


This pi
ture suggests that if the ele
tron found itself bound to the left-hand proton in the energylevel En then, to move over to the right-hand proton it would �rst have to surmount a potentialbarrier too high for its energy to allow, at least 
lassi
ally. The origin of this barrier is simplythe attra
tion around ea
h proton: to es
ape the 
oulomb attra
tion of the proton that has
aptured it the ele
tron must do work in order to move over to the other proton. On the otherhand quantum me
hani
ally we know that tunnelling is possible and even probable if the barrieris not too thi
k and too high.We now 
onstru
t a very simple model of the above physi
s: a one-dimensional potential inwhi
h the ele
tron moves, with the 
oulomb attra
tion of ea
h proton being represented by two�nite square wells 
entred at ea
h proton and separated by a barrier. This barrier representsadditional energy the ele
tron must a
quire to 
lassi
ally es
ape from the attra
tion of one pro-ton and move over to the for
e �eld around the other proton.6V (x)
x1 0 x2

�����9 �����: Barrier representing the energyneeded to move the e� from theattra
tive �eld around oneproton to that aroundthe other proton.
HHY Hj Attra
tion around proton 2.- xFigure 3: Idealised model potential �eld for ele
tron in H+2 ion.One 
ru
ial property of both the real problem and our model is the symmetry of the poten-tial: V (�x) = V (x) (2)Note that x1 = �x2. To solve the quantum me
hani
al problem we �rst imagine the two protonsso far apart that there is no intera
tion between them. Then we expe
t the ele
tron to be boundto one or the other proton, giving a wave fun
tioneither  =  n(x� x1) �  (1) for e� bound to proton 1,or  =  n(x� x2) �  (2) for e� bound to proton 2, (3)To see a 
on
rete example 
onsider the situation where the wells are high enough to allow us toapproximate the wave fun
tions by those of the in�nite square well. For the even parity states,n = 1; 3; 5 : : :, these would be (1) = r 2L 
os n�L (x� x1) 0 � (x� x1) � L= 0 elsewhere (4) (2) = r 2L 
os n�L (x� x2) 0 � (x� x2) � L= 0 elsewhere (5)At �rst sight it may therefore appear likely that when the protons are slowly moved 
loser theele
tron 
ontinues orbiting around the proton it �rst 
hose, giving two possible wave fun
tions =  (1) or  (2); this is the `
lassi
al' intuition. Indeed the 
lassi
al predi
tion is that the ele
tron2
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Those interested or s
epti
al should study the Appendix for detailed proofs. Finally, the realityof the  n, the fa
t that they have de�nite parity, and that Ĥ is even in x! �x and symmetri
under x1 $ x2 implies H11 = H22 (18)It is this latter 
ondition whi
h is 
ru
ial in eventually leading to the expe
ted symmetri
 andantisymmetri
 wave fun
tions.Our equations therefore simplify to
1(H11 �E) + 
2(H12 �EK12) = 0 (19)
1(H12 �EK12) + 
2(H11 �E) = 0 (20)These simultaneous homogeneous equations in 
1 and 
2 only have 
onsistent solutions ifj H11 �E H12 �EK12 jj j = 0j H12 �EK12 H11 �E j (21)ie. (H11 �E)2 = (H12 �EK12)2 (22)giving the two possibilities H11 �E = �(H12 �EK12) (23)Substituting ea
h possibility into the original equations and solving for 
1; 
2 gives the twosolutions, one symmetri
 and the other antisymmetri
, just as we expe
t from the theorem:Antisymmetri
 
1 = �
2 giving E = Ea = H11�H121�K12 ;Symmetri
 
1 = +
2 giving E = Es = H11+H121+K12 : (24)Thus, starting with a single energy En=1 for the ele
tron in either well (when the wells areseparated a large distan
e) we arrived at two distin
t energies with their 
orresponding wavefun
tions when the wells are 
lose enough:Antisymmetri
:  a = 
1a( (1) �  (2)) Ea = H11�H121�K12Symmetri
:  s = 
1s( (1) +  (2)) Es = H11+H121+K12 (25)where 
1a and 
1s are 
hosen to normalise  a and  s. In the jargon of quantum me
hani
s, thedegenera
y in energy when the wells are far apart (ie. when both possible states  =  (1) and =  (2) have the same energy En=1 { the level is doubly degenerate) is lifted when the wells
ome 
lose enough for tunnelling to o

ur; the result is that the degenerate energies be
ome twoseparated energy levels at Es and Ea:
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                 Region of significant negative charge density

            Region of negative charge depletion
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APPENDIX: Proof that H12 = H21 and H11 = H22.The Hamiltonian is of 
ourse Hermitian, and using the fa
t that the bound-state wave fun
tionsare real, H12 = Z  n(x� x1) Ĥ  n(x� x2) dx by de�nition. (28)= Z fĤ  n(x� x1)g n(x� x2) sin
e Ĥ is Hermitian. (29)= H21 (30)The Hamiltonian for our model double square well has the form:Ĥ(x; x1; x2) = � �h22m �2�x2 + V (jx� x1j) + V (jx� x2j) (31)where V (x) is the single �nite square well potentialV (jx� xij) = �V0 for jx� xij < L=2= 0 for jx� xij > L=2 (32)To 
he
k that the double-well potential drawn in the text is indeed VD = V (jx�x1j)+V (jx�x2j)just draw it following the de�nition above, keeping in mind that we have pla
ed the originsymmetri
ally between the wells so that x1 = �x2 with x1 negative. Just as for the morerealisti
 potential in 3-dimensions, the double-well potential VD = V (jx� x1j) +V (jx�x2j) hasthe following two symmetries:VD(x; x1; x2) = VD(x; x2; x1) ie. 1$ 2 symmetri
. (33)= VD(�x;�x1;�x2) ie. mirror-symmetri
 about the origin. (34)The �rst is obvious; the se
ond follows by just looking at the drawing of the double-well potential.Formally it follows from the following manipulations:VD(�x;�x1;�x2) = V (j � x+ x1j) + V (j � x+ x2j) (35)= V (jx� x1j) + V (jx� x2j) using the properties of j j (36)= VD(x; x1; x2) (37)Now sin
e �2=�x2 is symmetri
al under x ! �x and does not depend on x1 or x2, Ĥ also hasthe above symmetries. Hen
e,H11 = Z  n(x� x1) Ĥ(x; x1; x2) n(x� x1) dx by de�nition (38)= Z  n(x� x1) Ĥ(x; x2; x1) n(x� x1) dx using the 1st. symmetry of Ĥ (39)= Z  n(x+ x2) Ĥ(x;�x1;�x2) n(x+ x2) dx using x1 = �x2 (40)= Z  n(�y + x2) Ĥ(�y;�x1;�x2) n(�y + x2) dy using y = �x, dx = �dy (41)= Z  n(�y + x2) Ĥ(y; x1; x2) n(�y + x2) dy using the 2nd. symmetry of Ĥ (42)= Z  n(y � x2) Ĥ(y; x1; x2) n(y � x2) dy sin
e the wf's have same parity (43)= H22 (44)The last step involves no sign 
hange be
ause, although the wave fun
tion may have negativeparity, it gets squared be
ause the integrand 
ontains the produ
t of two wave fun
tions withthe same energy (En) and therefore the same parity.14


