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PART 2: INTRODUCTION TO CONTINUUM MECHANICS

In the following sections we develop some applications of tensor calculus in the areas of dynamics,

elasticity, fluids and electricity and magnetism. We begin by first developing generalized expressions for the

vector operations of gradient, divergence, and curl. Also generalized expressions for other vector operators

are considered in order that tensor equations can be converted to vector equations. We construct a table to

aid in the translating of generalized tensor equations to vector form and vice versa.

The basic equations of continuum mechanics are developed in the later sections. These equations are

developed in both Cartesian and generalized tensor form and then converted to vector form.

§2.1 TENSOR NOTATION FOR SCALAR AND VECTOR QUANTITIES

We consider the tensor representation of some vector expressions. Our goal is to develop the ability to

convert vector equations to tensor form as well as being able to represent tensor equations in vector form.

In this section the basic equations of continuum mechanics are represented using both a vector notation and

the indicial notation which focuses attention on the tensor components. In order to move back and forth

between these notations, the representation of vector quantities in tensor form is now considered.

Gradient

For Φ = Φ(x1, x2, . . . , xN ) a scalar function of the coordinates xi, i = 1, . . . , N , the gradient of Φ is

defined as the covariant vector

Φ,i =
∂Φ
∂xi

, i = 1, . . . , N. (2.1.1)

The contravariant form of the gradient is

gimΦ,m. (2.1.2)

Note, if Ci = gimΦ,m, i = 1, 2, 3 are the tensor components of the gradient then in an orthogonal coordinate

system we will have

C1 = g11Φ,1, C2 = g22Φ,2, C3 = g33Φ,3.

We note that in an orthogonal coordinate system that gii = 1/h2
i , (no sum on i), i = 1, 2, 3 and hence

replacing the tensor components by their equivalent physical components there results the equations

C(1)
h1

=
1
h2

1

∂Φ
∂x1

,
C(2)
h2

=
1
h2

2

∂Φ
∂x2

,
C(3)
h3

=
1
h2

3

∂Φ
∂x3

.

Simplifying, we find the physical components of the gradient are

C(1) =
1
h1

∂Φ
∂x1

, C(2) =
1
h2

∂Φ
∂x2

, C(3) =
1
h3

∂Φ
∂x3

.

These results are only valid when the coordinate system is orthogonal and gij = 0 for i 6= j and gii = h2
i ,

with i = 1, 2, 3, and where i is not summed.
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Divergence

The divergence of a contravariant tensor Ar is obtained by taking the covariant derivative with respect

to xk and then performing a contraction. This produces

div Ar = Ar
,r. (2.1.3)

Still another form for the divergence is obtained by simplifying the expression (2.1.3). The covariant deriva-

tive can be represented

Ar
,k =

∂Ar

∂xk
+

{
r

m k

}
Am.

Upon contracting the indices r and k and using the result from Exercise 1.4, problem 13, we obtain

Ar
,r =

∂Ar

∂xr
+

1√
g

∂(
√

g)
∂xm

Am

Ar
,r =

1√
g

(√
g
∂Ar

∂xr
+ Ar ∂

√
g

∂xr

)

Ar
,r =

1√
g

∂

∂xr
(
√

gAr) .

(2.1.4)

EXAMPLE 2.1-1. (Divergence) Find the representation of the divergence of a vector Ar in spherical

coordinates (ρ, θ, φ). Solution: In spherical coordinates we have

x1 = ρ, x2 = θ, x3 = φ with gij = 0 for i 6= j and

g11 = h2
1 = 1, g22 = h2

2 = ρ2, g33 = h2
3 = ρ2 sin2 θ.

The determinant of gij is g = |gij | = ρ4 sin2 θ and
√

g = ρ2 sin θ. Employing the relation (2.1.4) we find

div Ar =
1√
g

[
∂

∂x1
(
√

gA1) +
∂

∂x2
(
√

gA2) +
∂

∂x3
(
√

gA3)
]

.

In terms of the physical components this equation becomes

div Ar =
1√
g

[
∂

∂ρ
(
√

g
A(1)
h1

) +
∂

∂θ
(
√

g
A(2)
h2

) +
∂

∂φ
(
√

g
A(3)
h3

)
]

.

