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§2.2 DYNAMICS

Dynamics is concerned with studying the motion of particles and rigid bodies. By studying the motion

of a single hypothetical particle, one can discern the motion of a system of particles. This in turn leads to

the study of the motion of individual points in a continuous deformable medium.

Particle Movement

The trajectory of a particle in a generalized coordinate system is described by the parametric equations

xi = xi(t), i = 1, . . . , N (2.2.1)

where t is a time parameter. If the coordinates are changed to a barred system by introducing a coordinate

transformation

xi = xi(x1, x2, . . . , xN ), i = 1, . . . , N

then the trajectory of the particle in the barred system of coordinates is

xi = xi(x1(t), x2(t), . . . , xN (t)), i = 1, . . . , N. (2.2.2)

The generalized velocity of the particle in the unbarred system is defined by

vi =
dxi

dt
, i = 1, . . . , N. (2.2.3)

By the chain rule differentiation of the transformation equations (2.2.2) one can verify that the velocity in

the barred system is

vr =
dxr

dt
=
∂xr

∂xj

dxj

dt
=
∂xr

∂xj
vj , r = 1, . . . , N. (2.2.4)

Consequently, the generalized velocity vi is a first order contravariant tensor. The speed of the particle is

obtained from the magnitude of the velocity and is

v2 = gijv
ivj .

The generalized acceleration f i of the particle is defined as the intrinsic derivative of the generalized velocity.

The generalized acceleration has the form

f i =
δvi

δt
= vi

,n

dxn

dt
=
dvi

dt
+
{

i

mn

}
vmvn =

d2xi

dt2
+
{

i

mn

}
dxm

dt

dxn

dt
(2.2.5)

and the magnitude of the acceleration is

f2 = gijf
if j.
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Figure 2.2-1 Tangent, normal and binormal to point P on curve.

Frenet-Serret Formulas

The parametric equations (2.2.1) describe a curve in our generalized space. With reference to the figure

2.2-1 we wish to define at each point P of the curve the following orthogonal unit vectors:

T i = unit tangent vector at each point P.

N i = unit normal vector at each point P.

Bi = unit binormal vector at each point P.

These vectors define the osculating, normal and rectifying planes illustrated in the figure 2.2-1.

In the generalized coordinates the arc length squared is

ds2 = gijdx
idxj .

Define T i = dxi

ds as the tangent vector to the parametric curve defined by equation (2.2.1). This vector is a

unit tangent vector because if we write the element of arc length squared in the form

1 = gij
dxi

ds

dxj

ds
= gijT

iT j, (2.2.6)

we obtain the generalized dot product for T i. This generalized dot product implies that the tangent vector

is a unit vector. Differentiating the equation (2.2.6) intrinsically with respect to arc length s along the curve

produces

gmn
δTm

δs
T n + gmnT

m δT
n

δs
= 0,

which simplifies to

gmnT
n δT

m

δs
= 0. (2.2.7)
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The equation (2.2.7) is a statement that the vector δT m

δs is orthogonal to the vector Tm. The unit normal

vector is defined as

N i =
1
κ

δT i

δs
or Ni =

1
κ

δTi

δs
, (2.2.8)

where κ is a scalar called the curvature and is chosen such that the magnitude of N i is unity. The reciprocal

of the curvature is R = 1
κ , which is called the radius of curvature. The curvature of a straight line is zero

while the curvature of a circle is a constant. The curvature measures the rate of change of the tangent vector

as the arc length varies.

The equation (2.2.7) can be expressed in the form

gijT
iN j = 0. (2.2.9)

Taking the intrinsic derivative of equation (2.2.9) with respect to the arc length s produces

gijT
i δN

j

δs
+ gij

δT i

δs
N j = 0

or

gijT
i δN

j

δs
= −gij

δT i

δs
N j = −κgijN

iN j = −κ. (2.2.10)

The generalized dot product can be written

gijT
iT j = 1,

and consequently we can express equation (2.2.10) in the form

gijT
i δN

j

δs
= −κgijT

iT j or gijT
i

(
δN j

δs
+ κT j

)
= 0. (2.2.11)

Consequently, the vector
δN j

δs
+ κT j (2.2.12)

is orthogonal to T i. In a similar manner, we can use the relation gijN
iN j = 1 and differentiate intrinsically

with respect to the arc length s to show that

gijN
i δN

j

δs
= 0.

This in turn can be expressed in the form

gijN
i

(
δN j

δs
+ κT j

)
= 0.

This form of the equation implies that the vector represented in equation (2.2.12) is also orthogonal to the

unit normal N i. We define the unit binormal vector as

Bi =
1
τ

(
δN i

δs
+ κT i

)
or Bi =

1
τ

(
δNi

δs
+ κTi

)
(2.2.13)

where τ is a scalar called the torsion. The torsion is chosen such that the binormal vector is a unit vector.

The torsion measures the rate of change of the osculating plane and consequently, the torsion τ is a measure
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of the twisting of the curve out of a plane. The value τ = 0 corresponds to a plane curve. The vectors

T i, N i, Bi, i = 1, 2, 3 satisfy the cross product relation

Bi = εijkTjNk.

If we differentiate this relation intrinsically with respect to arc length s we find

δBi

δs
= εijk

(
Tj
δNk

δs
+
δTj

δs
Nk

)
= εijk [Tj(τBk − κTk) + κNjNk]

= τεijkTjBk = −τεikjBkTj = −τN i.

(2.2.14)

The relations (2.2.8),(2.2.13) and (2.2.14) are now summarized and written

δT i

δs
= κN i

δN i

δs
= τBi − κT i

δBi

δs
= −τN i.

(2.2.15)

These equations are known as the Frenet-Serret formulas of differential geometry.

Velocity and Acceleration

Chain rule differentiation of the generalized velocity is expressible in the form

vi =
dxi

dt
=
dxi

ds

ds

dt
= T iv, (2.2.16)

where v = ds
dt is the speed of the particle and is the magnitude of vi. The vector T i is the unit tangent vector

to the trajectory curve at the time t. The equation (2.2.16) is a statement of the fact that the velocity of a

particle is always in the direction of the tangent vector to the curve and has the speed v.

By chain rule differentiation, the generalized acceleration is expressible in the form

f r =
δvr

δt
=
dv

dt
T r + v

δT r

δt

=
dv

dt
T r + v

δT r

δs

ds

dt

=
dv

dt
T r + κv2N r.

