The Origin of Binary Stars

(For Presentation of Astro 534 Course Spring 2007)

Jianfeng Wu

Instructor: Robin Ciardullo

Dept. of Astronomy & Astrophysics, The Pennsylvania State University

jfwu@astro.psu.edu

Davey Lab, Penn State

References

Annu. Rev. Astron. Astrophys. 1994. 32: 465–530 Copyright © 1994 by Annual Reviews Inc. All rights reserved

PRE-MAIN-SEQUENCE BINARY STARS

Robert D. Mathieu

Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706

KEY WORDS: infrared companions, orbital eccentricity, protostellar disks, star formation, stellar ages, stellar masses

04/20/2007

References

Annu. Rev. Astron. Astrophys. 2002. 40:349–85 doi: 10.1146/annurev.astro.40.060401.093810 Copyright © 2002 by Annual Reviews. All rights reserved

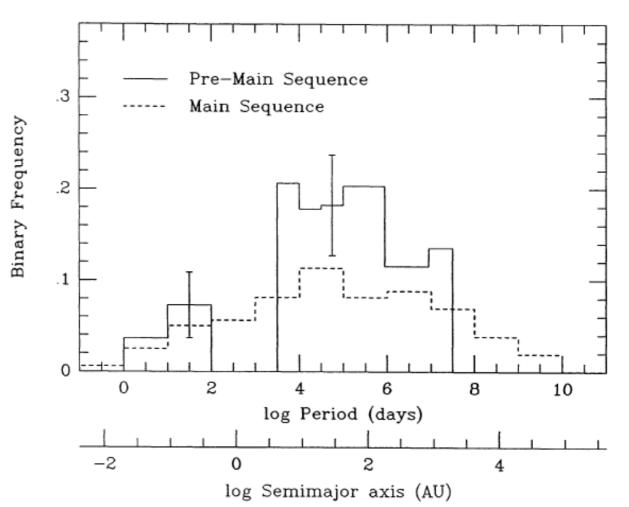
THE ORIGIN OF BINARY STARS

Joel E. Tohline

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803; email: tohline@rouge.phys.lsu.edu

Key Words star formation, binaries

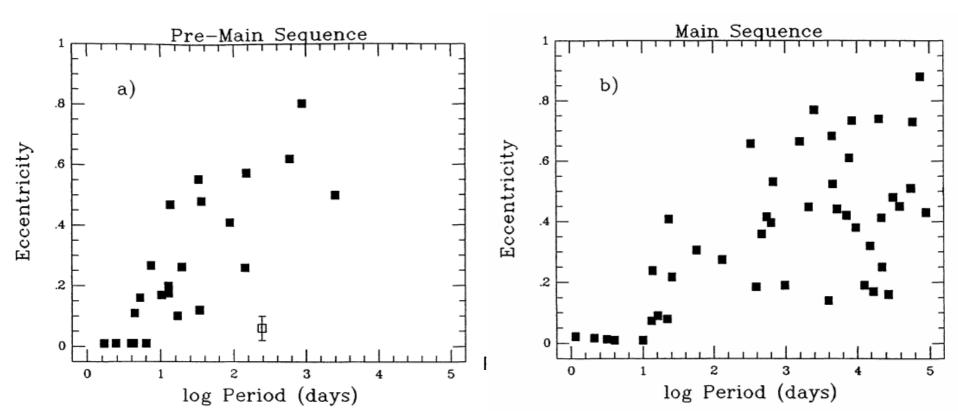
Contents


Observations

- PMS Binary Frequency
- Orbital Eccentricity Distribution
- Secondary Mass Distribution
- Young Binary Environments
- Infrared Companions
- Implication

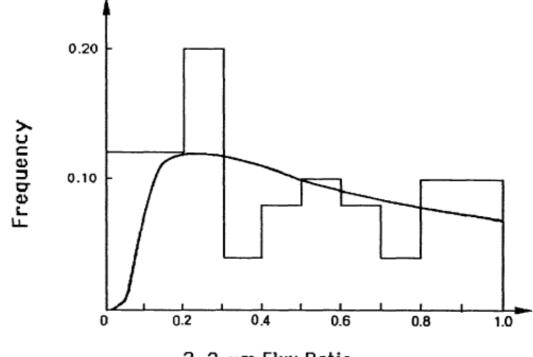
Theoretical Models

- Stages of Single Star Formation
- Basic Physical Principles
- Possible Formation Mechanisms
- Conclusions


