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VIII. SOLVING EFES

Weak field and slow motion approximation VIII A

The Schwarzschild metric as an exact solution of EFEs VIII B

Physical singularity versus coordinate singularity in the Schwarzschild metric VIII C

A. Weak field and slow motion approximation

In small velocity approximation

T k
i ≈ ρc2uiu

k, (VIII.1)

where ρ is the mass density, i.e., T 0
0 = ρc2 and all other components are small, i.e., |T 0

α| � T 0
0 and |T β

α | � T 0
0 . This

means that T ≡ T i
i ≈ T 0

0 .
In weak field approximation one can neglect by the non-linear part in the Ricci tensor:

R00 = R0
0 ≈ Γα

00,α = −1
2
ηαβg00,α,β =

1
c2

φ,α,β , (VIII.2)

where φ is defined by

g00 = 1− 2φ

c2
. (VIII.3)

Following usual notations

ηαβg00,α,β = 4g00, (VIII.4)

where 4 is the Laplace operator. From EFEs we obtain

R0
0 =

1
c2
4φ =

8πG

c4
(T 0

0 −
1
2
T ) ≈ 8πG

c4
(T 0

0 −
1
2
T 0

0 ) =
4πG

c4
T 0

0 . (VIII.5)

Hence,

4φ = 4πGρ. (VIII.6)

This is the Poisson equation, hence, as one can see, in this approximation EFEs give the Newtonian gravity and φ is
the Newtonian gravitational potential.
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B. The Schwarzschild metric as an exact solution of EFEs

Let r, θ, φ are spherical space coordinates. The most general spherically symmetric gravitational field can be described
by the interval in the following form

ds2 = h(r, t)dr2 + k(r, t)(sin2θdφ2 + dθ2) + l(r, t)dt2 + a(r, t)drdt. (VIII.7)

By transformations of coordinates

r = f1(r′, t′), t = f2(r′, t′), (VIII.8)

we always can make

a(r, t) = 0 and k(r, t) = −r2. (VIII.9)

Thus

ds2 = eνc2dt2 − r2(sin2θdφ2 + dθ2)− eλdr2. (VIII.10)

Taking into account that

g00 > 0 and g11 < 0, (VIII.11)

we can see that

g00 = eν , g11 = −eλ, g22 = −r2, and g33 = −r2 sin2 θ (VIII.12)

g00 = e−ν , g11 = −e−λ, g22 = −r−2 and g33 = −r−2 sin−2 θ. (VIII.13)

Now we can calculate the Christoffell symbols:

Γ1
11 =

λ′

2
, Γ0

10 =
ν′

2
, Γ2

33 = − sin θ cos θ, Γ0
11 =

λ

2
eλ−ν , (VIII.14)

Γ1
22 = −re−λ, Γ1

00 =
ν

2
eν−λ, Γ2

12 = Γ3
13 =

1
r
, Γ3

23 = cot θ, (VIII.15)

Γ0
00 =

ν̇

2
, Γ1

10 =
λ̇′

2
, Γ1

33 = −r sin2 θe−λ, (VIII.16)

where ′ means partial derivative with respect to r. Then after straightforward calculations of the components of the
Ricci tensor we obtain the Einstein’s equations:

8πG

c4
T 1

1 = −e−λ

(
ν′

r
+

1
r2

)
+

1
r2

, (VIII.17)

8πG

c4
T 2

2 =
8πG

c4
T 3

3 =

= −1
2
e−λ

(
ν′′ +

ν′2

2
+

ν′ − λ′

r
− ν′λ′

2

)
+

1
2
e−ν

(
λ̈ +

λ̇2

2
− λ̇ν̇

2

)
, (VIII.18)

8πG

c4
T 0

0 = −e−λ

(
1
r2
− λ′

r

)
+

1
r2

, (VIII.19)

8πG

c4
T 1

0 = −e−λ λ̇

r
. (VIII.20)
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In vacuum, where all T i

k = 0, we have

− e−λ

(
ν′

r
+

1
r2

)
+

1
r2

= 0, (VIII.21)

e−λ

(
λ′

r
− 1

r2

)
+

1
r2

= 0, (VIII.22)

λ̇ = 0, (VIII.23)

The most unpleasant equation fortunately is not independent and follows from other three equations. One can proove
this by straightforward calculations or by using the Bianchi identity. From equation (VIII.23) follows that λ = λ(r),
i.e. does not depend on t. From equations (VIII.21) and (VIII.22) follows that

λ′ + ν′ = 0, hence λ + ν = f(t). (VIII.24)