(2.2.17)

The equation (2.2.17) states that the acceleration lies in the osculating plane. Further, the equation (2.2.17)

indicates that the tangential component of the acceleration is dv
dt , while the normal component of the accel-

eration is κv2.
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Work and Potential Energy

Define M as the constant mass of the particle as it moves along the curve defined by equation (2.2.1).

Also let Qr denote the components of a force vector (in appropriate units of measurements) which acts upon

the particle. Newton’s second law of motion can then be expressed in the form

Qr = Mf r or Qr = Mfr. (2.2.18)

The work done W in moving a particle from a point P0 to a point P1 along a curve xr = xr(t), r = 1, 2, 3,

with parameter t, is represented by a summation of the tangential components of the forces acting along the

path and is defined as the line integral

W =
∫ P1

P0

Qr
dxr

ds
ds =

∫ P1

P0

Qr dx
r =

∫ t1

t0

Qr
dxr

dt
dt =

∫ t1

t0

Qrv
r dt (2.2.19)

where Qr = grsQ
s is the covariant form of the force vector, t is the time parameter and s is arc length along

the curve.

Conservative Systems

If the force vector is conservative it means that the force is derivable from a scalar potential function

V = V (x1, x2, . . . , xN ) such that Qr = −V ,r = − ∂V

∂xr
, r = 1, . . . , N. (2.2.20)

In this case the equation (2.2.19) can be integrated and we find that to within an additive constant we will

have V = −W. The potential function V is called the potential energy of the particle and the work done

becomes the change in potential energy between the starting and end points and is independent of the path

connecting the points.

Lagrange’s Equations of Motion

The kinetic energy T of the particle is defined as one half the mass times the velocity squared and can

be expressed in any of the forms

T =
1
2
M

(
ds

dt

)2

=
1
2
Mv2 =

1
2
Mgmnv

mvn =
1
2
Mgmnẋ

mẋn, (2.2.21)

where the dot notation denotes differentiation with respect to time. It is an easy exercise to calculate the

derivatives
∂T

∂ẋr
= Mgrmẋ

m

d

dt

(
∂T

∂ẋr

)
= M

[
grmẍ

m +
∂grm

∂xn
ẋnẋm

]
∂T

∂xr
=

1
2
M
∂gmn

∂xr
ẋmẋn,

(2.2.22)

and thereby verify the relation

d

dt

(
∂T

∂ẋr

)
− ∂T

∂xr
= Mfr = Qr, r = 1, . . . , N. (2.2.23)
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This equation is called the Lagrange’s form of the equations of motion.

EXAMPLE 2.2-1. (Equations of motion in spherical coordinates) Find the Lagrange’s form of

the equations of motion in spherical coordinates.

Solution: Let x1 = ρ, x2 = θ, x3 = φ then the element of arc length squared in spherical coordinates has

the form

ds2 = (dρ)2 + ρ2(dθ)2 + ρ2 sin2 θ(dφ)2.

The element of arc length squared can be used to construct the kinetic energy. For example,

T =
1
2
M

(
ds

dt

)2

=
1
2
M
[
(ρ̇)2 + ρ2(θ̇)2 + ρ2 sin2 θ(φ̇)2

]
.

The Lagrange form of the equations of motion of a particle are found from the relations (2.2.23) and are

calculated to be:

Mf1 = Q1 =
d

dt

(
∂T

∂ρ̇

)
− ∂T

∂ρ
= M

[
ρ̈− ρ(θ̇)2 − ρ sin2 θ(φ̇)2

]
Mf2 = Q2 =

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= M

[
d

dt

(
ρ2θ̇
)
− ρ2 sin θ cos θ(φ̇)2

]
Mf3 = Q3 =

d

dt

(
∂T

∂φ̇

)
− ∂T

∂φ
= M

[
d

dt

(
ρ2 sin2 θφ̇

)]
.

In terms of physical components we have

Qρ = M
[
ρ̈− ρ(θ̇)2 − ρ sin2 θ(φ̇)2

]
Qθ =

M

ρ

[
d

dt

(
ρ2θ̇
)
− ρ2 sin θ cos θ(φ̇)2

]
Qφ =

M

ρ sin θ

[
d

dt

(
ρ2 sin2 θφ̇

)]
.

Euler-Lagrange Equations of Motion

Starting with the Lagrange’s form of the equations of motion from equation (2.2.23), we assume that

the external force Qr is derivable from a potential function V as specified by the equation (2.2.20). That is,

we assume the system is conservative and express the equations of motion in the form

d

dt

(
∂T

∂ẋr

)
− ∂T

∂xr
= − ∂V

∂xr
= Qr, r = 1, . . . , N (2.2.24)

The Lagrangian is defined by the equation

L = T − V = T (x1, . . . , xN , ẋ1, . . . , ẋN )− V (x1, . . . , xN ) = L(xi, ẋi). (2.2.25)

Employing the defining equation (2.2.25), it is readily verified that the equations of motion are expressible

in the form
d

dt

(
∂L

∂ẋr

)
− ∂L

∂xr
= 0, r = 1, . . . , N, (2.2.26)

which are called the Euler-Lagrange form for the equations of motion.
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Figure 2.2-2 Simply pulley system

EXAMPLE 2.2-2. (Simple pulley system) Find the equation of motion for the simply pulley system

illustrated in the figure 2.2-2.

Solution: The given system has only one degree of freedom, say y1. It is assumed that

y1 + y2 = ` = a constant.

The kinetic energy of the system is

T =
1
2
(m1 +m2)ẏ2

1 .

Let y1 increase by an amount dy1 and show the work done by gravity can be expressed as

dW = m1g dy1 +m2g dy2

dW = m1g dy1 −m2g dy1

dW = (m1 −m2)g dy1 = Q1 dy1.

Here Q1 = (m1 −m2)g is the external force acting on the system where g is the acceleration of gravity. The

Lagrange equation of motion is
d

dt

(
∂T

∂ẏ1

)
− ∂T

∂y1
= Q1

or

(m1 +m2)ÿ1 = (m1 −m2)g.

Initial conditions must be applied to y1 and ẏ1 before this equation can be solved.
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EXAMPLE 2.2-3. (Simple pendulum) Find the equation of motion for the pendulum system illus-

trated in the figure 2.2-3.

Solution: Choose the angle θ illustrated in the figure 2.2-3 as the generalized coordinate. If the pendulum

is moved from a vertical position through an angle θ, we observe that the mass m moves up a distance

h = `− ` cos θ. The work done in moving this mass a vertical distance h is

W = −mgh = −mg`(1− cos θ),

since the force is −mg in this coordinate system. In moving the pendulum through an angle θ, the arc length

s swept out by the mass m is s = `θ. This implies that the kinetic energy can be expressed

T =
1
2
m

(
ds

dt

)2

=
1
2
m
(
`θ̇
)2

=
1
2
m`2(θ̇)2.