- Pre-Main-Sequence (PMS) Binary Frequency:
- Taurus-Auriga Association survey in infrared: $60\% \pm 9\%$ between separations of 0.013" to 13", or 1.8 AU to 1800 AU (Richichi et al. 1994).
- A factor of 1.9 ± 0.3 exceeds the Main-Sequence (MS) solar type binaries in the same range of separations
- Evident excess at intermediate periods

04/20/2007

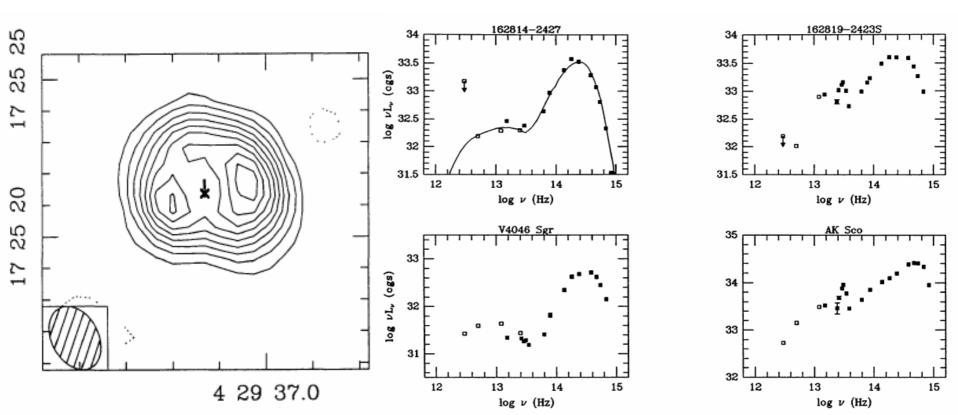
- Pre-Main-Sequence (PMS) Binary Frequency:
- Other similar results: $60\% \pm 17\%$ (Ghez et al. 1993), 80% (Reipurth & Zinnecker 1993)
- Inconsistent result: no enhancement of PMS binary frequency in Trapezium (uncertainty, debatable)
- Multiples: 35% triples and quadruples within all multiple systems (Ghez 1993)
- Frequency of PMS binaries decreases with increasing separation (Reipurth & Zinnecker 1993; Leinert et al. 1993)


- Orbital Eccentricity Distribution:
 - ----- *e*=0 to 0.8
 - —— shortest periods with circular orbits
 - —— similar to that of MS binaries

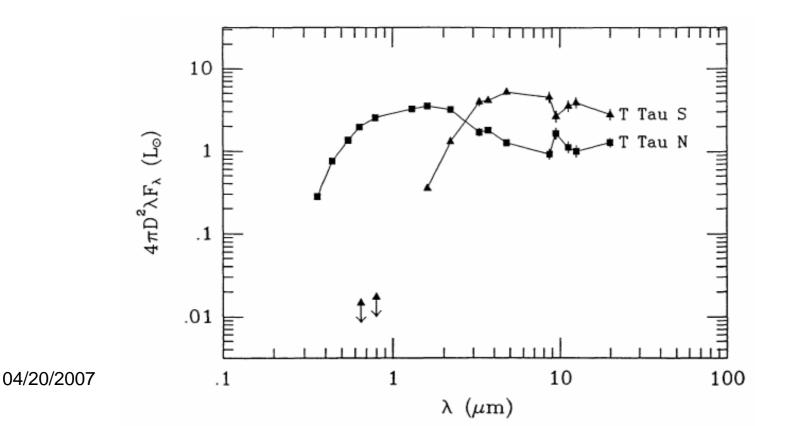
Secondary Mass Distribution

— secondary to primary ratio range from 1 to <<0.1

—— flux ratio distribution consistent with random pairings of stars from a single parent population similar to the initial mass function of the field