By using the notation

A(1) = Aρ, A(2) = Aθ, A(3) = Aφ

for the physical components, the divergence can be expressed in either of the forms:

div Ar =
1

ρ2 sin θ

[
∂

∂ρ
(ρ2 sin θAρ) +

∂

∂θ
(ρ2 sin θ

Aθ

ρ
) +

∂

∂φ
(ρ2 sin θ

Aφ

ρ sin θ
)
]

or

div Ar =
1
ρ2

∂

∂ρ
(ρ2Aρ) +

1
ρ sin θ

∂

∂θ
(sin θAθ) +

1
ρ sin θ

∂Aφ

∂φ
.
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Curl

The contravariant components of the vector ~C = curl ~A are represented

Ci = εijkAk,j . (2.1.5)

In expanded form this representation becomes:

C1 =
1√
g

(
∂A3

∂x2
− ∂A2

∂x3

)

C2 =
1√
g

(
∂A1

∂x3
− ∂A3

∂x1

)

C3 =
1√
g

(
∂A2

∂x1
− ∂A1

∂x2

)
.

(2.1.6)

EXAMPLE 2.1-2. (Curl) Find the representation for the components of curl ~A in spherical coordinates

(ρ, θ, φ).

Solution: In spherical coordinates we have :x1 = ρ, x2 = θ, x3 = φ with gij = 0 for i 6= j and

g11 = h2
1 = 1, g22 = h2

2 = ρ2, g33 = h2
3 = ρ2 sin2 θ.

The determinant of gij is g = |gij | = ρ4 sin2 θ with
√

g = ρ2 sin θ. The relations (2.1.6) are tensor equations

representing the components of the vector curl ~A. To find the components of curl ~A in spherical components

we write the equations (2.1.6) in terms of their physical components. These equations take on the form:

C(1)
h1

=
1√
g

[
∂

∂θ
(h3A(3))− ∂

∂φ
(h2A(2))

]
C(2)
h2

=
1√
g

[
∂

∂φ
(h1A(1))− ∂

∂ρ
(h3A(3))

]
C(3)
h3

=
1√
g

[
∂

∂ρ
(h2A(2))− ∂

∂θ
(h1A(1))

]
.

(2.1.7)

We employ the notations

C(1) = Cρ, C(2) = Cθ, C(3) = Cφ, A(1) = Aρ, A(2) = Aθ, A(3) = Aφ

to denote the physical components, and find the components of the vector curl ~A, in spherical coordinates,

are expressible in the form:

Cρ =
1

ρ2 sin θ

[
∂

∂θ
(ρ sin θAφ)− ∂

∂φ
(ρAθ)

]

Cθ =
1

ρ sin θ

[
∂

∂φ
(Aρ)− ∂

∂ρ
(ρ sin θAφ)

]

Cφ =
1
ρ

[
∂

∂ρ
(ρAθ)− ∂

∂θ
(Aρ)

]
.

(2.1.8)
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Laplacian

The Laplacian ∇2U has the contravariant form

∇2U = gijU,ij = (gijU,i),j =
(

gij ∂U

∂xi

)
,j

. (2.1.9)

Expanding this expression produces the equations:

∇2U =
∂

∂xj

(
gij ∂U

∂xi

)
+ gim ∂U

∂xi

{
j

m j

}

∇2U =
∂

∂xj

(
gij ∂U

∂xi

)
+

1√
g

∂
√

g

∂xj
gij ∂U

∂xi

∇2U =
1√
g

[√
g

∂

∂xj

(
gij ∂U

∂xi

)
+ gij ∂U

∂xi

∂
√

g

∂xj

]

∇2U =
1√
g

∂

∂xj

(√
ggij ∂U

∂xi

)
.

(2.1.10)

In orthogonal coordinates we have gij = 0 for i 6= j and

g11 = h2
1, g22 = h2

2, g33 = h2
3

and so (2.1.10) when expanded reduces to the form

∇2U =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂U

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂U

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂U

∂x3

)]
. (2.1.11)

This representation is only valid in an orthogonal system of coordinates.

EXAMPLE 2.1-3. (Laplacian) Find the Laplacian in spherical coordinates.

