QUANTUM MECHANICS B PHY-413 Note Set No. 4

THE DOUBLE POTENTIAL WELL AND ITS APPLICATIONS.

We can use the square well as a simple schematic one-dimensional model to explain some of
the most profound and far-reaching quantum mechanical phenomena in nature: covalent bond-
ing and energy bands in solids. To motivate the model we begin by considering the Hy molecular
ion in three-dimensions: two protons, p; and po, interacting with a single electron e .
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Figure 1: Coordinate system for H;r ion. R = r;-ry is the vector separation of the
protons, and its magnitude is R = |r;-ra|.

For the system of 3 particles (i = 1,2, 3) the full 3-dimensional Hamiltonian is
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The summed terms are the kinetic energies of the three particles, the next two are the attractive
potentials between the electron and the two protons, and the last represents the repulsive poten-
tial between the protons. When appropriate variable changes are made, when the centre-of-mass
motion is taken out, and when the wave functions of the two protons are factored out (assuming
the protons move slowly compared to the electron — this is the Born-Oppenheimer approxima-
tion) one eventually finds that the electron wave function 1) obeys a Schrodinger equation with
the same potential above. Drawn in just 1-dimension the potential will look like this:
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Figure 2: Realistic potential field for electron in Hj ion.




This picture suggests that if the electron found itself bound to the left-hand proton in the energy
level E, then, to move over to the right-hand proton it would first have to surmount a potential
barrier too high for its energy to allow, at least classically. The origin of this barrier is simply
the attraction around each proton: to escape the coulomb attraction of the proton that has
captured it the electron must do work in order to move over to the other proton. On the other
hand quantum mechanically we know that tunnelling is possible and even probable if the barrier
is not too thick and too high.

We now construct a very simple model of the above physics: a one-dimensional potential in
which the electron moves, with the coulomb attraction of each proton being represented by two
finite square wells centred at each proton and separated by a barrier. This barrier represents
additional energy the electron must acquire to classically escape from the attraction of one pro-
ton and move over to the force field around the other proton.
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Figure 3: Idealised model potential field for electron in HJ ion.

One crucial property of both the real problem and our model is the symmetry of the poten-
tial:
V(-z) =V(z) (2)

Note that 1 = —z3. To solve the quantum mechanical problem we first imagine the two protons
so far apart that there is no interaction between them. Then we expect the electron to be bound
to one or the other proton, giving a wave function

either ¢ = 4¢n(zr—x1) =1 fore bound to proton 1,
or Y = Yn(r—32) =2y for e bound to proton 2, (3)

To see a concrete example consider the situation where the wells are high enough to allow us to
approximate the wave functions by those of the infinite square well. For the even parity states,
n=1,3,5..., these would be

2 nm
Py = \/;cosf(x—xl) 0<(z—-z)<L

= 0 elsewhere (4)
2 nm
Py = \/;cosf(x—xz) 0<(z—-z9) <L
= 0 elsewhere (5)

At first sight it may therefore appear likely that when the protons are slowly moved closer the
electron continues orbiting around the proton it first chose, giving two possible wave functions
1 = 1(1) or P(2); this is the ‘classical’ intuition. Indeed the classical prediction is that the electron



will bind to one proton, so that the other proton sees a neutral system, feels little attraction and
simply drifts off — the molecule is unstable and should not be found in any laboratory. This was
a great mystery before the advent of quantum mechanics because experimentally it was known
a stable Hj molecule exists in nature with a binding energy of 2.65eV. How does quantum
mechanics explain this?

The secret lies in the quantum mechanical theorem we have already proved: if the potential
is mirror-symmetric, V(—xz) = V(x) then the wave function has a definite symmetry under
x — —ux; 1 is either symmetric (parity +1) or antisymmetric (parity —1). A glance at the
diagram of the potential shows that a mirror reflection about the origin, z — —z is equivalent
to interchanging the two protons, z; > zo. Neither of the wave functions ;) or 9,y has this
symmetry on its own - they have definite symmetry about different points: ;) about z = z;
and t(9) about z = z9; neither about z = 0. But the following linear combinations do have
definite symmetry about x = 0:

Ys = Pn(z —21) + Yoz —12) = 1) + 12y is symmetrical about z = 0;
Yo = Yn(r — 1) = Pu(r — 22) =9Pq) —9P(2) Iis antisymmetrical about =z =0.  (6)

This suggests that a general way to solve the problem is to postulate an approximate wave
function which is a linear combination of eigenstates, 1), of each square well alone

