White Dwarf Seismology

Michael Stroh

Overview

- History of White Dwarf Variables
- Types
- G-Modes
- White Dwarf Formation Channels
- What can we learn from power spectra?
- Common Mixing Length Theories
- What can we learn from spectra?

White Dwarfs

- Originally believed to be good standard candles
- In 1968, A.U. Landolt observed HL Tau 76
 - 12 minute period
 - Luminosity changed ~0.1 magnitudes
- Due to the size of WD populations, they are the most common type of variables
- >30 discovered

Variable WD Characteristics

- DAV
 - 'ZZ Ceti'
 - 28 discovered (as of 2004)
 - Outer hydrogen envelope
 - Lie on an 'instability strip'
 - 11,300K < T < 12,500K
- DBV
 - 8 discovered (as of 2004)
 - Outer He I envelope
 - -22,000K < T < 28,000K

Variable WD Characteristics

- DAV
 - 'ZZ Ceti'
 - 28 discovered (as of 2004)
 - Outer hydrogen envelope
 - Lie on an 'instability strip'
 - 11,300K < T < 12,500K
- DBV
 - 8 discovered (as of 2004)
 - Outer He I envelope
 - -22,000K < T < 28,000K

- DOV / PNNV
 - Peculiar because spectroscopically similar objects not variable
 - $8x10^4 \text{ K} < \text{T} < 1.7x10^5 \text{ K}$

Periods

Typical periods of WD variables are $10^2 - 10^3$ s For p-modes we have

$$\Pi_{p} \leq \pi \int \upsilon_{s}^{-1} ds$$

$$\approx \frac{0.04}{\sqrt{\frac{\langle \rho \rangle}{\langle \rho_{Sun} \rangle}}} days$$

For a typical white dwarf

$$\left< \rho \right> \approx 10^6$$

 $\Pi_p \le 4s$

Therefore these cannot be the result of p-modes.

What else is there?

Gravity-modes

$$\Pi_g \approx n \frac{2\pi^2}{\sqrt{l(l+1)}} \left(\int_0^R \frac{N}{r} dr \right)^{-1}$$

Where the Brunt-Väisälä frequency, N, is given by

$$N^{2} = -\frac{\chi_{T}}{\chi_{\rho}} (\nabla - \nabla_{ad}) \frac{g}{\lambda_{p}}$$

where

$$\chi_T \equiv \left(\frac{\partial \ln P}{\partial \ln T}\right)_{\rho}$$
 and $\chi_{\rho} \equiv \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_T$

Numerical calculations produce observed periods.

$$\Pi_g \approx n \frac{2\pi^2}{\sqrt{l(l+1)}} \left(\int_0^R \frac{N}{r} dr \right)^{-1} = \frac{n\Pi_0}{\sqrt{l(l+1)}}$$

$$\Pi_{g} \approx n \frac{2\pi^{2}}{\sqrt{l(l+1)}} \left(\int_{0}^{R} \frac{N}{r} dr \right)^{-1} = \frac{n\Pi_{0}}{\sqrt{l(l+1)}}$$
$$N^{2} = -\frac{\chi_{T}}{\chi_{\rho}} \left(\nabla - \nabla_{ad} \right) \frac{g}{\lambda_{\rho}} \qquad \text{Brunt-Väisälä frequency}$$

$$\Pi_{g} \approx n \frac{2\pi^{2}}{\sqrt{l(l+1)}} \left(\int_{0}^{R} \frac{N}{r} dr \right)^{-1} = \frac{n\Pi_{0}}{\sqrt{l(l+1)}}$$
$$N^{2} = -\frac{\chi_{T}}{\chi_{\rho}} \left(\nabla - \nabla_{ad} \right) \frac{g}{\lambda_{\rho}} \qquad \text{Brunt-V}$$

Brunt-Väisälä frequency

$$\chi_T \equiv \left(\frac{\partial \ln P}{\partial \ln T}\right)_{\rho} \longrightarrow \frac{N_A k}{\mu_I} \frac{\rho T}{P_e}$$

$$\Pi_{g} \approx n \frac{2\pi^{2}}{\sqrt{l(l+1)}} \left(\int_{0}^{R} \frac{N}{r} dr \right)^{-1} = \frac{n\Pi_{0}}{\sqrt{l(l+1)}}$$

$$N^{2} = -\frac{\chi_{T}}{\chi_{\rho}} (\nabla - \nabla_{ad}) \frac{g}{\lambda_{\rho}} \qquad \text{Brunt-Väisälä frequency}$$