2.2 µm Flux Ratio


- Young Binary Environments
- Circumstellar disks:
- Disk frequency:
 - —— near and mid-infrared (2 μm and 10 μm) excess
 - 40% 50% or more binaries show circumstellar disks
- Disk mass:
 - ------ millimeter or submillimeter measurement
 - —— Tau-Aur Association: 0.004 M_{sun} to 0.3 M_{sun}
 - —— Large mass possibly: 1.8 M_{sun} (Z CMa), 1.5 M_{sun} (GW Ori)
- Disk accretion:
 - —— spectroscopy of $H\alpha$ line
 - ----- accretion rate: 10⁻⁷ M_{sun} yr⁻¹

- Young Binary Environments
- Circumstellar disks:
- Disk structure: near infrared SED

— geometrically thin, optically thick disk with (0.3 AU - 10² AU)

- Infrared Companions:
- Peaked at infrared, without optical —— large extinction
- Frequency: 10% at all T Tauri binary systems (Zinnecker & Wilking 1992)

11

- Implication
- Many of the properties of MS binaries are already at least approximately present in the PMS phase, and likely were established earlier.

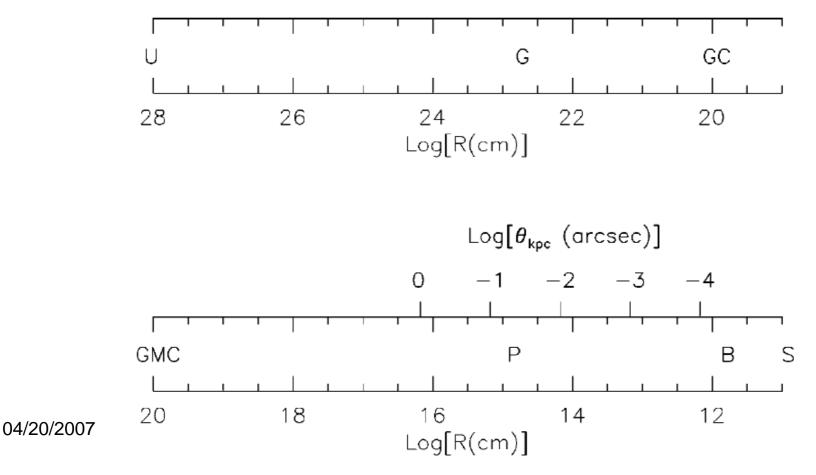
HBC	Name	P (days)	γ (km s ⁻¹)	е	a sin i (AU)	$m\sin^3 i$ (M_{\odot})	Q	Ref.	Spec. Class	L_* (L_{\odot})	Hα (Å)	12μm Ју	V mag	K mag	Location
662 400	HD155555 V4046 Sgr V826 Tau OriNTT 569 ^b	1.681652 2.42131 3.88776 4.25	2.7 -6.8 17.5 29.	0 0 0 0	0.013 0.024 0.013 0.04	0.964 0.30 0.0203 0.61	1.07 1.07 1.02 1.0	1 2 3 4	G5 K5 K7 K4°	3.3: 1.1 1.5 ^c	abs >100 1.6 0.5 °	0.45 < 0.07	6.73 10.40 12.11 13.61 °	7.34 ^a 8.32 10.63 ^c	isolated isolated Tau-Aur Orion Belt
536	EK Cep P2486 W134	4.42782 5.1882 6.353	-10.9 20.0 26.	0.109 0.161 0	0.077 0.066 0.099	3.15 ^d 1.37 3.2	1.81 1.04 1.04	5 4 6	A1,G5 G5 ° G5	15.1,1.5 5.25 ^f 16.1	3 -3.2 ° 1	0.34	7.85 11.38 ^f 12.44	9.92 f 9.81	isolated Trapezium NGC2264
271 487 447	OriNTT 429 AK Sco P2494 P1540 162814-2427 ^b	7.46 13.6093 19.4815 33.73 35.95	25. -1.1 24.0 20.2 -6.1	0.27 0.469 0.262 0.12 0.48	0.10 0.143 0.146 0.188 0.267	2.2 2.12 1.089 0.79 1.96	1.0 1.01 1.41 1.32 1.1	4 7 8 9 10	K3° F5 K0° K3 K7	3.8 c 16 >11.5 f 16: 1	0.7 c wk em -0.3 c wk em	2.60 < 0.19 < 2.8 0.49	12.82 c 8.82 10.74 f 11.33 12.23	9.85 c 6.59 8.54 f 8.02 7.19	Orion Belt Sco-Cen? Trapezium Trapezium ρ Oph