Solution: Utilizing the results given in the previous example we find the Laplacian in spherical coordinates

has the form

∇2U =
1

ρ2 sin θ

[
∂

∂ρ

(
ρ2 sin θ

∂U

∂ρ

)
+

∂

∂θ

(
sin θ

∂U

∂θ

)
+

∂

∂φ

(
1

sin θ

∂U

∂φ

)]
. (2.1.12)

This simplifies to

∇2U =
∂2U

∂ρ2
+

2
ρ

∂U

∂ρ
+

1
ρ2

∂2U

∂θ2
+

cot θ

ρ2

∂U

∂θ
+

1
ρ2 sin2 θ

∂2U

∂φ2
. (2.1.13)

The table 1 gives the vector and tensor representation for various quantities of interest.
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VECTOR GENERAL TENSOR CARTESIAN TENSOR

~A Ai or Ai Ai

~A · ~B AiBi = gijA
iBj = AiB

i

AiBi = gijAiBj

AiBi

~C = ~A× ~B Ci =
1√
g
eijkAjBk Ci = eijkAjBk

∇Φ = gradΦ gimΦ,m Φ,i =
∂Φ
∂xi

∇ · ~A = div ~A gmnAm,n = Ar
,r =

1√
g

∂

∂xr
(
√

gAr) Ai,i =
∂Ai

∂xi

∇× ~A = ~C = curl ~A Ci = εijkAk,j Ci = eijk
∂Ak

∂xj

∇2U gmnU ,mn =
1√
g

∂

∂xj

(√
ggij ∂U

∂xi

)
∂

∂xi

(
∂U

∂xi

)

~C = ( ~A · ∇) ~B Ci = AmBi
,m Ci = Am

∂Bi

∂xm

~C = ~A(∇ · ~B) Ci = AiBj
,j Ci = Ai

∂Bm

∂xm

~C = ∇2 ~A Ci = gjmAi
,mj or Ci = gjmAi,mj Ci =

∂

∂xm

(
∂Ai

∂xm

)

(
~A · ∇

)
φ gimAiφ ,m Aiφ,i

∇
(
∇ · ~A

)
gim

(
Ar

,r

)
,m

∂2Ar

∂xi∂xr

∇×
(
∇× ~A

)
εijkgjm

(
εkstAt,s

)
,m

∂2Aj

∂xj∂xi
− ∂2Ai

∂xj∂xj

Table 1 Vector and tensor representations.
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EXAMPLE 2.1-4. (Maxwell’s equations) In the study of electrodynamics there arises the following

vectors and scalars:
~E =Electric force vector, [ ~E] = Newton/coulomb

~B =Magnetic force vector, [ ~B] = Weber/m2

~D =Displacement vector, [ ~D] = coulomb/m2

~H =Auxilary magnetic force vector, [ ~H] = ampere/m

~J =Free current density, [ ~J ] = ampere/m2

% =free charge density, [%] = coulomb/m3

The above quantities arise in the representation of the following laws:
Faraday’s Law This law states the line integral of the electromagnetic force around a loop is proportional

to the rate of flux of magnetic induction through the loop. This gives rise to the first electromagnetic field

equation:

∇× ~E = −∂ ~B

∂t
or εijkEk,j = −∂Bi

∂t
. (2.1.15)

Ampere’s Law This law states the line integral of the magnetic force vector around a closed loop is

proportional to the sum of the current through the loop and the rate of flux of the displacement vector

through the loop. This produces the second electromagnetic field equation:

∇× ~H = ~J +
∂ ~D

∂t
or εijkHk,j = J i +

∂Di

∂t
. (2.1.16)

Gauss’s Law for Electricity This law states that the flux of the electric force vector through a closed

surface is proportional to the total charge enclosed by the surface. This results in the third electromagnetic

field equation:

∇ · ~D = % or
1√
g

∂

∂xi

(√
gDi

)
= %. (2.1.17)

Gauss’s Law for Magnetism This law states the magnetic flux through any closed volume is zero. This

produces the fourth electromagnetic field equation:

∇ · ~B = 0 or
1√
g

∂

∂xi

(√
gBi

)
= 0. (2.1.18)

The four electromagnetic field equations are referred to as Maxwell’s equations. These equations arise

in the study of electrodynamics and can be represented in other forms. These other forms will depend upon

such things as the material assumptions and units of measurements used. Note that the tensor equations

(2.1.15) through (2.1.18) are representations of Maxwell’s equations in a form which is independent of the

coordinate system chosen.

In applications, the tensor quantities must be expressed in terms of their physical components. In a

general orthogonal curvilinear coordinate system we will have

g11 = h2
1, g22 = h2

2, g33 = h2
3, and gij = 0 for i 6= j.

This produces the result
√

g = h1h2h3. Further, if we represent the physical components of

Di, Bi, Ei, Hi by D(i), B(i), E(i), and H(i)
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the Maxwell equations can be represented by the equations in table 2. The tables 3, 4 and 5 are the

representation of Maxwell’s equations in rectangular, cylindrical, and spherical coordinates. These latter

tables are special cases associated with the more general table 2.