$$\chi_{T} \equiv \left(\frac{\partial \ln P}{\partial \ln T}\right)_{\rho} \rightarrow \frac{N_{A}k}{\mu_{I}} \frac{\rho T}{P_{e}}$$

$$\chi_{\rho} \equiv \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{T} \rightarrow \begin{cases} \frac{5}{3} & nonrelativistic \\ \frac{4}{3} & relativistic \end{cases}$$

$$\Pi_{g} \approx n \frac{2\pi^{2}}{\sqrt{l(l+1)}} \left(\int_{0}^{R} \frac{N}{r} dr \right)^{-1} = \frac{n\Pi_{0}}{\sqrt{l(l+1)}}$$

$$N^{2} = -\frac{\chi_{T}}{\chi_{\rho}} (\nabla - \nabla_{ad}) \frac{g}{\lambda_{\rho}} \qquad \text{Brunt-Väisälä frequency}$$

$$\chi_{T} \equiv \left(\frac{\partial \ln P}{\partial \ln T}\right)_{\rho} \rightarrow \frac{N_{A}k}{\mu_{I}} \frac{\rho T}{P_{e}}$$

$$\chi_{\rho} \equiv \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{T} \rightarrow \begin{cases} \frac{5}{3} & nonrelativistic \\ \frac{4}{3} & relativistic \end{cases}$$

Wave propagation theory suggests that in WDs p-modes: deep interior g-modes: envelope

What causes these instabilities?

- As with the classical variables, these are probably related to the ionization of hydrogen, helium and carbon.
- Winget et al. 1982b discovered the first DBVs which were previously predicted from theory.
- DAV and DBV star structure well understood
- DAVs typically only show a few g-modes.

DOV/PNNV Instabilities

- Not as well understood as DAVs and DBVs.
- Spectroscopic information not clear enough to determine compositions
- PNNs can be particularly difficult to observe due to their surroundings

White Dwarf Formation "Channels"

- "Born DA"
 - Result from hydrogen rich PNN
 - H shell ~10⁻⁴M_{*} minus what PNN wind stripped off
- He/C/O PNN that become DOVs
 - As star contracts and cools, H is diffused to the atmosphere
 - By 45,000K all stars have H shells
 - H shell ~ $10^{-10}M_*$ $10^{-4}M_*$
 - Recent evidence suggests this is not the major channel

10 Day Light Curve of PG 1159-035

17

Winget, D.E., et al (1991)

What causes the splitting?

Power

• Rotation Period

$$P_{rot,l} = \frac{1 - \frac{1}{l(l+1)}}{\delta v_l}$$

Rotation Period

$$P_{rot,l} = \frac{1 - \frac{1}{l(l+1)}}{\delta v_l}$$

$$P_{rot,1} = 1.371 \pm 0.13 days$$

$$P_{rot,2} = 1.388 \pm 0.13 days$$

$$= 1.38 \pm 0.01 days$$

Rotation Period

$$P_{rot,l} = \frac{1 - \frac{1}{l(l+1)}}{\delta v_l}$$

$$P_{rot,1} = 1.371 \pm 0.13 days$$

$$P_{rot,2} = 1.388 \pm 0.13 days$$

$$= 1.38 \pm 0.01 days$$

• Mass

$$\log(\frac{M}{M_{Solar}}) = -1.041 \cdot \log\left\{\Pi_{l}\sqrt{l(l+1)}\right\} + 1.312$$

Rotation Period

$$P_{rot,l} = \frac{1 - \frac{1}{l(l+1)}}{\delta v_l}$$

$$P_{rot,1} = 1.371 \pm 0.13 days$$

$$P_{rot,2} = 1.388 \pm 0.13 days$$

$$= 1.38 \pm 0.01 days$$

• Mass

$$\log(\frac{M}{M_{Solar}}) = -1.041 \cdot \log\left\{\Pi_{l}\sqrt{l(l+1)}\right\} + 1.312$$
$$\frac{M}{M_{Solar}} = 0.586 \pm 0.003$$

Chemical Stratification of PG 1159-035

FIG. 9.—Theoretical period spacings (for l = 1 modes) for three different models, displaced vertically for clarity.

Winget, D.E., et al (1991) 28

Chemical Stratification of PG 1159-035

FIG. 9.—Theoretical period spacings (for l = 1 modes) for three different models, displaced vertically for clarity.