- Stages of Single Star Formation (Shu et al. 1987)
 - Begin with a molecular cloud supported by magnetic field
 - I. Magnetic field diffused, and molecular cloud cores formed
 - II. collapse begins, central protostar formed
 - III. direct infall weakens, stellar wind creates bipolar outflow
 - IV. Direct infall continues to decrease, wind opening angle widens until the central young star reveals as a PMS star
 - V. nebular disk finally disappears

• Basic Physical Principles:

—— ignoring the magnetic field (decoupled at the high density of binary forming process), using thermal Jeans instability instead

- Physical parameter:
 - —— total mass M
 - —— radius R
 - mean temperature T
 - ------ mean molecular weight μ
 - —— mean angular velocity ω


- Basic Physical Principles:
- Physical parameters:

mean mass density $\bar{\rho} \equiv \frac{3M}{4\pi R^3}$ number density $n = \frac{\bar{\rho}}{\mu m_p}$ temperature $T \propto \bar{\rho}^{\gamma - 1}$ mean sound speed $\Gamma \Re T$

$$c_{\rm s} = \left[\gamma \frac{\Re T}{\mu}\right]^{1/2}$$

- Basic Physical Principles:
- Physical parameters:

scale: angular resolution of 10⁻⁴ arcsec needed

16

- Basic Physical Principles:
- Key timescales:

free-fall time:

$$\tau_{\rm ff} = \left[\frac{3\pi}{32\,G\bar{\rho}}\right]^{1/2}$$
sound-crossing time:

$$\tau_{\rm s} = \frac{R}{c_{\rm s}}$$
rotation period:

$$\tau_{\rm rot} = \frac{2\pi}{\omega}$$
binary orbital period:

$$P = \left[\frac{4\pi^2 a^3}{GM_{\rm tot}}\right]^{1/2}$$
accretion timescale:

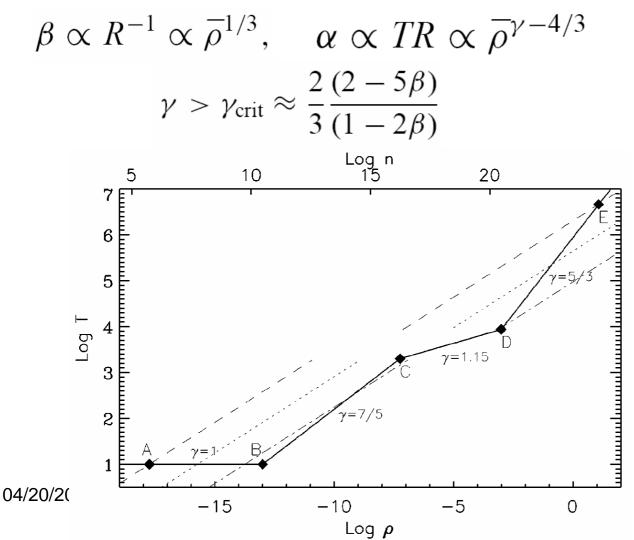
$$\tau_{\rm accrete} = \frac{m_0}{\dot{M}}$$

 $P = 32^{1/2} \tau_{\rm ff} \approx 5.7 \tau_{\rm ff}$

- Basic Physical Principles:
- Virial theorem: $2(E_{\text{therm}} + E_{\text{rot}}) + E_{\text{grav}} = 0$ $\alpha + \beta = \frac{1}{2}, \quad \alpha \equiv \frac{E_{\text{therm}}}{|E_{\text{grav}}|} \sim \frac{5}{2} \frac{\Re}{\mu} T \frac{R}{GM}, \qquad \beta \equiv \frac{E_{\text{rot}}}{|E_{\text{grav}}|} \sim \frac{1}{3} \frac{R^3 \omega^2}{GM}.$

thermal dominated: $\alpha \approx 1/2$ $M_{\rm equil} \sim 5 \frac{\Re}{\mu} T \frac{R}{G}$. $\tau_{\rm s} \approx \tau_{\rm ff}$.

