasons why a velocity might depend on fre-
quency. Consider electromagnetic waves. The reason why the velocity of
light in a material differs from that in free space is that the electromagnetic
fields cause changes in the material. These may involve

e arranging molecules with permanent dipole moments (such as water)
e moving atoms about (an obvious example is an ionic crystal)
e moving electrons

— valence electrons - near optical

— core electrons - x-rays
The strongest changes in properties, as measured by refractive index

speed of light in free space

refractive index =
speed of light in material

variously referred to as n or u, occur near resonances - frequencies which
coincide with intrinsic frequencies of the system (interatomic vibrations;
electronic transitions). A schematic diagram of the variations is shown in
figure T5.2.

An extreme example is the strong absorption of radiation at 18GHz (wave-
length of 17mm) by reorienting water dipoles, being the basis of microwave
cookery (or even microwave demolition of concrete). In fact, for various
practical reasons, domestic ovens use a frequency of 2.45GHz.

simple two-frequency treatment

If we want to send signals, a single frequency is no use — it is a wave that
is always there, and so conveys no information. To send a signal we need to
turn it on and off, or at least to modulate its amplitude.

T5-3



Typical variation of refractive index

Freqguency
— Refractive index
""""" Absorption
——- Limiting value=1

Infrared Visible Ultraviolet X-ray

Figure T5.2: Schematic variation of refractive index and associated absorp-
tion with frequency.

A general treatment is complicated, but the essential details are captured
by looking at a superposition of two waves of slightly different frequencies.

We know what such a superposition will look like, from our previous
treatment of beats. Take a superposition of two waves, of equal amplitude:

U1(xz,t) = acos(wit — k1)
Po(z,t) = acos(wyt — ko)

and suppose that the two contributing waves have different phase velocities
(i.e. the velocity depends on the frequency)
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. Now form the sum

ky + K — ky — k
Y(z,t) = 1 (z,t)+1ba(z, t) = 2a cos lwl—;wzt_ 1; 23;] COS lw12w2t_ 12 2|

This is the product of two functions: the carrier wave

w1 + W kl + k2
Cos t— T
2 2
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has the average frequency of the two superposed waves, and travels at a
speed, the phase velocity

_witw w
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This wave is modulated by the envelope function

w1 — Wa kl—kg
2 2

2a cos

What will be the velocity of the envelope function? It will move at

s e Aw de
ki —ky Ak dk

provided that w; and ws, k1 and ko are not too different.

envelope function and carrier

The component with the half-sum frequency is called the carrier, the half-
difference wave is called the envelope.

The group velocity, as we have defined it here, is the velocity at which a
point of constant phase of the amplitude modulation travels, that is, it is the
rate at which a signal travels, or the rate at which the energy in the wave is
transmitted.

As an example (figure T5.3) consider two waves, with w; = 107, k; = 107
and wy = 11.57, ko = 127, with phase velocities of 1 and 11.5/12 = 0.958.
The resultant has phase veolcity 0.977 and group velocity 0.75

Looking closely at the figure, one can see that whereas initially (at ¢t = 0)
the peak of the carrier wave coincided exactly with the peak of the envelope,
at a later time the peak in the carrier has edged slightly ahead. By the time
t = 0.4 (figure T5.4) the peak of the envelope corresponds with a minimum
of the carrier.
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timet=0.15
The carrier has edged slightly ahead of the envelope.

Figure T5.3: Two superposed sine waves, showing the carrier and envelope.

Figure T5.4: The same two superposed sine waves, showing the carrier and
envelope at a later time.
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