


This piture suggests that if the eletron found itself bound to the left-hand proton in the energylevel En then, to move over to the right-hand proton it would �rst have to surmount a potentialbarrier too high for its energy to allow, at least lassially. The origin of this barrier is simplythe attration around eah proton: to esape the oulomb attration of the proton that hasaptured it the eletron must do work in order to move over to the other proton. On the otherhand quantum mehanially we know that tunnelling is possible and even probable if the barrieris not too thik and too high.We now onstrut a very simple model of the above physis: a one-dimensional potential inwhih the eletron moves, with the oulomb attration of eah proton being represented by two�nite square wells entred at eah proton and separated by a barrier. This barrier representsadditional energy the eletron must aquire to lassially esape from the attration of one pro-ton and move over to the fore �eld around the other proton.6V (x)
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�����9 �����: Barrier representing the energyneeded to move the e� from theattrative �eld around oneproton to that aroundthe other proton.
HHY Hj Attration around proton 2.- xFigure 3: Idealised model potential �eld for eletron in H+2 ion.One ruial property of both the real problem and our model is the symmetry of the poten-tial: V (�x) = V (x) (2)Note that x1 = �x2. To solve the quantum mehanial problem we �rst imagine the two protonsso far apart that there is no interation between them. Then we expet the eletron to be boundto one or the other proton, giving a wave funtioneither  =  n(x� x1) �  (1) for e� bound to proton 1,or  =  n(x� x2) �  (2) for e� bound to proton 2, (3)To see a onrete example onsider the situation where the wells are high enough to allow us toapproximate the wave funtions by those of the in�nite square well. For the even parity states,n = 1; 3; 5 : : :, these would be (1) = r 2L os n�L (x� x1) 0 � (x� x1) � L= 0 elsewhere (4) (2) = r 2L os n�L (x� x2) 0 � (x� x2) � L= 0 elsewhere (5)At �rst sight it may therefore appear likely that when the protons are slowly moved loser theeletron ontinues orbiting around the proton it �rst hose, giving two possible wave funtions =  (1) or  (2); this is the `lassial' intuition. Indeed the lassial predition is that the eletron2
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Those interested or septial should study the Appendix for detailed proofs. Finally, the realityof the  n, the fat that they have de�nite parity, and that Ĥ is even in x! �x and symmetriunder x1 $ x2 implies H11 = H22 (18)It is this latter ondition whih is ruial in eventually leading to the expeted symmetri andantisymmetri wave funtions.Our equations therefore simplify to1(H11 �E) + 2(H12 �EK12) = 0 (19)1(H12 �EK12) + 2(H11 �E) = 0 (20)These simultaneous homogeneous equations in 1 and 2 only have onsistent solutions ifj H11 �E H12 �EK12 jj j = 0j H12 �EK12 H11 �E j (21)ie. (H11 �E)2 = (H12 �EK12)2 (22)giving the two possibilities H11 �E = �(H12 �EK12) (23)Substituting eah possibility into the original equations and solving for 1; 2 gives the twosolutions, one symmetri and the other antisymmetri, just as we expet from the theorem:Antisymmetri 1 = �2 giving E = Ea = H11�H121�K12 ;Symmetri 1 = +2 giving E = Es = H11+H121+K12 : (24)Thus, starting with a single energy En=1 for the eletron in either well (when the wells areseparated a large distane) we arrived at two distint energies with their orresponding wavefuntions when the wells are lose enough:Antisymmetri:  a = 1a( (1) �  (2)) Ea = H11�H121�K12Symmetri:  s = 1s( (1) +  (2)) Es = H11+H121+K12 (25)where 1a and 1s are hosen to normalise  a and  s. In the jargon of quantum mehanis, thedegeneray in energy when the wells are far apart (ie. when both possible states  =  (1) and =  (2) have the same energy En=1 { the level is doubly degenerate) is lifted when the wellsome lose enough for tunnelling to our; the result is that the degenerate energies beome twoseparated energy levels at Es and Ea:
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                 Region of significant negative charge density

            Region of negative charge depletion
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APPENDIX: Proof that H12 = H21 and H11 = H22.The Hamiltonian is of ourse Hermitian, and using the fat that the bound-state wave funtionsare real, H12 = Z  n(x� x1) Ĥ  n(x� x2) dx by de�nition. (28)= Z fĤ  n(x� x1)g n(x� x2) sine Ĥ is Hermitian. (29)= H21 (30)The Hamiltonian for our model double square well has the form:Ĥ(x; x1; x2) = � �h22m �2�x2 + V (jx� x1j) + V (jx� x2j) (31)where V (x) is the single �nite square well potentialV (jx� xij) = �V0 for jx� xij < L=2= 0 for jx� xij > L=2 (32)To hek that the double-well potential drawn in the text is indeed VD = V (jx�x1j)+V (jx�x2j)just draw it following the de�nition above, keeping in mind that we have plaed the originsymmetrially between the wells so that x1 = �x2 with x1 negative. Just as for the morerealisti potential in 3-dimensions, the double-well potential VD = V (jx� x1j) +V (jx�x2j) hasthe following two symmetries:VD(x; x1; x2) = VD(x; x2; x1) ie. 1$ 2 symmetri. (33)= VD(�x;�x1;�x2) ie. mirror-symmetri about the origin. (34)The �rst is obvious; the seond follows by just looking at the drawing of the double-well potential.Formally it follows from the following manipulations:VD(�x;�x1;�x2) = V (j � x+ x1j) + V (j � x+ x2j) (35)= V (jx� x1j) + V (jx� x2j) using the properties of j j (36)= VD(x; x1; x2) (37)Now sine �2=�x2 is symmetrial under x ! �x and does not depend on x1 or x2, Ĥ also hasthe above symmetries. Hene,H11 = Z  n(x� x1) Ĥ(x; x1; x2) n(x� x1) dx by de�nition (38)= Z  n(x� x1) Ĥ(x; x2; x1) n(x� x1) dx using the 1st. symmetry of Ĥ (39)= Z  n(x+ x2) Ĥ(x;�x1;�x2) n(x+ x2) dx using x1 = �x2 (40)= Z  n(�y + x2) Ĥ(�y;�x1;�x2) n(�y + x2) dy using y = �x, dx = �dy (41)= Z  n(�y + x2) Ĥ(y; x1; x2) n(�y + x2) dy using the 2nd. symmetry of Ĥ (42)= Z  n(y � x2) Ĥ(y; x1; x2) n(y � x2) dy sine the wf's have same parity (43)= H22 (44)The last step involves no sign hange beause, although the wave funtion may have negativeparity, it gets squared beause the integrand ontains the produt of two wave funtions withthe same energy (En) and therefore the same parity.14