Figure 2.2-3 Simple pendulum system

The Lagrangian of the system is

L = T − V =
1
2
m`2(θ̇)2 −mg`(1− cos θ)

and from this we find the equation of motion

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 or

d

dt

(
m`2θ̇

)
−mg`(− sin θ) = 0.

This in turn simplifies to the equation

θ̈ +
g

`
sin θ = 0.

This equation together with a set of initial conditions for θ and θ̇ represents the nonlinear differential equation

which describes the motion of a pendulum without damping.
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EXAMPLE 2.2-4. (Compound pendulum) Find the equations of motion for the compound pendulum

illustrated in the figure 2.2-4.

Solution: Choose for the generalized coordinates the angles x1 = θ1 and x2 = θ2 illustrated in the figure

2.2-4. To find the potential function V for this system we consider the work done as the masses m1 and

m2 are moved. Consider independent motions of the angles θ1 and θ2. Imagine the compound pendulum

initially in the vertical position as illustrated in the figure 2.2-4(a). Now let m1 be displaced due to a change

in θ1 and obtain the figure 2.2-4(b). The work done to achieve this position is

W1 = −(m1 +m2)gh1 = −(m1 +m2)gL1(1 − cos θ1).

Starting from the position in figure 2.2-4(b) we now let θ2 undergo a displacement and achieve the configu-

ration in the figure 2.2-4(c).

Figure 2.2-4 Compound pendulum

The work done due to the displacement θ2 can be represented

W2 = −m2gh2 = −m2gL2(1 − cos θ2).

Since the potential energy V satisfies V = −W to within an additive constant, we can write

V = −W = −W1 −W2 = −(m1 +m2)gL1 cos θ1 −m2gL2 cos θ2 + constant,

where the constant term in the potential energy has been neglected since it does not contribute anything to

the equations of motion. (i.e. the derivative of a constant is zero.)

The kinetic energy term for this system can be represented

T =
1
2
m1

(
ds1
dt

)2

+
1
2
m2

(
ds2
dt

)2

T =
1
2
m1(ẋ2

1 + ẏ2
1) +

1
2
m2(ẋ2

2 + ẏ2
2),

(2.2.27)
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where
(x1, y1) = (L1 sin θ1 , −L1 cos θ1)

(x2, y2) = (L1 sin θ1 + L2 sin θ2,−L1 cos θ1 − L2 cos θ2)
(2.2.28)

are the coordinates of the masses m1 and m2 respectively. Substituting the equations (2.2.28) into equation

(2.2.27) and simplifying produces the kinetic energy expression

T =
1
2
(m1 +m2)L2

1θ̇
2
1 +m2L1L2θ̇1θ̇2 cos(θ1 − θ2) +

1
2
m2L

2
2θ̇

2
2 . (2.2.29)

Writing the Lagrangian as L = T −V , the equations describing the motion of the compound pendulum

are obtained from the Lagrangian equations

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0 and

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0.

Calculating the necessary derivatives, substituting them into the Lagrangian equations of motion and then

simplifying we derive the equations of motion

L1θ̈1 +
m2

m1 +m2
L2θ̈2 cos(θ1 − θ2) +

m2

m1 +m2
L2(θ̇2)2 sin(θ1 − θ2) + g sin θ1 = 0

L1θ̈1 cos(θ1 − θ2) + L2θ̈2 − L1(θ̇1)2 sin(θ1 − θ2) + g sin θ2 = 0.

These equations are a set of coupled, second order nonlinear ordinary differential equations. These equations

are subject to initial conditions being imposed upon the angular displacements (θ1, θ2) and the angular

velocities (θ̇1, θ̇2).

Alternative Derivation of Lagrange’s Equations of Motion

Let c denote a given curve represented in the parametric form

xi = xi(t), i = 1, . . . , N, t0 ≤ t ≤ t1

and let P0, P1 denote two points on this curve corresponding to the parameter values t0 and t1 respectively.

Let c denote another curve which also passes through the two points P0 and P1 as illustrated in the figure

2.2-5.

The curve c is represented in the parametric form

xi = xi(t) = xi(t) + εηi(t), i = 1, . . . , N, t0 ≤ t ≤ t1

in terms of a parameter ε. In this representation the function ηi(t) must satisfy the end conditions

ηi(t0) = 0 and ηi(t1) = 0 i = 1, . . . , N

since the curve c is assumed to pass through the end points P0 and P1.

Consider the line integral

I(ε) =
∫ t1

t0

L(t, xi + εηi, ẋi + εη̇i) dt, (2.2.30)
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Figure 2.2-5. Motion along curves c and c

where

L = T − V = L(t, xi, ẋ
i
)

is the Lagrangian evaluated along the curve c. We ask the question, “What conditions must be satisfied by

the curve c in order that the integral I(ε) have an extremum value when ε is zero?”If the integral I(ε) has

a minimum value when ε is zero it follows that its derivative with respect to ε will be zero at this value and

we will have
dI(ε)
dε

∣∣∣∣
ε=0

= 0.

Employing the definition
dI

dε

∣∣∣∣
ε=0

= lim
ε→0

I(ε)− I(0)
ε

= I ′(0) = 0

we expand the Lagrangian in equation (2.2.30) in a series about the point ε = 0. Substituting the expansion

L(t, xi + εηi, ẋi + εη̇i) = L(t, xi, ẋi) + ε

[
∂L

∂xi
ηi +

∂L

∂ẋi
η̇i

]
+ ε2 [ ] + · · ·

into equation (2.2.30) we calculate the derivative

I ′(0) = lim
ε→0

I(ε)− I(0)
ε

= lim
ε→0

∫ t1

t0

[
∂L

∂xi
ηi(t) +

∂L

∂ẋi
η̇i(t)

]
dt+ ε [ ] + · · · = 0,

where we have neglected higher order powers of ε since ε is approaching zero. Analysis of this equation

informs us that the integral I has a minimum value at ε = 0 provided that the integral

δI =
∫ t1

t0

[
∂L

∂xi
ηi(t) +

∂L

∂ẋi
η̇i(t)

]
dt = 0 (2.2.31)
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is satisfied. Integrating the second term of this integral by parts we find

δI =
∫ t1

t0

∂L

∂xi
ηi dt+

[
∂L

∂ẋi
ηi(t)

]t1

t0

−
∫ t1

t0

d

dt

(
∂L

∂ẋi

)
ηi(t) dt = 0. (2.2.32)

The end condition on ηi(t) makes the middle term in equation (2.2.32) vanish and we are left with the

integral

δI =
∫ t1

t0

ηi(t)
[
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)]
dt = 0, (2.2.33)

which must equal zero for all ηi(t). Since ηi(t) is arbitrary, the only way the integral in equation (2.2.33) can

be zero for all ηi(t) is for the term inside the brackets to vanish. This produces the result that the integral

of the Lagrangian is an extremum when the Euler-Lagrange equations

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0, i = 1, . . . , N (2.2.34)

are satisfied. This is a necessary condition for the integral I(ε) to have a minimum value.