FIG. 10.—Observed period spacings in PG 1159-035. Open circle values are less certainly determined than those for the solid circles. The dashed lines show the theoretical trapping found in the H/He/C model. A small decrease in the model's mass would displace the dashed curves upward.

Winget, D.E., et al (1991)

Period Variability

FIG. 11.—Observed phase of the 516 s period as a function of time (circles) with formal error bars shown. The solid curve is the phase ephemeris derived from the first four data points.

Winget, D.E., et al (1991) 30

Period Variability

BJDD (Barycentric Julian Dynamical Date)

FIG. 11.—Observed phase of the 516 s period as a function of time (circles) with formal error bars shown. The solid curve is the phase ephemeris derived from the first four data points.

Winget, D.E., et al (1991) 31

Mixing Length Theory

$$\alpha \equiv \frac{l}{H}$$

H is the pressure scale height and I is the mixing length

- ML1
 - $-\alpha = 1$
- ML2
 - $\alpha = 1$
 - Increased convective efficiency relative to ML1
- ML3
 - Same as ML2 but α = 2
- ML2/ $\alpha = 0.6$
 - Same as ML2 but α = 0.6

DAVs

• Using spectroscopy for a given filter x

$$a_1^x = A_l^x \varepsilon_T T_0 \overline{Y_l}^m(i)$$

a is the amplitude of a g-mode in the Fourier spectrum ϵ is the dimensionless amplitude of the temperature perturbation T_0 is the unperturbed effective temperature Y_1^m is the Legendre function corresponding to an angle i

$$A_l^x \equiv \frac{\int_0^\infty W_v^x A_{lv} \frac{dv}{v}}{\int_0^\infty W_v^x H_{v,0} \frac{dv}{v}} \times 100 \qquad A_{lv} \equiv \frac{1}{2} \int_0^1 \frac{\partial I_v}{\partial T} \Big|_{T_0} P_l(\mu) \mu d\mu$$

 W_{ν}^{x} is transmission function for filter x $H_{0,\nu}$ is the unperturbed emergent Eddington flux I_{ν} is the emergent specific intensity $P_{I}(\mu)$ is the Legendre polynomial

DAVs

• Using spectroscopy for a given filter x

$$a_1^x = A_l^x \varepsilon_T T_0 \overline{Y_l}^m(i)$$

a is the amplitude of a g-mode in the Fourier spectrum ϵ is the dimensionless amplitude of the temperature perturbation T_0 is the unperturbed effective temperature Y_1^m is the Legendre function corresponding to an angle i

$$A_l^x \equiv \frac{\int_0^\infty W_v^x A_{lv} \frac{dv}{v}}{\int_0^\infty W_v^x H_{v,0} \frac{dv}{v}} \times 100 \qquad A_{lv} \equiv \frac{1}{2} \int_0^1 \frac{\partial I_v}{\partial T} \Big|_{T_0} P_l(\mu) \mu d\mu$$

 W_{ν}^{x} is transmission function for filter x $H_{0,\nu}$ is the unperturbed emergent Eddington flux I_{ν} is the emergent specific intensity $P_{I}(\mu)$ is the Legendre polynomial

$$\frac{a_1^x}{a_1^y} = \frac{A_l^x}{A_l^y}$$

Behavior of A_I^x and the Pulsation Amplitude

FIG. 1.—Behavior of the coefficient A_i^x for the *M* and *R* bandpasses in terms of unperturbed effective temperature at fixed surface gravity (log g = 8.0) for ML1 (*dashed curves*) and ML2 (*solid curves*) models. Each panel refers to a specific value of the pulsation index *l*, from 1 through 3.

FIG. 2.—Normalized pulsation amplitudes for the six bandpasses of interest computed from ML1 model atmospheres with log g = 8.0 and with three different effective temperatures. The solid (dotted, dashed, long-dashed, dot-long-dashed) curve corresponds to a g-mode with l = 1 (2, 3, 4, 5, 6).