1
h1h2h3

[
∂

∂x2
(h3E(3))− ∂

∂x3
(h2E(2))

]
= − 1

h1

∂B(1)
∂t

1
h1h2h3

[
∂

∂x3
(h1E(1))− ∂

∂x1
(h3E(3))

]
= − 1

h2

∂B(2)
∂t

1
h1h2h3

[
∂

∂x1
(h2E(2))− ∂

∂x2
(h1E(1))

]
= − 1

h3

∂B(3)
∂t

1
h1h2h3

[
∂

∂x2
(h3H(3))− ∂

∂x3
(h2H(2))

]
=

J(1)
h1

+
1
h1

∂D(1)
∂t

1
h1h2h3

[
∂

∂x3
(h1H(1))− ∂

∂x1
(h3H(3))

]
=

J(2)
h2

+
1
h2

∂D(2)
∂t

1
h1h2h3

[
∂

∂x1
(h2H(2))− ∂

∂x2
(h1H(1))

]
=

J(3)
h3

+
1
h3

∂D(3)
∂t

1
h1h2h3

[
∂

∂x1

(
h1h2h3

D(1)
h1

)
+

∂

∂x2

(
h1h2h3

D(2)
h2

)
+

∂

∂x3

(
h1h2h3

D(3)
h3

)]
= %

1
h1h2h3

[
∂

∂x1

(
h1h2h3

B(1)
h1

)
+

∂

∂x2

(
h1h2h3

B(2)
h2

)
+

∂

∂x3

(
h1h2h3

B(3)
h3

)]
= 0

Table 2 Maxwell’s equations in generalized orthogonal coordinates.

Note that all the tensor components have been replaced by their physical components.
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∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t

∂Ex

∂z
− ∂Ez

∂x
= −∂By

∂t
∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t

∂Hz

∂y
− ∂Hy

∂z
= Jx +

∂Dx

∂t

∂Hx

∂z
− ∂Hz

∂x
= Jy +

∂Dy

∂t
∂Hy

∂x
− ∂Hx

∂y
= Jz +

∂Dz

∂t

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
= %

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

Here we have introduced the notations:

Dx = D(1)

Dy = D(2)

Dz = D(3)

Bx = B(1)

By = B(2)

Bz = B(3)

Hx = H(1)

Hy = H(2)

Hz = H(3)

Jx = J(1)

Jy = J(2)

Jz = J(3)

Ex = E(1)

Ey = E(2)

Ez = E(3)

with x1 = x, x2 = y, x3 = z, h1 = h2 = h3 = 1

Table 3 Maxwell’s equations Cartesian coordinates

1
r

∂Ez

∂θ
− ∂Eθ

∂z
= −∂Br

∂t
∂Er

∂z
− ∂Ez

∂r
= −∂Bθ

∂t
1
r

∂

∂r
(rEθ)− 1

r

∂Er

∂θ
= −∂Bz

∂t

1
r

∂Hz

∂θ
− ∂Hθ

∂z
= Jr +

∂Dr

∂t
∂Hr

∂z
− ∂Hz

∂r
= Jθ +

∂Dθ

∂t
1
r

∂

∂r
(rHθ)− 1

r

∂Hr

∂θ
= Jz +

∂Dz

∂t

1
r

∂

∂r
(rDr) +

1
r

∂Dθ

∂θ
+

∂Dz

∂z
= %

1
r

∂

∂r
(rBr) +

1
r

∂Bθ

∂θ
+

∂Bz

∂z
= 0

Here we have introduced the notations:

Dr = D(1)

Dθ = D(2)

Dz = D(3)

Br = B(1)

Bθ = B(2)

Bz = B(3)

Hr = H(1)

Hθ = H(2)

Hz = H(3)

Jr = J(1)

Jθ = J(2)

Jz = J(3)

Er = E(1)

Eθ = E(2)

Ez = E(3)

with x1 = r, x2 = θ, x3 = z, h1 = 1, h2 = r, h3 = 1.