P(z,21,22) = c19Pn (T — 1) + 2P (T — T2) = c19(1) + C27(2), (7)

where ¢; and ¢y are constants to be determined from the TISE for the double-well potential.
(Here we chose the ground states n = 1 since we are searching for the HJ ground state.).
Because of the symmetry of the potential we expect the two possibilities ¢; = Fc¢o to emerge
in the solution. Note that the two wave functions in this linear combination are not orthogonal
because they correspond to the same function evaluated at different points. Practitioners of
molecular quantum mechanics call this approximation technique LCAO — Linear Combination
of Atomic Orbitals. A better version of the approximation includes a sum over all the states of
the single well (3,,).

This assumption, that somehow the electron is ‘shared’ between the two protons, is com-
pletely at variance with classical physics where the electron, once it binds to one of the protons,
will continue to orbit around it leaving the other proton to wander off because it is not attracted
to the neutral H-atom. In pictures the contrast looks like this:
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Figure 4: Classical and schematic quantum mechanical pictures of HJ ion.



(1) The Formal Argument.

The TISE for the problem is

Hy = Evp (8)
and our ansatz is
Y = 1) + 292 (9)
giving
et Hpy + coHpoy = e1 Epry + ca o) (10)

Multiplying this equation respectively by the normalised, but not orthogonal, wzﬁl) and ¢E‘2> and
integrating with respect to x in each case gives

ciHyy+coHig = B+ cEKy (11)
c1Hy +coHyy = c1EKo +coF (12)
where
“+00 N —+oo .
Hy; = 3 1/)E‘Z-)H1,b(j)dx =/ Yy (z — zi)) Hipy (x — z)dx (13)
+oo . +oo .
K;; = 3 PYinby)de = i Uy (x — 23)p(x — z5)dz (14)

We have used the fact that K11 = Ks9 = 1 which follows from the normalisation of the single-well
energy eigenstates v, after changing the variable of integration to z — z1 or z — x5 respectively.
K19 and Ko are non-vanishing because the wave functions are evaluated at separate points

Ky = /:)O D (& — 21) b (2 — 2)da (15)

and if the wells are close enough the two wave functions in the integrand overlap due to them tun-
nelling into and through the classically forbidden (repulsive) region. For the ground state, n = 1:
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Figure 5: Region of overlap contributing non-zero values to integrals Kis & Ko;.

Inspection of the above expression for K15 and the fact that the bound-state wave functions
are real shows that the expression is symmetric under z; <+ x2, so that

Klg = Kgl (16)

Also, since H is a Hermitian operator (see later in the course for this; but the proof is simple:
just integrate the kinetic energy term 0?/0z% twice by parts to get H to act on the first wave
function in the integral) and the 1), are real we can show that

Hyy = Hoyy (17)



Those interested or sceptical should study the Appendix for detailed proofs. Finally, the reality
of the 1, the fact that they have definite parity, and that H is even in  — —z and symmetric
under z; < o implies

Hyy = Hy (18)

It is this latter condition which is crucial in eventually leading to the expected symmetric and
antisymmetric wave functions.
Our equations therefore simplify to

Cl(HH — E) + CQ(HlQ — EKlg) = 0 (19)
Cl(H12 — EKlg) + CQ(HH - E) =0 (20)

These simultaneous homogeneous equations in ¢; and ce only have consistent solutions if

| Hy —E  Hips—-FEKi

|
| =0 (21)
| Hi2—FEKi2 Hn-E |
ie. (H11 — E)2 = (HIQ - E‘I(12)2 (22)
giving the two possibilities
Hyy, — FE =+(Hj3s — EKy9) (23)

Substituting each possibility into the original equations and solving for ¢y, ce gives the two
solutions, one symmetric and the other antisymmetric, just as we expect from the theorem:

Antisymmetric €1 = —co giving E=E, = 15’115(1;1212;
(24)
Symmetric c1 = +cy giving E=FE, Hll-ll—-lf—(?zlz .