In general, any line integral of the form

I =
∫ t1

t0

φ(t, xi, ẋi) dt (2.2.35)

has an extremum value if the curve c defined by xi = xi(t), i = 1, . . . , N satisfies the Euler-Lagrange

equations
d

dt

(
∂φ

∂ẋi

)
− ∂φ

∂xi
= 0, i = 1, . . . , N. (2.2.36)

The above derivation is a special case of (2.2.36) when φ = L. Note that the equations of motion equations

(2.2.34) are just another form of the equations (2.2.24). Note also that

δT

δt
=

δ

δt

(
1
2
mgijv

ivj

)
= mgijv

if j = mfiv
i = mfiẋ

i

and if we assume that the force Qi is derivable from a potential function V , then mfi = Qi = − ∂V
∂xi

, so

that
δT

δt
= mfiẋ

i = Qiẋ
i = − ∂V

∂xi
ẋ i = −δV

δt
or

δ

δt
(T + V ) = 0 or T + V = h = constant called the energy

constant of the system.

Action Integral

The equations of motion (2.2.34) or (2.2.24) are interpreted as describing geodesics in a space whose

line-element is

ds2 = 2m(h− V )gjkdx
jdxk

where V is the potential function for the force system and T + V = h is the energy constant of the motion.

The integral of ds along a curve C between two points P1 and P2 is called an action integral and is

A =
√

2m
∫ P2

P1

{
(h− V )gjk

dxj

dτ

dxk

dτ

}1/2

dτ
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where τ is a parameter used to describe the curve C. The principle of stationary action states that of all

curves through the points P1 and P2 the one which makes the action an extremum is the curve specified by

Newton’s second law. The extremum is usually a minimum. To show this let

φ =
√

2m
{

(h− V )gjk
dxj

dτ

dxk

dτ

}1/2

in equation (2.2.36). Using the notation ẋk = dxk

dτ we find that

∂φ

∂ẋ i
=

2m
φ

(h− V )gikẋ
k

∂φ

∂xi
=

2m
2φ

(h− V )
∂gjk

∂xi
ẋ j ẋk − 2m

2φ
∂V

∂xi
gjkẋ

j ẋk.

The equation (2.2.36) which describe the extremum trajectories are found to be

d

dt

[
2m
φ

(h− V )gikẋ
k

]
− 2m

2φ
(h− V )

∂gjk

∂xi
ẋ j ẋk +

2m
φ

∂V

∂xi
gjkẋ

j ẋk = 0.

By changing variables from τ to t where dt
dτ =

√
mφ√

2(h−V )
we find that the trajectory for an extremum must

satisfy the equation

m
d

dt

(
gik

dxk

dt

)
− m

2
∂gjk

∂xi

dxj

dt

dxk

dt
+
∂V

∂xi
= 0

which are the same equations as (2.2.24). (i.e. See also the equations (2.2.22).)

Dynamics of Rigid Body Motion

Let us derive the equations of motion of a rigid body which is rotating due to external forces acting

upon it. We neglect any translational motion of the body since this type of motion can be discerned using

our knowledge of particle dynamics. The derivation of the equations of motion is restricted to Cartesian

tensors and rotational motion.

Consider a system of N particles rotating with angular velocity ωi, i = 1, 2, 3, about a line L through

the center of mass of the system. Let ~V (α) denote the velocity of the αth particle which has mass m(α) and

position x
(α)
i , i = 1, 2, 3 with respect to an origin on the line L. Without loss of generality we can assume

that the origin of the coordinate system is also at the center of mass of the system of particles, as this choice

of an origin simplifies the derivation. The velocity components for each particle is obtained by taking cross

products and we can write

~V (α) = ~ω × ~r (α) or V
(α)
i = eijkωjx

(α)
k . (2.2.37)

The kinetic energy of the system of particles is written as the sum of the kinetic energies of each

individual particle and is

T =
1
2

N∑
α=1

m(α)V
(α)
i V

(α)
i =

1
2

N∑
α=1

m(α)eijkωjx
(α)
k eimnωmx

(α)
n . (2.2.38)
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Employing the e− δ identity the equation (2.2.38) can be simplified to the form

T =
1
2

N∑
α=1

m(α)

(
ωmωmx

(α)
k x

(α)
k − ωnωkx

(α)
k x(α)

n

)
.

Define the second moments and products of inertia by the equation

Iij =
N∑

α=1

m(α)

(
x

(α)
k x

(α)
k δij − x

(α)
i x

(α)
j

)
(2.2.39)

and write the kinetic energy in the form

T =
1
2
Iijωiωj . (2.2.40)

Similarly, the angular momentum of the system of particles can also be represented in terms of the

second moments and products of inertia. The angular momentum of a system of particles is defined as a

summation of the moments of the linear momentum of each individual particle and is

Hi =
N∑

α=1

m(α)eijkx
(α)
j v

(α)
k =

N∑
α=1

m(α)eijkx
(α)
j ekmnωmx

(α)
n . (2.2.41)

The e− δ identity simplifies the equation (2.2.41) to the form

Hi = ωj

N∑
α=1

m(α)

(
x(α)

n x(α)
n δij − x

(α)
j x

(α)
i

)
= ωjIji. (2.2.42)

The equations of motion of a rigid body is obtained by applying Newton’s second law of motion to the

system of N particles. The equation of motion of the αth particle is written

m(α)ẍ
(α)
i = F

(α)
i . (2.2.43)

Summing equation (2.2.43) over all particles gives the result

N∑
α=1

m(α)ẍ
(α)
i =

N∑
α=1

F
(α)
i . (2.2.44)