Table 4 Maxwell’s equations in cylindrical coordinates.
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1
ρ sin θ

[
∂

∂θ
(sin θEφ)− ∂Eθ

∂φ

]
= −∂Bρ

∂t

1
ρ sin θ

∂Eρ

∂φ
− 1

ρ

∂

∂ρ
(ρEφ) = −∂Bθ

∂t

1
ρ

∂

∂ρ
(ρEθ)− 1

ρ

∂Eρ

∂θ
= −∂Bφ

∂t

1
ρ sin θ

[
∂

∂θ
(sin θHφ)− ∂Hθ

∂φ

]
= Jρ +

∂Dρ

∂t

1
ρ sin θ

∂Hρ

∂φ
− 1

ρ

∂

∂ρ
(ρHφ) = Jθ +

∂Dθ

∂t

1
ρ

∂

∂ρ
(ρHθ)− 1

ρ

∂Hρ

∂θ
= Jφ +

∂Dφ

∂t

1
ρ2

∂

∂ρ
(ρ2Dρ) +

1
ρ sin θ

∂

∂θ
(sin θDθ) +

1
ρ sin θ

∂Dφ

∂φ
=%

1
ρ2

∂

∂ρ
(ρ2Bρ) +

1
ρ sin θ

∂

∂θ
(sin θBθ) +

1
ρ sin θ

∂Bφ

∂φ
=0

Here we have introduced the notations:

Dρ = D(1)

Dθ = D(2)

Dφ = D(3)

Bρ = B(1)

Bθ = B(2)

Bφ = B(3)

Hρ = H(1)

Hθ = H(2)

Hφ = H(3)

Jρ = J(1)

Jθ = J(2)

Jφ = J(3)

Eρ = E(1)

Eθ = E(2)

Eφ = E(3)

with x1 = ρ, x2 = θ, x3 = φ, h1 = 1, h2 = ρ, h3 = ρ sin θ

Table 5 Maxwell’s equations spherical coordinates.

Eigenvalues and Eigenvectors of Symmetric Tensors

Consider the equation

TijAj = λAi, i, j = 1, 2, 3, (2.1.19)

where Tij = Tji is symmetric, Ai are the components of a vector and λ is a scalar. Any nonzero solution

Ai of equation (2.1.19) is called an eigenvector of the tensor Tij and the associated scalar λ is called an

eigenvalue. When expanded these equations have the form

(T11 − λ)A1 + T12A2 + T13A3 = 0

T21A1 + (T22 − λ)A2 + T23A3 = 0

T31A1 + T32A2 + (T33 − λ)A3 = 0.

The condition for equation (2.1.19) to have a nonzero solution Ai is that the characteristic equation

should be zero. This equation is found from the determinant equation

f(λ) =

∣∣∣∣∣∣
T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣∣∣∣∣∣ = 0, (2.1.20)
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which when expanded is a cubic equation of the form

f(λ) = −λ3 + I1λ
2 − I2λ + I3 = 0, (2.1.21)

where I1, I2 and I3 are invariants defined by the relations

I1 = Tii

I2 =
1
2
TiiTjj − 1

2
TijTij

I3 = eijkTi1Tj2Tk3.

(2.1.22)

When Tij is subjected to an orthogonal transformation, where T̄mn = Tij`im`jn, then

`im`jn (Tmn − λ δmn) = T̄ij − λ δij and det (Tmn − λ δmn) = det
(
T̄ij − λ δij

)
.

Hence, the eigenvalues of a second order tensor remain invariant under an orthogonal transformation.

If Tij is real and symmetric then

• the eigenvalues of Tij will be real, and

• the eigenvectors corresponding to distinct eigenvalues will be orthogonal.

Proof: To show a quantity is real we show that the conjugate of the quantity equals the given quantity. If

(2.1.19) is satisfied, we multiply by the conjugate Ai and obtain

AiTijAj = λAiAi. (2.1.25)

The right hand side of this equation has the inner product AiAi which is real. It remains to show the left

hand side of equation (2.1.25) is also real. Consider the conjugate of this left hand side and write

AiTijAj = AiT ijAj = AiTjiAj = AiTijAj .

Consequently, the left hand side of equation (2.1.25) is real and the eigenvalue λ can be represented as the

ratio of two real quantities.