Thus, starting with a single energy E,—; for the electron in either well (when the wells are
separated a large distance) we arrived at two distinct energies with their corresponding wave
functions when the wells are close enough:
. . _ _ Hi1—H;-
Antisymmetric: Ya = cra(P1) — Y(2)) E, = SLgk
(25)

E, = Hi1+Hisp

Symmetric: Ps = c1s(P) + P2)) 1K1,

where ¢y, and c¢i5 are chosen to normalise ¥, and . In the jargon of quantum mechanics, the
degeneracy in energy when the wells are far apart (ie. when both possible states 1) = ;) and
¥ = t(2) have the same energy E;,—; — the level is doubly degenerate) is lifted when the wells
come close enough for tunnelling to occur; the result is that the degenerate energies become two
separated energy levels at s and E,:
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Figure 6: Lifting the degeneracy in the Hj ion. This is a greatly simplified version
of Fig. 12

Which of the energies E, or E; is smallest depends on the actual numerical values of Hii,
His and Ko. A detailed discussion of these integrals reveals that E; < E,; for the ground state
we shall give a simple physical argument to establish this in the following section.

(2) The simple Physical Argument.

We now repeat the above discussion in a more informal form. Misapplying our classical
intuition to the quantum mechanical problem we have already guessed that there are two possi-
bilities for the electron wave function: either the electron is localised around the left proton or
around the right one. This is shown in Fig.4 or, in terms of wave functions:
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Figure 7: Electron wave function in HJ ion from ‘classical’ reasoning.

Quantum mechanically neither of these is any good because we have already argued that the
symmetry of the potential (eq.2) requires the 2-well wave function to be either symmetric or
antisymmetric; instead we are driven to take the definite parity combinations in eq.6 to be
our starting point for a possible ground state (n = 1). We can see qualititively how quantum
mechanics leads to a dramatic physical difference in these two states. First note that physi-
cally 4, and —1),, represent the same wave function because they only differ by a constant phase
(/™ = —1) which cancels out in all physical quantities (ie. in expectation values). However, once
we have a physical situation where two or more wave functions are superimposed, their phase
difference has physical consequences because of interference - this is the superposition principle.
Thus, keeping in mind the demands of the symmetric potential, there are two candidates for the
ground state ¢ which are physically the same when the wells are far apart:
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Figure 8: Definite parity electron wave functions for protons far apart.
But as the wells (protons) move nearer the separate wave functions t(;) and ¢y begin to

overlap, and their superposition leads to the symmetric and antisymmetric wave functions )
and 1, being quite different:
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Figure 9: Definite parity electron wave functions for Hj ion.



The second part of the argument is to show, for the ground state (n = 1), that Ey < Eg; it
is here that the dramatic difference in symmetric and antisymmetric wave functions comes into
play. Let’s look at the symmetric and antisymmetric electron wave functions using the Born
interpretation: |¢(x)|? represents the probability density; but since the electron is electrically
charged it also represents the density of negative electric charge —e|t(x)|? oc [4(z)|?.
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Ps Ya

2= 2 U G
LN AL

Probability densities:

5] |a?

/\ OR
SN

AN

Ty T2 Ea| I Z2
Here the e™ has a significant Here the e™ avids the region between the
probability of being found protons and is most likely to be found
mid-way between the around either one of them. This is closest
two protons. to, but not quite, the classical picture.

Figure 10: Electron wave functions and -ve charge densities for HJ ion.

In the symmetric case the negative electronic charge distribution is significant half way be-
tween the protons, which are therefore both attracted towards this region, and hence towards
each other — a net attractive force binding the protons to each other. This is the covalent bind-
ing which forms the basis of much chemistry, epecially the overwhelmingly important carbon
chemistry, the key to molecular biology. This ‘exchange’ force is a purely quantum mechanical
phenomenon because it relies on the tunnelling of both wave functions ;) and () into the
classically forbidden region between the wells.

In the antisymmetric case the electron avoids the region half way between the protons and is to
be found almost exclusively around either one or the other proton. Thus each proton and its
accompanying negative charge cloud - with a net positive charge - ‘sees’ an equal positive charge
from the other proton and its negative cloud: the protons and their negative cloud experience



a net repulsion, so the force cannot bind the protons together and the state is unstable. Fig. 11
on the following page depicts the negative charge distributions in these two cases.

Expressed in terms of energies, the above argument implies that the symmetric state has a
lower energy than when the two wells are far apart (when it is E,—;, the ground state en-
ergy of one electron bound in one well), while the antisymmetric state has a higher energy.
For the actual HJ ion the energy can be plotted as a function of the distance R = |r; — ry| be-
tween the protons (notice that H;;, K;; only depend on z; and x5, not = which is integrated out):
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Figure 12: Electron energy versus inter-proton separation for Hj ion.

Both curves asymptote to E,,—1 because,
as R = |z1 — 9| — oo, both His — 0 and K9 — 0, but Hy; — Ep—1.

