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Lecture 10. Last updated 14.04.10

X. IN VICINITY OF THE SCHWARZSCHILD BLACK HOLE

Test particles in the Schwarzschild Metric X A

Stable and Unstable Circular Orbits X B

Propagation of light in the Schwarzschild metric X C

A. Test particles in the Schwarzschild Metric

Taking into account the spherical symmetry of the Schwarzschild metric we can choose our spherical coordinates in
such a way that the plane of orbit coincides with the equatorial plane θ = π/2. Then the Hamilton−Jacobi equation
in the Schwarzschild metric can be written as(
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Since all coefficients in this equation do not depend on t and φ we can say that
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= −E, and
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= L, (X.2)

where E and L are constants, which by definition are the energy and angular momentum of the particle under
consideration. Then putting

S = −Et+ Lφ+ Sr(r) (X.3)

into the Hamilton−Jacobi equation we have(
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Then the contravariant components of the four-momentum are
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Then we can rewrite above equations as
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where
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is called the ”effective potential energy”. For given radius Ueff is equal to the energy of a particle which has the turn

point ( drdφ = 0), i.e. Apastron or Periastron, for this r. Indeed
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hence, if

dr

dφ
= 0, then Ueff = E. (X.14)

Thus the condition

E > Ueff (X.15)

determines the admissible range of the motion. The effective potential includes potential energy plus kinetic energy
of non-radial motion, in the relativistic manner; this kinetic energy is determined by angular momentum L.

B. Stable and Unstable Circular Orbits

The radius of the stable circular orbit is obtained from the simultaneous solution of the equations

Ueff = E (X.16)

and

dUeff
dr

= 0. (X.17)
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From Eq.(X.17) we have

dU2
eff/du = 0, (X.18)

where u = 1/r. Hence,
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Solving this equation we have
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The larger root corresponds to the stable orbit. One can see that
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2c2
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> 0. (X.21)

Hence,

−
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√
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Substituting

L =
√

3mcrg (X.23)

into equation for the radius of circular orbits (X.20), we have for the radius of the last stable orbit

rlso = 3rg. (X.24)

C. Propagation of light in the Schwarzschild metric

Let me remind you that for photons

ds = 0. (X.25)

We can introduce some scalar parameter λ varying along world line of the light signal and introduce then a vector

ki =
dxi

dλ
, (X.26)

which is tangent to the word line. This vector is called four- dimensional wave vector. Then

ds2 = gikdx
idxk = gikk

ikkdλ2 = 0 (X.27)

and we have

kik
i = gikkikk = 0. (X.28)

Substituting covariant vector

ki = − ∂ψ
∂xi

, (X.29)

where ψ is a scalar, we obtain the Eikonal Equation in gravitational field

gikΨ,iΨ,k = 0. (X.30)
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The physical meaning of Ψ (called the Eikonal follows from

Ψ = −
∫
kidx

i, (X.31)

which looks like the phase of electromagnetic wave. If the Eikonal equation is solved, one can obtain the world line
of photon:

dxi

dλ
≡ ki = ginkn = −ginΨ,n. (X.32)

In the equatorial plane of a Schwarzschild black hole the solution of the Eikonal equation can be written in the form

Ψ = −ωt+
bω

c
φ+ Φr(r), (X.33)

whereω is the frequency of the photon and b is its impact parameter.
Substituting this expression to the Eikonal equation we obtain
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where
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One can easily show that photons can move along unstable circular orbits given by

Ueff(ph) = 1, and
dUeff(ph)

dr
= 0, (X.36)

where Ueff(ph) plays the role of the effective potential for photons and is given by

Ueff(ph) =
b2

r2

(
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)
. (X.37)
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