This represents the translational equations of motion of the rigid body. The equation (2.2.44) represents the

rate of change of linear momentum being equal to the total external force acting upon the system. Taking

the cross product of equation (2.2.43) with the position vector x(α)
j produces

m(α)ẍ
(α)
t erstx

(α)
s = erstx

(α)
s F

(α)
t

and summing over all particles we find the equation

N∑
α=1

m(α)erstx
(α)
s ẍ

(α)
t =

N∑
α=1

erstx
(α)
s F

(α)
t . (2.2.45)
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The equations (2.2.44) and (2.2.45) represent the conservation of linear and angular momentum and can be

written in the forms
d

dt

(
N∑

α=1

m(α)ẋ
(α)
r

)
=

N∑
α=1

F (α)
r (2.2.46)

and
d

dt

(
N∑

α=1

m(α)erstx
(α)
s ẋ

(α)
t

)
=

N∑
α=1

erstx
(α)
s F

(α)
t . (2.2.47)

By definition we have Gr =
∑
m(α)ẋ

(α)
r representing the linear momentum, Fr =

∑
F

(α)
r the total force

acting on the system of particles, Hr =
∑
m(α)erstx

(α)
s ẋ

(α)
t is the angular momentum of the system relative

to the origin, and Mr =
∑
erstx

(α)
s F

(α)
t is the total moment of the system relative to the origin. We can

therefore express the equations (2.2.46) and (2.2.47) in the form

dGr

dt
= Fr (2.2.48)

and
dHr

dt
= Mr. (2.2.49)

The equation (2.2.49) expresses the fact that the rate of change of angular momentum is equal to the

moment of the external forces about the origin. These equations show that the motion of a system of

particles can be studied by considering the motion of the center of mass of the system (translational motion)

and simultaneously considering the motion of points about the center of mass (rotational motion).

We now develop some relations in order to express the equations (2.2.49) in an alternate form. Toward

this purpose we consider first the concepts of relative motion and angular velocity.

Relative Motion and Angular Velocity

Consider two different reference frames denoted by S and S. Both reference frames are Cartesian

coordinates with axes xi and xi , i = 1, 2, 3, respectively. The reference frame S is fixed in space and is

called an inertial reference frame or space-fixed reference system of axes. The reference frame S is fixed

to and rotates with the rigid body and is called a body-fixed system of axes. Again, for convenience, it

is assumed that the origins of both reference systems are fixed at the center of mass of the rigid body.

Further, we let the system S have the basis vectors êi, i = 1, 2, 3, while the reference system S has the basis

vectors êi , i = 1, 2, 3. The transformation equations between the two sets of reference axes are the affine

transformations

xi = `jixj and xi = `ijxj (2.2.50)

where `ij = `ij(t) are direction cosines which are functions of time t (i.e. the `ij are the cosines of the

angles between the barred and unbarred axes where the barred axes are rotating relative to the space-fixed

unbarred axes.) The direction cosines satisfy the relations

`ij`ik = δjk and `ij`kj = δik. (2.2.51)
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EXAMPLE 2.2-5. (Euler angles φ, θ, ψ) Consider the following sequence of transformations which

are used in celestial mechanics. First a rotation about the x3 axis taking the xi axes to the yi axes y1
y2
y3

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 x1

x2

x3


where the rotation angle φ is called the longitude of the ascending node. Second, a rotation about the y1
axis taking the yi axes to the y′i axes y′1

y′2
y′3

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 y1
y2
y3


where the rotation angle θ is called the angle of inclination of the orbital plane. Finally, a rotation about

the y′3 axis taking the y′i axes to the x̄i axes x̄1

x̄2

x̄3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 y′1
y′2
y′3


where the rotation angle ψ is called the argument of perigee. The Euler angle θ is the angle x̄30x3, the angle

φ is the angle x10y1 and ψ is the angle y10x̄1. These angles are illustrated in the figure 2.2-6. Note also that

the rotation vectors associated with these transformations are vectors of magnitude φ̇, θ̇, ψ̇ in the directions

indicated in the figure 2.2-6.

Figure 2.2-6. Euler angles.

By combining the above transformations there results the transformation equations (2.2.50) x̄1

x̄2

x̄3

 =

 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

 x1

x2

x3

 .

It is left as an exercise to verify that the transformation matrix is orthogonal and the components `ji

satisfy the relations (2.2.51).
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Consider the velocity of a point which is rotating with the rigid body. Denote by vi = vi(S), for

i = 1, 2, 3, the velocity components relative to the S reference frame and by vi = vi(S), i = 1, 2, 3 the

velocity components of the same point relative to the body-fixed axes. In terms of the basis vectors we can

write
~V = v1(S) ê1 + v2(S) ê2 + v3(S) ê3 =

dxi

dt
êi (2.2.52)

as the velocity in the S reference frame. Similarly, we write

~V = v1(S)ê1 + v2(S)ê2 + v3(S)ê3 =
dxi

dt
êi (2.2.53)

as the velocity components relative to the body-fixed reference frame. There are occasions when it is desirable

to represent ~V in the S frame of reference and ~V in the S frame of reference. In these instances we can write

~V = v1(S)ê1 + v2(S)ê2 + v3(S)ê3 (2.2.54)

and
~V = v1(S) ê1 + v2(S) ê2 + v3(S) ê3. (2.2.55)

Here we have adopted the notation that vi(S) are the velocity components relative to the S reference frame

and vi(S) are the same velocity components relative to the S reference frame. Similarly, vi(S) denotes the

velocity components relative to the S reference frame, while vi(S) denotes the same velocity components

relative to the S reference frame.

Here both ~V and ~V are vectors and so their components are first order tensors and satisfy the transfor-

mation laws

vi(S) = `jivj(S) = `jiẋj and vi(S) = `ijvj(S) = `ij ẋj . (2.2.56)

The equations (2.2.56) define the relative velocity components as functions of time t. By differentiating the

equations (2.2.50) we obtain
dxi

dt
= vi(S) = `jiẋj + ˙̀

jixj (2.2.57)

and
dxi

dt
= vi(S) = `ij ẋj + ˙̀

ijxj . (2.2.58)

Multiply the equation (2.2.57) by `mi and multiply the equation (2.2.58) by `im and derive the relations

vm(S) = vm(S) + `mi
˙̀
jixj (2.2.59)

and

vm(S) = vm(S) + `im ˙̀
ijxj . (2.2.60)

The equations (2.2.59) and (2.2.60) describe the transformation laws of the velocity components upon chang-

ing from the S to the S reference frame. These equations can be expressed in terms of the angular velocity

by making certain substitutions which are now defined.