To emphasise the contrast with classical physics imagine placing the electron initially in one
well around proton 1: the state at ¢ = 0 is therefore 1 = 1p,—1 (x — z1). Then one can show that
the probability of finding the electron in the ground state about the proton 2 at a later time ¢ is

2 (Ea — Es)

—t = sin® wt (26)

P1*>2(t) o sin
which shows that in the H;’ ion the electron can be pictured as tunnelling back-and-forth be-
tween the two protons with frequency w = (E, — Es)/h. It is this ezchange which produces
the attractive exchange force or covalent bonding in the symmetric state. The resulting charge
distribution, with the electron spending a significant fraction of its time in the classically for-
bidden region half-way between the protons, enables us to understand how the attractive force
is produced.



Figure 11: Negative charge density ( o |¢|?) produced by the electron
in the Hj molecular ion.
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THE AMMONTIA ( NH; ) MASER.

In the ammonia molecule the three hydrogen atoms form the base of a pyramid whose apex
is the nitrogen atom. The hydrogen atoms form an equilateral triangle whose symmetry axis
passes through the nitrogen atom, so that its distance from the plane of the triangle plays the
role of the one-dimensional variable z. If the nitrogen atom is in the plane of the hydrogen
atoms they repel it; the nitrogen atom is therefore classically trapped a distance z above or
below the hydrogen atoms in a double potential well V (z) = V(—z) with a repulsive barrier at
the location of the hydrogen triangle, z = 0. This corresponds precisely to the one-dimensional
model discussed above, with the two single-well wave functions () and 1, corresponding to
the two possible configurations of the ammonia molecule:

pe p oo
N H
N
LN, 3
H N

(The vectors shown are the spin S of the molecule and its electric dipole moment p whose
relative directions differ for the two states. This is important, but will not concern us here.)

Thus we find again that the two-fold degeneracy of the molecule is lifted by quantum mechanical
tunnelling between the two states depicted, leading to two separate levels differing in energy by

E,—E;=hv ~1eV (27)

corresponding to a frequency v = 24,000 MHz = 24 GHz, or a wavelenth of 12.5 mm which is
in the microwave range. Excitation to and from the higher level can be caused by exposing
the gas to microwave radiation, forming the basis of the MASER — Microwave Amplification
by Stimulated Emission of Radiation. This seminal device, invented by Townes in 1954, the
forerunner of the LASER, involves two processes. First, the interaction of the electric dipole
moment of a beam of ammonia molecules with an electrostatic field makes it possible to separate
out a beam of molecules in the antisymmetric state; this creates a highly enhanced population
in the upper energy level E, — a population inversion. The beam, passed through a resonant
cavity is then exposed to electromagnetic radiation at the resonant frequency 24 GHz, which
‘stimulates’ a rapid de-excitation of the molecules down to the ground state level E;, thereby
emitting 24 GHz radiation in phase with the incident radiation. This dramatic increase in the
intensity of the incident radiation field is the coherent amplification process.
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Masers are important in astrophysics of the interstellar medium where high fluxes of photons
can induce a population inversion, particularly in the densest star forming regions. Two exam-
ples of observed masing molecules are water, HoO and cyanogen, CN. The cosmic microwave
background radiation, CMBR, ‘officially’ discovered by Penzias and Wilson in 1965, was actually
first detected by McKellar in 1941 when he discovered CN molecules in the interstellar medium
which had suffered a population inversion. Although he correctly inferred that a radiation field
at a temperature of 2.3 K could have caused this, neither he nor anyone else realised that this
radiation was actually the CMBR.

RESONANCE STABILISATION OF BENZENE, Cs;Hg

The valency 4 carbon atom gives this well-loved organic molecule a highly pleasing regular
hexagonal structure:

H
H ¢ H
C
H C H
H

where the 4 bonds of each carbon atom are shown as lines. Benzene displays a stronger binding
than expected on the basis of this picture because there actually exist two possible configurations
of the double bonds:

OR

each of which alone has the same energy, E,—; — the ground state is doubly degenerate. But
now we know that the true benzene wave function should be a linear combination of the two
states depicted above, leading to Hio # 0 and K9 # 0, as for the double-well. The degeneracy
is therefore lifted, with two distinct levels, the lowest being less than F,—;, making the molecule
more stable. Physically one can think of the system as jumping back-and-forth between the two
states, leading to the title of this section and to the Chemists’ notation:
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ENERGY BANDS & GAPS IN SOLIDS.