Fontaine, G., et al. (1996)

Behavior of A_I^{\times} for Different MLTs

ML1

ML2

ML2/*α*=0.6

Fontaine, G., et al. (1996) 36

Behavior of A_I[×] for Different MLTs

OPTIMAL SOLUTIONS FOR $l = 1$ AND $l = 2$								
MLT (1)	log g (2)	$\begin{array}{c} T_{eff} \\ (l=1) \\ (3) \end{array}$	$\begin{pmatrix} \chi^2 \\ (l = 1) \\ (4) \end{pmatrix}$	Filters ^a (l = 1) (5)	$\begin{pmatrix} T_{ett} \\ (l = 2) \\ (6) \end{pmatrix}$	$\begin{pmatrix} \chi^2 \\ (l = 2) \\ (7) \end{pmatrix}$	Filters ^a (l = 2) (8)	
ML2	7.50 7.75 8.00	10,950 11,200 11,450	6.937 4.298 3.890		10,950 11,150 11 350	12,21 14.53 14.68	W W W B	
MI 2/ 0.6	8.25 8.50	11,500 11,750	4.263		11,400 11,700	14.10 13.62	B B	
$ML2/\alpha = 0.6$	7.50 7.75 8.00	12,200 11,100 11,350	18.05 19.06 14.61	U, V U, V U	12,400 12,800 13,250	33.20 31.23 31.37	W*, V* W*, V* W*, U, V*	
ML1	8.25 8.50 7.50	11,650 12,050 11,750	9.228 7.256 9.919	 V	11,550 12,000 11,950	30.12 29.19 33.64	M*, W*, B M, W*, B W*, U, V*	
	7.75 8.00 8.25	12,100 12,500 12,850	11.66 14.83 16.92	V U, V W, U, V	12,300 12,700 13,100	32.21 33.17 34.15	W*, U, V* W, U*, V* W, U*, V*	
	8.50	13,300	20.35	U, V	13,550	35.14	W, U*, V*	

^a Letter alone indicates predicted pulsation amplitudes of more than 2 σ ; letter with asterisk indicates predicted pulsation amplitudes of more than 3 σ .

Fontaine, G., et al. (1996) 37

The DAV Instability Strip

•Hotter group: Small number of short period modes.

•Cooler group: More modes, variable amplitudes, more non-linear effects (harmonics)

Spectra of DAVs

Mass Dependence on MLTs

40

Color-Color Diagrams and MLTs

T and g Dependence on MLTs

42

T Dependence on MLTs

Atmospheric Parameters for the Kepler-Nelan DA Stars ($ML2/\alpha = 0.6$)

WD	Name	T _{ert} /UV (K)	T _{eff} /Opt (K)	log g	M/M_{\odot}
0255-705	BPM 2819	10961	10620	8.17	0.71
0401 + 250	G8-8	12227	12120	8.02	0.62
1022+050	LP 550-52	11779	11540	7.70	0.45
1053-550	BPM 20383	12849:	13630	7.85	0.53

Bergeron, P., et al (1995)

T Dependence on MLTs

 $T_{\rm eff}$ Determinations from UV Spectra (ML2/ $\alpha = 0.6$)

Name	Source	T _{eff} (K)	$\Delta T_{\rm eff}$ (UV – Opt)
G117-B15A	HST	11890	+ 270
G29-38	IUE	11660	-160
G226-29	IUE	12270	- 190
G185-32	IUE	11930	-200
G29-38	HST	11650	-170
G207-9	IUE	11860	-100
GD 99	IUE	11570	-250
R808	IUE	11180	+ 20
R548	IUE	12130	+140
GD 154	IUE	11580	+400
GD 66	IUE	11910	-70
L19-2	IUE	12310	+210
LTT 4816	IUE	11530	- 200

Bergeron, P., et al (1995)

Spectral Fits and the MLTs

Summary

- Three main categories of variable white dwarfs
- G-modes
- We can learn a lot from power spectra
- DAVs are harder to analyze with power spectra
- Can use spectroscopy
- All methods require a MLT assumption
- There are possible ways to reject/accept certain MLTs

Sources

- Bergeron, P., et al. 1995, ApJ, 449, 258
- Bradley, P.A. 1993, Baltic Astronomy, 2, 545
- Bradley, P.A. 1998, Baltic Astronomy, 7, 111
- Brassard, P., Fontaine, G., & Wesemael, F. 1995, ApJ 96, 545
- Costa, J.E.S., Kepler, S.O., & Winget, D.E. 1999, ApJ 522, 973
- Fontaine, G., et al. 1996, ApJ, 469, 320
- Hansen, C.J., Kawaler, S.D. & Trimble V. 2004. Stellar Interiors, 2nd ed., Springer-Verlag, NY.
- Kawaler, S.D., 1998, IAUS, 185, 261
- Kepler, S.O., et al. 2000, Baltic Astronomy, 9, 125
- Winget, D.E., et al. 1991, ApJ, 378, 326