The first order angular velocity vector ωi is related to the second order skew-symmetric angular velocity

tensor ωij by the defining equation

ωmn = eimnωi. (2.2.61)
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The equation (2.2.61) implies that ωi and ωij are dual tensors and

ωi =
1
2
eijkωjk.

Also the velocity of a point which is rotating about the origin relative to the S frame of reference is vi(S) =

eijkωjxk which can also be written in the form vm(S) = −ωmkxk. Since the barred axes rotate with the rigid

body, then a particle in the barred reference frame will have vm(S) = 0, since the coordinates of a point

in the rigid body will be constants with respect to this reference frame. Consequently, we write equation

(2.2.59) in the form 0 = vm(S) + `mi
˙̀
jixj which implies that

vm(S) = −`mi
˙̀
jixj = −ωmkxk or ωmj = ωmj(S, S) = `mi

˙̀
ji.

This equation is interpreted as describing the angular velocity tensor of S relative to S. Since ωij is a tensor,

it can be represented in the barred system by

ωmn(S, S) = `im`jnωij(S, S)

= `im`jn`is ˙̀
js

= δms`jn
˙̀
js

= `jn
˙̀
jm

(2.2.62)

By differentiating the equations (2.2.51) it is an easy exercise to show that ωij is skew-symmetric. The

second order angular velocity tensor can be used to write the equations (2.2.59) and (2.2.60) in the forms

vm(S) = vm(S) + ωmj(S, S)xj

vm(S) = vm(S) + ωjm(S, S)xj

(2.2.63)

The above relations are now employed to derive the celebrated Euler’s equations of motion of a rigid body.

Euler’s Equations of Motion

We desire to find the equations of motion of a rigid body which is subjected to external forces. These

equations are the formulas (2.2.49), and we now proceed to write these equations in a slightly different form.

Similar to the introduction of the angular velocity tensor, given in equation (2.2.61), we now introduce the

following tensors

1. The fourth order moment of inertia tensor Imnst which is related to the second order moment of

inertia tensor Iij by the equations

Imnst =
1
2
ejmneistIij or Iij =

1
2
Ipqrseipqejrs (2.2.64)

2. The second order angular momentum tensor Hjk which is related to the angular momentum vector

Hi by the equation

Hi =
1
2
eijkHjk or Hjk = eijkHi (2.2.65)

3. The second order moment tensor Mjk which is related to the moment Mi by the relation

Mi =
1
2
eijkMjk or Mjk = eijkMi. (2.2.66)
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Now if we multiply equation (2.2.49) by erjk, then it can be written in the form

dHij

dt
= Mij . (2.2.67)

Similarly, if we multiply the equation (2.2.42) by eimn, then it can be expressed in the alternate form

Hmn = eimnωjIji = Imnstωst

and because of this relation the equation (2.2.67) can be expressed as

d

dt
(Iijstωst) = Mij . (2.2.68)

We write this equation in the barred system of coordinates where Ipqrs will be a constant and consequently

its derivative will be zero. We employ the transformation equations

Iijst = `ip`jq`sr`tkIpqrk

ωij = `si`tjωst

Mpq = `ip`jqMij

and then multiply the equation (2.2.68) by `ip`jq and simplify to obtain

`ip`jq
d

dt

(
`iα`jβIαβrkωrk

)
= Mpq.

Expand all terms in this equation and take note that the derivative of the Iαβrk is zero. The expanded

equation then simplifies to

Ipqrk
dωrk

dt
+ (δαuδpvδβq + δpαδβuδqv) Iαβrkωrkωuv = Mpq. (2.2.69)

Substitute into equation (2.2.69) the relations from equations (2.2.61),(2.2.64) and (2.2.66), and then multiply

by empq and simplify to obtain the Euler’s equations of motion

Iim
dωi

dt
− etmjIijωiωt = Mm. (2.2.70)

Dropping the bar notation and performing the indicated summations over the range 1,2,3 we find the

Euler equations have the form

I11
dω1

dt
+ I21

dω2

dt
+ I31

dω3

dt
+ (I13ω1 + I23ω2 + I33ω3)ω2 − (I12ω1 + I22ω2 + I32ω3)ω3 = M1

I12
dω1

dt
+ I22

dω2

dt
+ I32

dω3

dt
+ (I11ω1 + I21ω2 + I31ω3)ω3 − (I13ω1 + I23ω2 + I33ω3)ω1 = M2

I13
dω1

dt
+ I23

dω2

dt
+ I33

dω3

dt
+ (I12ω1 + I22ω2 + I32ω3)ω1 − (I11ω1 + I21ω2 + I31ω3)ω2 = M3.

(2.2.71)

In the special case where the barred axes are principal axes, then Iij = 0 for i 6= j and the Euler’s

equations reduces to the system of nonlinear differential equations

I11
dω1

dt
+ (I33 − I22)ω2ω3 = M1

I22
dω2

dt
+ (I11 − I33)ω3ω1 = M2

I33
dω3

dt
+ (I22 − I11)ω1ω2 = M3.

(2.2.72)

In the case of constant coefficients and constant moments the solutions of the above differential equations

can be expressed in terms of Jacobi elliptic functions.
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EXERCISE 2.2

I 1. Find a set of parametric equations for the straight line which passes through the points P1(1, 1, 1) and

P2(2, 3, 4). Find the unit tangent vector to any point on this line.

I 2. Consider the space curve x = 1
2 sin2 t, y = 1

2 t− 1
4 sin 2t, z = sin t where t is a parameter. Find the unit

vectors T i, Bi, N i, i = 1, 2, 3 at the point where t = π.

I 3. A claim has been made that the space curve x = t, y = t2, z = t3 intersects the plane 11x-6y+z=6 in

three distinct points. Determine if this claim is true or false. Justify your answer and find the three points

of intersection if they exist.

I 4. Find a set of parametric equations xi = xi(s1, s2), i = 1, 2, 3 for the plane which passes through the

points P1(3, 0, 0), P2(0, 4, 0) and P3(0, 0, 5). Find a unit normal to this plane.

I 5. For the helix x = sin t y = cos t z =
2
π
t find the equation of the tangent plane to the curve at the

point where t = π/4. Find the equation of the tangent line to the curve at the point where t = π/4.

I 6. Verify the derivative
∂T

∂ẋr
= Mgrmẋ

m.

I 7. Verify the derivative
d

dt

(
∂T

∂ẋr

)
= M

[
grmẍ

m +
∂grm

∂xn
ẋnẋm

]
.