Assume that λ(1) and λ(2) are two distinct eigenvalues which produce the unit eigenvectors L̂1 and L̂2

with components `i1 and `i2, i = 1, 2, 3 respectively. We then have

Tij`j1 = λ(1)`i1 and Tij`j2 = λ(2)`i2. (2.1.26)

Consider the products
λ(1)`i1`i2 = Tij`j1`i2,

λ(2)`i1`i2 = `i1Tij`j2 = `j1Tji`i2.
(2.1.27)

and subtract these equations. We find that

[λ(1) − λ(2)]`i1`i2 = 0. (2.1.28)

By hypothesis, λ(1) is different from λ(2) and consequently the inner product `i1`i2 must be zero. Therefore,

the eigenvectors corresponding to distinct eigenvalues are orthogonal.
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Therefore, associated with distinct eigenvalues λ(i), i = 1, 2, 3 there are unit eigenvectors

L̂(i) = `i1 ê1 + `i2 ê2 + `i3 ê3

with components `im, m = 1, 2, 3 which are direction cosines and satisfy

`in`im = δmn and `ij`jm = δim. (2.1.23)

The unit eigenvectors satisfy the relations

Tij`j1 = λ(1)`i1 Tij`j2 = λ(2)`i2 Tij`j3 = λ(3)`i3

and can be written as the single equation

Tij`jm = λ(m)`im, m = 1, 2, or 3 m not summed.

Consider the transformation

xi = `ijxj or xm = `mjxj

which represents a rotation of axes, where `ij are the direction cosines from the eigenvectors of Tij . This is a

linear transformation where the `ij satisfy equation (2.1.23). Such a transformation is called an orthogonal

transformation. In the new x coordinate system, called principal axes, we have

Tmn = Tij
∂xi

∂xm

∂xj

∂xn = Tij`im`jn = λ(n)`in`im = λ(n)δmn (no sum on n). (2.1.24)

This equation shows that in the barred coordinate system there are the components

(
Tmn

)
=


 λ(1) 0 0

0 λ(2) 0
0 0 λ(3)


 .

That is, along the principal axes the tensor components Tij are transformed to the components T ij where

T ij = 0 for i 6= j. The elements T (i)(i) , i not summed, represent the eigenvalues of the transformation

(2.1.19).
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EXERCISE 2.1

I 1. In cylindrical coordinates (r, θ, z) with f = f(r, θ, z) find the gradient of f.

I 2. In cylindrical coordinates (r, θ, z) with ~A = ~A(r, θ, z) find div ~A.

I 3. In cylindrical coordinates (r, θ, z) for ~A = ~A(r, θ, z) find curl ~A.

I 4. In cylindrical coordinates (r, θ, z) for f = f(r, θ, z) find ∇2 f.

I 5. In spherical coordinates (ρ, θ, φ) with f = f(ρ, θ, φ) find the gradient of f.

I 6. In spherical coordinates (ρ, θ, φ) with ~A = ~A(ρ, θ, φ) find div ~A.

I 7. In spherical coordinates (ρ, θ, φ) for ~A = ~A(ρ, θ, φ) find curl ~A.

I 8. In spherical coordinates (ρ, θ, φ) for f = f(ρ, θ, φ) find ∇2 f.

I 9. Let ~r = x ê1+y ê2+z ê3 denote the position vector of a variable point (x, y, z) in Cartesian coordinates.

Let r = |~r| denote the distance of this point from the origin. Find in terms of ~r and r:

(a) grad (r) (b) grad (rm) (c) grad (
1
r
) (d) grad (ln r) (e) grad (φ)

where φ = φ(r) is an arbitrary function of r.

I 10. Let ~r = x ê1+y ê2+z ê3 denote the position vector of a variable point (x, y, z) in Cartesian coordinates.

Let r = |~r| denote the distance of this point from the origin. Find:

(a) div (~r) (b) div (rm~r) (c) div (r−3~r) (d) div (φ~r)

where φ = φ(r) is an arbitrary function or r.

I 11. Let ~r = x ê1 + y ê2 + z ê3 denote the position vector of a variable point (x, y, z) in Cartesian

coordinates. Let r = |~r| denote the distance of this point from the origin. Find: (a) curl ~r (b) curl (φ~r)

where φ = φ(r) is an arbitrary function of r.

I 12. Expand and simplify the representation for curl (curl ~A).

I 13. Show that the curl of the gradient is zero in generalized coordinates.

I 14. Write out the physical components associated with the gradient of φ = φ(x1, x2, x3).

I 15. Show that

gimAi,m =
1√
g

∂

∂xi

[√
ggimAm

]
= Ai

,i =
1√
g

∂

∂xi

[√
gAi

]
.
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I 16. Let r = (~r ·~r)1/2 =
√

x2 + y2 + z2) and calculate (a) ∇2(r) (b) ∇2(1/r) (c) ∇2(r2) (d) ∇2(1/r2)

I 17. Given the tensor equations Dij = 1
2 (vi,j + vj,i), i, j = 1, 2, 3. Let v(1), v(2), v(3) denote the

physical components of v1, v2, v3 and let D(ij) denote the physical components associated with Dij . Assume

the coordinate system (x1, x2, x3) is orthogonal with metric coefficients g(i)(i) = h2
i , i = 1, 2, 3 and gij = 0

for i 6= j.