Imagine an H;"" ion with 3 protons and only one electron modelled as a triple-well problem.
The wave function, reflecting the symmetry of the potential, will therefore involve a linear com-
bination of three single-well eigenstates: 1 = c19p(1) + catb(2) + c39(3). A repeat of the procedure
given earlier now leads to 3 homogeneous equations for the three ¢’s on equating to zero the
determinant of the 3 x 3 matrix of coefficients, leading to a cubic equation for the energies, giv-
ing three distinct energy levels and three distinct wave functions. The triply degenerate ground
state energy splits into three: Alternatively, just draw the 3 possible wave functions.

R /E

The pattern is set: for N identical wells we expect the N-fold degenerate ground state energy to
split into N levels. An ideal solid is a regular array of atomic ions, each presenting an attractive
well to an electron confined to the crystal lattice, but with repulsive barriers between the wells.
Modelled as before, we therefore expect a macroscopic solid with N ~ 10%% atomic wells to
generate 1023 levels from the 1023-fold degenerate single-well level. This will happen, as for all
the cases considered above, for each level E,_1, Ej,—o, Fp—3, Ey—y, . .. of the single well:

ET R

N WELLS

_,H,H.HVL----//

< R >< R > Allowed Bands

\

l \_/ E n=3

Forbidden Gaps

With so many atoms in the lattice the split lines, although discrete, are so close that they make
up sets of essentially continuous bands of allowed energies separated by forbidden bands. Thus
we see that the band structure of solids arises from quantum mechanical tunnelling through the
barriers between ions, while the forbidden gaps arise from quantisation of energies resulting from
localisation in potential wells (remember that the quantised energies Ey,—1, Fy—9, Ej—3, ... come
from solving the single-well problem and it is their separation that produces the gaps in the
diagram above). The scientific, technological, economic and sociological implications of these
properties have been, and will continue to be, far-reaching and profound!
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APPENDIX: Proof that H12 = H21 and H11 = HQQ.
The Hamiltonian is of course Hermitian, and using the fact that the bound-state wave functions
are real,

Hy = /'L/Jn({L‘ —z1) Hpp(z — 25) dz by definition. (28)
= /{ET Yn(z — 1)} thn(x — ) since H is Hermitian. (29)
= Hy (30)
The Hamiltonian for our model double square well has the form:
- K 92
H($,I1,$2)Z—%@+V(\$—$1\)+V(\$—$2\) (31)

where V' (z) is the single finite square well potential

V(e —z;]) = =V for |z —z;] <L/2
=0 for |z — x| > L/2 (32)
To check that the double-well potential drawn in the text is indeed Vo = V(|z—z1|)+V (|z —z2])
just draw it following the definition above, keeping in mind that we have placed the origin
symmetrically between the wells so that ©; = —x9 with z; negative. Just as for the more

realistic potential in 3-dimensions, the double-well potential V) = V(|x — z1|) + V(] — z2|) has
the following two symmetries:

Vo(z,z1,22) = Vp(z,x2,71) ie. 1 <> 2 symmetric. (33)

= Vp(—z,—z1,—x2) ie. mirror-symmetric about the origin. (34)

The first is obvious; the second follows by just looking at the drawing of the double-well potential.
Formally it follows from the following manipulations:

V(=2 —z1,—22) = V([ —z+2]) + V(| -2z +x2) (35)
= V(lz — z1]) + V(|z — x2|) using the properties of | | (36)
== VD(xaxlaxQ) (37)

Now since 92/dz? is symmetrical under x — —z and does not depend on z; or z3, H also has
the above symmetries. Hence,

Hy = /1/)n($ — 1) H(z, 21, 23) y(x — 1) dz by definition (38)
= /d;n(x —z1) H(z, 9, 21) ¥ (z — 1) dz using the 1st. symmetry of H (39)

= /1/)n(ac + ) I:I(a:, —11, —2) P (T + x2) dr using x1 = —x9 (40)

A~

= /d)n(—y + x9) H(~y, —x1, —x2) Yn(—y + 22) dy usingy = —x, dv = —dy (41)

= /wn(—y + 29) H(y, 21, 22) Yn(—y + z2) dy using the 2nd. symmetry of H (42)

= /wn(y — x9) H(y, 21, 22) n(y — 22) dy since the wf’s have same parity — (43)
Hjyo (44)

The last step involves no sign change because, although the wave function may have negative
parity, it gets squared because the integrand contains the product of two wave functions with
the same energy (E,) and therefore the same parity.
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