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27.1. Example 1. Rough estimates.

Assume that for an order of magnitude estimation the linear approximation gives more or less
correct answer up to δ ' 1. Estimate the ratio of δ(z) at z = 99 and δ(z) at z = 9, if it is given
that growing and decaying modes are approximately equal to each other at z = 999.

Solution

According to the solution given in Section 26.3.

δ(99)
δ(9)

' A+10−2 + A−103

A+10−1 + A−103/2
=

10−2 + 103f

10−1 + 103/2f
, (1)

where

f =
A−
A+

. (2)

Taking into account that

A+10−3 ' A−109/2, (3)

we find that

f ' 10−3−9/2 = 10−15/2, (4)

hence

δ(99)
δ(9)

' 10−2 + 103−15/2

10−1 + 103/2−15/2
=

10−2 + 10−9/2

10−1 + 10−6
≈ 10−2+1 = 0.1. (5)

27.2. Example 2. Amplitude of δ as a function of time. Alternative
derivation.

Derive the equation for the evolution of small density perturbations, δ = (ρ
′−ρ)/ρ after decoupling

to show that
δ̈ + (4/3t)δ̇ − (2/3t2)δ = 0.

Solution

Starting from

R̈ = −4πGρR

3
,

perturb R and ρ: R
′
= R(1 + h), and ρ

′
= ρ(1 + δ).
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Putting this in the perturbed equation

R̈′ = −4πGρ
′
R

′

3
,

we obtain

R̈(1 + h) + 2Ṙḣ + Rḧ = −4πGρ(1 + δ)R(1 + h

3
.

Using unperturbed equation, we obtain linearized equation

R̈h + 2Ṙḣ + Rḧ = −4πGρR(δ + h)

3
.

To relate h and δ we use the conservation of energy equation ρR3 = ρR3(1 + 3h)(1 + δ),
or 1 = 1 + 3h + δ, so h = −δ/3.
Thus we have

−R̈
δ

3
− 2

3
Ṙ−R

δ̈

3
= −4πGρ

3
R

2

3
δ,

then

δ̈ + 2
Ṙ

R
+

R̈

R
δ =

8πGρ

3
δ.

For the dust-like Universe R ∼ t2/3, so

Ṙ

R
=

2

3t
,

R̈

R
=

2

3
(
2

3
− 1)t−2 = − 2

9t2
.

From the unperturbed equation
8πGρ

3
= −2R̈

R
=

4

9t2
.

Then

δ̈ + 2
2

3t
+ (−2

9
− 4

9
)

δ

t2
= 0,

and finally

δ̈ +
4

3t
− 2

3t2
δ = 0.

Taking trial solution δ = Atm, we obtain

m(m− 1) +
4m

3
− 2

3
= 0, 3m2 + m− 2 = 0.

Solutions of this quadratic equation are

m =
−1±

√
1 + 24

6
=
−1± 5

6
,

thus m+ = 2/3 and m− = −1 ( growing and decaying modes). So we have

δ = A+(t/t0)
2/3 + A−(t/t0)

−1.