(a) Find expressions for the physical components D(11), D(22) and D(33) in terms of the physical compo-

nents v(i), i = 1, 2, 3. Answer: D(ii) =
1
hi

∂V (i)
∂xi

+
∑
j 6=i

V (j)
hihj

∂hi

∂xj
no sum on i.

(b) Find expressions for the physical components D(12), D(13) and D(23) in terms of the physical compo-

nents v(i), i = 1, 2, 3. Answer: D(ij) =
1
2

[
hi

hj

∂

∂xj

(
V (i)
hi

)
+

hj

hi

∂

∂xi

(
V (j)
hj

)]

I 18. Write out the tensor equations in problem 17 in Cartesian coordinates.

I 19. Write out the tensor equations in problem 17 in cylindrical coordinates.

I 20. Write out the tensor equations in problem 17 in spherical coordinates.

I 21. Express the vector equation (λ + 2µ)∇Φ− 2µ∇× ~ω + ~F = ~0 in tensor form.

I 22. Write out the equations in problem 21 for a generalized orthogonal coordinate system in terms of

physical components.

I 23. Write out the equations in problem 22 for cylindrical coordinates.

I 24. Write out the equations in problem 22 for spherical coordinates.

I 25. Use equation (2.1.4) to represent the divergence in parabolic cylindrical coordinates (ξ, η, z).

I 26. Use equation (2.1.4) to represent the divergence in parabolic coordinates (ξ, η, φ).

I 27. Use equation (2.1.4) to represent the divergence in elliptic cylindrical coordinates (ξ, η, z).

Change the given equations from a vector notation to a tensor notation.

I 28. ~B = ~v∇ · ~A + (∇ · ~v) ~A

I 29.
d

dt
[ ~A · ( ~B × ~C)] =

d ~A

dt
· ( ~B × ~C) + ~A · (d ~B

dt
× ~C) + ~A · ( ~B × d~C

dt
)

I 30.
d~v

dt
=

∂~v

∂t
+ (~v · ∇)~v

I 31.
1
c

∂ ~H

∂t
= −curl ~E

I 32.
d ~B

dt
− ( ~B · ∇)~v + ~B(∇ · ~v) = ~0
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Change the given equations from a tensor notation to a vector notation.

I 33. εijkBk,j + F i = 0

I 34. gijε
jklBl,k + Fi = 0

I 35.
∂%

∂t
+ (%vi), i = 0

I 36. %(
∂vi

∂t
+ vm

∂vi

∂xm
) = − ∂P

∂xi
+ µ

∂2vi

∂xm∂xm
+ Fi

I 37. The moment of inertia of an area or second moment of area is defined by Iij =
∫ ∫

A

(ymymδij−yiyj) dA

where dA is an element of area. Calculate the moment of inertia Iij , i, j = 1, 2 for the triangle illustrated in

the figure 2.1-1 and show that Iij =
(

1
12bh3 − 1

24b2h2

− 1
24b2h2 1

12b3h

)
.

Figure 2.1-1 Moments of inertia for a triangle

I 38. Use the results from problem 37 and rotate the axes in figure 2.1-1 through an angle θ to a barred

system of coordinates.

(a) Show that in the barred system of coordinates

I11 =
(

I11 + I22

2

)
+

(
I11 − I22

2

)
cos 2θ + I12 sin 2θ

I12 = I21 = −
(

I11 − I22

2

)
sin 2θ + I12 cos 2θ

I22 =
(

I11 + I22

2

)
−

(
I11 − I22

2

)
cos 2θ − I12 sin 2θ

(b) For what value of θ will I11 have a maximum value?

(c) Show that when I11 is a maximum, we will have I22 a minimum and I12 = I21 = 0.
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Figure 2.1-2 Mohr’s circle

I 39. Otto Mohr1 gave the following physical interpretation to the results obtained in problem 38:

• Plot the points A(I11, I12) and B(I22,−I12) as illustrated in the figure 2.1-2

• Draw the line AB and calculate the point C where this line intersects the I axes. Show the point C

has the coordinates

(
I11 + I22

2
, 0)

• Calculate the radius of the circle with center at the point C and with diagonal AB and show this

radius is

r =

√(
I11 − I22

2

)2

+ I2
12

• Show the maximum and minimum values of I occur where the constructed circle intersects the I axes.