I 8. Verify the derivative
∂T

∂xr
=

1
2
M
∂gmn

∂xr
ẋmẋn.

I 9. Use the results from problems 6,7 and 8 to derive the Lagrange’s form for the equations of motion

defined by equation (2.2.23).

I 10. Express the generalized velocity and acceleration in cylindrical coordinates (x1, x2, x3) = (r, θ, z) and

show

V 1 =
dx1

dt
=
dr

dt

V 2 =
dx2

dt
=
dθ

dt

V 3 =
dx3

dt
=
dz

dt

f1 =
δV 1

δt
=
d2r

dt2
− r

(
dθ

dt

)2

f2 =
δV 2

δt
=
d2θ

dt2
+

2
r

dr

dt

dθ

dt

f3 =
δV 3

δt
=
d2z

dt2

Find the physical components of velocity and acceleration in cylindrical coordinates and show

Vr =
dr

dt

Vθ =r
dθ

dt

Vz =
dz

dt

fr =
d2r

dt2
− r

(
dθ

dt

)2

fθ =r
d2θ

dt2
+ 2

dr

dt

dθ

dt

fz =
d2z

dt2
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I 11. Express the generalized velocity and acceleration in spherical coordinates (x2, x2, x3) = (ρ, θ, φ) and

show

V 1 =
dx1

dt
=
dρ

dt

V 2 =
dx2

dt
=
dθ

dt

V 3 =
dx3

dt
=
dφ

dt

f1 =
δV 1

δt
=
d2ρ

dt2
− ρ

(
dθ

dt

)2

− ρ sin2 θ

(
dφ

dt

)2

f2 =
δV 2

δt
=
d2θ

dt2
− sin θ cos θ

(
dφ

dt

)2

+
2
ρ

dρ

dt

dθ

dt

f3 =
δV 3

δt
=
d2φ

dt2
+

2
ρ

dρ

dt

dφ

dt
+ 2 cot θ

dθ

dt

dφ

dt

Find the physical components of velocity and acceleration in spherical coordinates and show

Vρ =
dρ

dt

Vθ =ρ
dθ

dt

Vφ =ρ sin θ
dφ

dt

fρ =
d2ρ

dt2
− ρ

(
dθ

dt

)2

− ρ sin2 θ

(
dφ

dt

)2

fθ =ρ
d2θ

dt2
− ρ sin θ cos θ

(
dφ

dt

)2

+ 2
dρ

dt

dθ

dt

fφ =ρ sin θ
d2φ

dt2
+ 2 sin θ

dρ

dt

dφ

dt
+ 2ρ cos θ

dθ

dt

dφ

dt

I 12. Expand equation (2.2.39) and write out all the components of the moment of inertia tensor Iij .

I 13. For ρ the density of a continuous material and dτ an element of volume inside a region R where the

material is situated, we write ρdτ as an element of mass inside R. Find an equation which describes the

center of mass of the region R.

I 14. Use the equation (2.2.68) to derive the equation (2.2.69).

I 15. Drop the bar notation and expand the equation (2.2.70) and derive the equations (2.2.71).

I 16. Verify the Euler transformation, given in example 2.2-5, is orthogonal.

I 17. For the pulley and mass system illustrated in the figure 2.2-7 let

a = the radius of each pulley.

`1 = the length of the upper chord.

`2 = the length of the lower chord.

Neglect the weight of the pulley and find the equations of motion for the pulley mass system.
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Figure 2.2-7. Pulley and mass system

I 18. Let φ = ds
dt , where s is the arc length between two points on a curve in generalized coordinates.

(a) Write the arc length in general coordinates as ds =
√
gmnẋmẋndt and show the integral I, defined by

equation (2.2.35), represents the distance between two points on a curve.

(b) Using the Euler-Lagrange equations (2.2.36) show that the shortest distance between two points in a

generalized space is the curve defined by the equations: ẍi +
{
i

j k

}
ẋj ẋk = ẋi

d2s
dt2

ds
dt

(c) Show in the special case t = s the equations in part (b) reduce to
d2xi

ds2
+
{
i

j k

}
dxj

ds

dxk

ds
= 0, for

i = 1, . . . , N. An examination of equation (1.5.51) shows that the above curves are geodesic curves.

(d) Show that the shortest distance between two points in a plane is a straight line.

(e) Consider two points on the surface of a cylinder of radius a. Let u1 = θ and u2 = z denote surface

coordinates in the two dimensional space defined by the surface of the cylinder. Show that the shortest

distance between the points where θ = 0, z = 0 and θ = π, z = H is L =
√
a2π2 +H2.

I 19. For T = 1
2mgijv

ivj the kinetic energy of a particle and V the potential energy of the particle show

that T + V = constant.

Hint: mfi = Qi = − ∂V
∂xi , i = 1, 2, 3 and dxi

dt = ẋi = vi, i = 1, 2, 3.

I 20. Define H = T + V as the sum of the kinetic energy and potential energy of a particle. The quantity

H = H(xr , pr) is called the Hamiltonian of the particle and it is expressed in terms of:

• the particle position xi and

• the particle momentum pi = mvi = mgij ẋ
j . Here xrand pr are treated as independent variables.

(a) Show that the particle momentum is a covariant tensor of rank 1.

(b) Express the kinetic energy T in terms of the particle momentum.

(c) Show that pi =
∂T

∂ẋi
.



209

Figure 2.2-8. Compound pendulum

(d) Show that
dxi

dt
=
∂H

∂pi
and

dpi

dt
= −∂H

∂xi
. These are a set of differential equations describing the

position change and momentum change of the particle and are known as Hamilton’s equations of motion

for a particle.

I 21. Let δT i

δs = κN i and δNi

δs = τBi − κT i and calculate the intrinsic derivative of the cross product

Bi = εijkTjNk and find δBi

δs in terms of the unit normal vector.

I 22. For T the kinetic energy of a particle and V the potential energy of a particle, define the Lagrangian

L = L(xi, ẋi) = T − V =
1
2
Mgij ẋ

iẋj − V as a function of the independent variables xi, ẋi. Define the

Hamiltonian H = H(xi, pi) = T + V =
1

2M
gijpipj + V, as a function of the independent variables xi, pi,

where pi is the momentum vector of the particle and M is the mass of the particle.

(a) Show that pi =
∂T

∂ẋi
.