rotation dominated: $\beta \approx 1/2$ $\omega \approx \omega_{\rm max} \approx [2\pi G \overline{\rho}]^{1/2}$


 $\tau_{\rm rot} = \frac{2\pi}{10} \approx 4.6\tau_{\rm ff}$

- Basic Physical Principles:
- Jeans instability: $\alpha + \beta < 1/2$

$$M > M_{\text{equil}} \qquad M_{\text{J}} \sim 5\frac{\Re}{\mu}T\frac{R}{G} \sim 5.5\left[\frac{\Re}{\mu}\frac{T}{G}\right]^{3/2}\overline{\rho}^{-1/2}$$

Case	ρ [g/cm ³]	<i>T</i> [°K]	γ	μ	$\frac{1}{\gamma}c_{\rm s}^2 [{\rm cm}^2/{\rm s}^2]$	$M_{ m equil} \ [{ m M}_{\odot}]$	$j_{\rm max}$ [cm ² /s]
A	1.8×10^{-18}	10	1	2	4.2×10^{8}	1	3.6×10^{21}
В	1.0×10^{-13}	10	$\frac{7}{5}$	2	$4.2 imes 10^{8}$	0.004	$1.5 imes 10^{19}$
С	5.7×10^{-8}	2000	1.15	1	$1.7 imes 10^{11}$	0.05	$8.3 imes 10^{18}$
D	1.0×10^{-3}	8.7×10^{3}	$\frac{5}{3}$	$\frac{1}{2}$	1.4×10^{12}	0.008	5.1×10^{17}
Е	1.2×10^{1}	4.6×10^{6}	$\frac{5}{3}$	$\frac{1}{2}$	$7.7 imes 10^{14}$	1	$2.6 imes 10^{18}$

- Basic Physical Principles:
- Effective adiabatic exponent γ :

- Possible Formation Mechanisms:
 - —— Capture
 - ----- Prompt Fragmentation
 - Delayed Breakup
- Capture: unlikely
 - ----- encounter probability is extremely slow in large cluster or field

—— interaction not purely gravitational, but no other effective mechanism

- Possible Formation Mechanisms:
- Prompt fragmentation: most noticed
 - ------ fully three-dimensional, nonlinear hydrodynamical simulation

—— isothermal equation of state assumed, some including adiabatic compression or focusing on the adiabatic collapse

• Nearly Homologous Collapse: uniform in density, significantly larger than Jeans mass, i.e. $\alpha << \frac{1}{2}$

----- reach flattened configuration after one free-fall time

- Nonhomologous Collapse: centrally condensed and/or cloud initially only marginally Jeans unstable
 - ----- central region collapse ahead of the rest
 - ----- core equilibrium first, and then mass accretion follow

- Possible Formation Mechanisms:
- Prompt fragmentation:
- Results

------ fragmentation occur immediately after one free-fall time, instead of during the free-fall collapse

—— homologous collapse with more than one Jeans mass material favorable for fragmentation, high β causes instability

----- nonhomologous collapse discourages collapse

----- not yet clear how often this process will directly produce a binary

- Possible Formation Mechanisms:
- Delayed breakup:
- Instability leading to breakup
- Direct breakup from an axisymmetric state: unlikely
 - ------ only form bar-like structure with a slight two-armed spiral character
 - —— fission may occur only after the triaxial configuration undergoes further slow contraction
- Substantial disk

—— form around the central core through the additional infall of high specific angular momentum material

- ----- grow to a mass comparable or even larger than the mass of the core
- ----- then disk instabilities lead to nonaxisymmetric structure which may break up

Conclusions

- Many of the properties of MS binaries are already at least approximately present in the PMS phase, which indicates young stars have paired themselves during early stage of star formation
- Capture are not likely to be a binary formation mechanism
- Prompt fragmentation may work immediately after the free-fall collapse, rather than during the free-fall phase
- Prompt fragmentation may occur in a homologous pattern, instead of inhomologous pattern
- Rapidly rotating axisymmetric cores do not break up due to instability; instead, they form bar-like structure
- Substantial disk around the core may break up into pieces containing material comparable to core mass