Show that Imax = I11 =
I11 + I22

2
+ r Imin = I22 =

I11 + I22

2
− r.

I 40. Show directly that the eigenvalues of the symmetric matrix Iij =
(

I11 I12

I21 I22

)
are λ1 = Imax and

λ2 = Imin where Imax and Imin are given in problem 39.

I 41. Find the principal axes and moments of inertia for the triangle given in problem 37 and summarize

your results from problems 37,38,39, and 40.

I 42. Verify for orthogonal coordinates the relations

[
∇× ~A

]
· ê(i) =

3∑
k=1

e(i)jk

h1h2h3
h(i)

∂(h(k)A(k))
∂xj

or

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣
h1 ê1 h2 ê2 h3 ê3

∂
∂x1

∂
∂x2

∂
∂x3

h1A(1) h2A(2) h3A(3)

∣∣∣∣∣∣ .
I 43. Verify for orthogonal coordinates the relation

[
∇× (∇× ~A)

]
· ê(i) =

3∑
m=1

e(i)jrersm

h(i)

h1h2h3

∂

∂xj

[
h2

(r)

h1h2h3

∂(h(m)A(m))
∂xs

]

1Christian Otto Mohr (1835-1918) German civil engineer.
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I 44. Verify for orthogonal coordinates the relation[
∇

(
∇ · ~A

) ]
· ê(i) =

1
h(i)

∂

∂x(i)

{
1

h1h2h3

[
∂(h2h3A(1))

∂x1
+

∂(h1h3A(2))
∂x2

+
∂(h1h2A(3))

∂x3

] }

I 45. Verify the relation[
( ~A · ∇) ~B

]
· ê(i) =

3∑
k=1

A(k)
h(k)

∂B(i)
∂xk

+
∑
k 6=i

B(k)
hkh(i)

(
A(i)

∂h(i)

∂xk
−A(k)

∂hk

∂x(i)

)

I 46. The Gauss divergence theorem is written∫∫∫
V

(
∂F 1

∂x
+

∂F 2

∂y
+

∂F 3

∂z

)
dτ =

∫∫
S

(
n1F

1 + n2F
2 + n3F

3
)

dσ

where V is the volume within a simple closed surface S. Here it is assumed that F i = F i(x, y, z) are

continuous functions with continuous first order derivatives throughout V and ni are the direction cosines

of the outward normal to S, dτ is an element of volume and dσ is an element of surface area.

(a) Show that in a Cartesian coordinate system

F i
,i =

∂F 1

∂x
+

∂F 2

∂y
+

∂F 3

∂z

and that the tensor form of this theorem is
∫∫∫

V

F i
,i dτ =

∫∫
S

F ini dσ.

(b) Write the vector form of this theorem.

(c) Show that if we define

ur =
∂u

∂xr
, vr =

∂v

∂xr
and Fr = grmFm = uvr

then F i
,i = gimFi,m = gim(uvi,m + umvi)

(d) Show that another form of the Gauss divergence theorem is∫∫∫
V

gimumvi dτ =
∫∫

S

uvmnm dσ −
∫∫∫

V

ugimvi,m dτ

Write out the above equation in Cartesian coordinates.

I 47. Find the eigenvalues and eigenvectors associated with the matrix A =


 1 1 2

1 2 1
2 1 1


 .

Show that the eigenvectors are orthogonal.

I 48. Find the eigenvalues and eigenvectors associated with the matrix A =


 1 2 1

2 1 0
1 0 1


 .

Show that the eigenvectors are orthogonal.

I 49. Find the eigenvalues and eigenvectors associated with the matrix A =


 1 1 0

1 1 1
0 1 1


 .

Show that the eigenvectors are orthogonal.

I 50. The harmonic and biharmonic functions or potential functions occur in the mathematical modeling

of many physical problems. Any solution of Laplace’s equation ∇2Φ = 0 is called a harmonic function and

any solution of the biharmonic equation ∇4Φ = 0 is called a biharmonic function.

(a) Expand the Laplace equation in Cartesian, cylindrical and spherical coordinates.

(b) Expand the biharmonic equation in two dimensional Cartesian and polar coordinates.

Hint: Consider ∇4Φ = ∇2(∇2Φ). In Cartesian coordinates ∇2Φ = Φ,ii and ∇4Φ = Φ,iijj .