(b) Show that
∂H

∂xi
= − ∂L

∂xi

I 23. When the Euler angles, figure 2.2-6, are applied to the motion of rotating objects, θ is the angle

of nutation, φ is the angle of precession and ψ is the angle of spin. Take projections and show that the

time derivative of the Euler angles are related to the angular velocity vector components ωx, ωy, ωz by the

relations
ωx = θ̇ cosψ + φ̇ sin θ sinψ

ωy = −θ̇ sinψ + φ̇ sin θ cosψ

ωz = ψ̇ + φ̇ cos θ

where ωx, ωy, ωz are the angular velocity components along the x1, x2, x3 axes.

I 24. Find the equations of motion for the compound pendulum illustrated in the figure 2.2-8.
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I 25. Let ~F = −GMm

r3
~r denote the inverse square law force of attraction between the earth and sun, with

G a universal constant, M the mass of the sun, m the mass of the earth and ~r
r a unit vector from origin

at the center of the sun pointing toward the earth. (a) Write down Newton’s second law, in both vector

and tensor form, which describes the motion of the earth about the sun. (b) Show that
d

dt
(~r × ~v) = ~0 and

consequently ~r × ~v = ~r × d~r
dt = ~h = a constant.

I 26. Construct a set of axes fixed and attached to an airplane. Let the x axis be a longitudinal axis running

from the rear to the front of the plane along its center line. Let the y axis run between the wing tips and

let the z axis form a right-handed system of coordinates. The y axis is called a lateral axis and the z axis is

called a normal axis. Define pitch as any angular motion about the lateral axis. Define roll as any angular

motion about the longitudinal axis. Define yaw as any angular motion about the normal axis. Consider two

sets of axes. One set is the x, y, z axes attached to and moving with the aircraft. The other set of axes is

denoted X,Y, Z and is fixed in space ( an inertial set of axes). Describe the pitch, roll and yaw of an aircraft

with respect to the inertial set of axes. Show the transformation is orthogonal. Hint: Consider pitch with

respect to the fixed axes, then consider roll with respect to the pitch axes and finally consider yaw with

respect to the roll axes. This produces three separate transformation matrices which can then be combined

to describe the motions of pitch, roll and yaw of an aircraft.

I 27. In Cartesian coordinates let Fi = Fi(x1, x2, x3) denote a force field and let xi = xi(t) denote a curve

C. (a) Show Newton’s second law implies that along the curve C
d

dt

(
1
2
m

(
dxi

dt

)2
)

= Fi(x1, x2, x3)
dxi

dt

(no summation on i) and hence

d

dt

[
1
2
m

((
dx1

dt

)2

+
(
dx2

dt

)2

+
(
dx3

dt

)2
)]

=
d

dt

[
1
2
mv2

]
= F1

dx1

dt
+ F2

dx2

dt
+ F3

dx3

dt

(b) Consider two points on the curve C, say point A, xi(tA) and point B, xi(tB) and show that the work

done in moving from A to B in the force field Fi is

1
2
mv2

]tB

tA

=
∫ B

A

Fidx
1 + F2dx

2 + F3dx
3

where the right hand side is a line integral along the path C from A to B. (c) Show that if the force field is

derivable from a potential function U(x1, x2, x3) by taking the gradient, then the work done is independent

of the path C and depends only upon the end points A and B.

I 28. Find the Lagrangian equations of motion of a spherical pendulum which consists of a bob of massm

suspended at the end of a wire of length `, which is free to swing in any direction subject to the constraint

that the wire length is constant. Neglect the weight of the wire and show that for the wire attached to the

origin of a right handed x, y, z coordinate system, with the z axis downward, φ the angle between the wire

and the z axis and θ the angle of rotation of the bob from the y axis, that there results the equations of

motion
d

dt

(
sin2 φ

dθ

dt

)
= 0 and

d2φ

dt2
−
(
dθ

dt

)2

sinφ cosφ+
g

`
sinφ = 0
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I 29. In Cartesian coordinates show the Frenet formulas can be written

d~T

ds
= ~δ × ~T ,

d ~N

ds
= ~δ × ~N,

d ~B

ds
= ~δ × ~B

where ~δ is the Darboux vector and is defined ~δ = τ ~T + κ~B.

I 30. Consider the following two cases for rigid body rotation.

Case 1: Rigid body rotation about a fixed line which is called the fixed axis of rotation. Select a point 0

on this fixed axis and denote by ê a unit vector from 0 in the direction of the fixed line and denote by êR

a unit vector which is perpendicular to the fixed axis of rotation. The position vector of a general point

in the rigid body can then be represented by a position vector from the point 0 given by ~r = h ê+ r0 êR

where h, r0 and ê are all constants and the vector êR is fixed in and rotating with the rigid body.

Denote by ω =
dθ

dt
the scalar angular change with respect to time of the vector êR as it rotates about

the fixed line and define the vector angular velocity as ~ω =
d

dt
(θ ê) =

dθ

dt
ê where θ ê is defined as the

vector angle of rotation.

(a) Show that
d êR

dθ
= ê× êR.

(b) Show that ~V =
d~r

dt
= r0

d êR

dt
= r0

d êR

dθ

dθ

dt
= ~ω × (r0 êR) = ~ω × (h ê + r0 êR) = ~ω × ~r.

Case 2: Rigid body rotation about a fixed point 0. Construct at point 0 the unit vector ê1 which is

fixed in and rotating with the rigid body. From pages 80,87 we know that
d ê1

dt
must be perpendicular

to ê1 and so we can define the vector ê2 as a unit vector which is in the direction of
d ê1

dt
such that

d ê1

dt
= α ê2 for some constant α. We can then define the unit vector ê3 from ê3 = ê1 × ê2.

(a) Show that
d ê3

dt
, which must be perpendicular to ê3, is also perpendicular to ê1.

(b) Show that
d ê3

dt
can be written as

d ê3

dt
= β ê2 for some constant β.

(c) From ê2 = ê3 × ê1 show that
d ê2

dt
= (α ê3 − β ê1)× ê2

(d) Define ~ω = α ê3 − β ê1 and show that
d ê1

dt
= ~ω × ê1,

d ê2

dt
= ~ω × ê2,

d ê3

dt
= ~ω × ê3

(e) Let ~r = x ê1 + y ê2 + z ê3 denote an arbitrary point within the rigid body with respect to the point 0.

Show that
d~r

dt
= ~ω × ~r.

Note that in Case 2 the direction of ~ω is not fixed as the unit vectors ê3 and ê1 are constantly changing.

In this case the direction ~ω is called an instantaneous axis of rotation and ~ω, which also can change in

magnitude and direction, is called the instantaneous angular velocity.