Now we can use our last freedom in coordinate transformation, namely we can transform the time coordinate, t = f(t′)
to make f(t) = 0. As a result we obtain

e−λ = eν . (VIII.25)

Thus we actually proved a very important theorem: If a gravitational field is spherical symmetric then this field is
static! Now the system has been reduced to the single equation (VIII.22), which after multiplying by r2 can be written
as

e−λ (rλ′ − 1) + 1 = 0 or −
(
e−λr

)′
+ 1 = 0. (VIII.26)

Finally

e−λ = eν = 1 +
A

r
, (VIII.27)

where A is a constant of integration. One can see that if r →∞, then

e−λ = eν → 1, (VIII.28)

which corresponds to the Minkowskian space-time.
In order to determine the constant A let consider a test particle far from the centre of gravitating object. It’s radial
acceleration is given by the geodesic equation:

d2r

ds2
+ Γ1

ikuiuk = 0. (VIII.29)

If we assume that the particle moves slowly, i.e. four-velocity ui ≈ δi
0 and ds ≈ cdt we obtain

d2r

dt2
≈ −c2Γ1

ikδi
0δ

k
0 = −c2Γ1

00 =

= −c2

2
g1n(g0n,0 + gn0,0 − g00,n) = −c2

2
g11(g01,0 + g10,0 − g00,1) ≈ −

c2

2
dg00

dr
=

= −c2

2
de−λ

dr
= −c2

2
d

dr
(1 +

A

r
) =

Ac2

2r2
. (VIII.30)
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On other hand we know from Newtonian theory that

d2r

dt2
= −GM

r2
, (VIII.31)

hence the constant of integration

A = −2Gm

c2
= −rg and g00 = 1− rg

r
, (VIII.32)

where rg is the so called gravitational radius

rg =
2Gm

c2
. (VIII.33)

Finally we derived the famous solution of the EFEs obtained by K. Schwarzschild in 1916, the same year when Einstein
published his equations. This solution is called the Schwarzschild metric:

ds2 =
(
1− rg

r

)
c2dt2 − r2(sin2θdφ2 + dθ2)− dr2

1− rg

r

. (VIII.34)

One can see that this metric describes a curved space-time. To prove, for example, that even the space itself is curved,
let us compare the physical radial distance, l, with the corresponding circumference, C. In the flat Euclidian space

l =
C

2π
, (VIII.35)

while in the case of the Schwarzschild metric

dl2 =
dr2

1− rg

r

+ r2(sin2 θdφ2 + dθ2), (VIII.36)

hence

l =
∫ r2

r1

dr√
1− rg

r

> r2 − r1 =
lcircl2 − lcircl1

2π
. (VIII.37)

One can see also that time runs at a different rate at different radii, indeed

dτ =
√

g00dt =
√

1− rg

r
dt. (VIII.38)

C. Physical singularity versus coordinate singularity in the Schwarzschild metric

We can prove that there is no physical singularity at r = rg. For that we produce the following transformation of
coordinates

cτ = ±ct±
∫

f(r)dr

1− rg

r

, (VIII.39)

R = ct +
∫

dr(
1− rg

r

)
f(r)

, (VIII.40)

where f(r) is an arbitrary function. Now the interval can be written in the following form:

ds2 =
1− rg

r

1− f2
(c2dτ2 − f2dR)− r2(dθ2 + sin2θdφ2). (VIII.41)
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To eliminate ”singularity” at r = rg, we can choose f(r) in such a way that f(rg) = 1. For example,

f(r) =
√

rg

r
. (VIII.42)

In this case

R− cτ =
∫

(1− f2)dr(
1− rg

r

)
f

=
∫ √

r

rg
dr =

2
3

r3/2

r
1/2
g

(VIII.43)

and

r =
3
2
(R− cτ)2/3r1/3

g , (VIII.44)

ds2 = c2dτ2 − dR2[
3

2rg
(R− cτ)

]2/3
−
[
3
2
(R− cτ)

]4/3

r2/3
g (dθ2 + sin2θdϕ2). (VIII.45)

We can see that there is now singularity at r = rg, indeed if r = rg

3
2
(R− cτ) = rg. (VIII.46)

In other words, the formal ”singularity” ar r = rg can be removed by the transformation of coordinates.
The real physical singularity does take place at r = 0 when, say, the scalar curvature is infinite (one can easily verify
this by straightforward calculations) and this fact can not be removed by any transformation of coordinates.
————————————————————————————————————————————-

Back to Content Previous Lecture Next Lecture

38


	Content of lecture notes
	Course information
	Introduction
	About this course
	The principle of equivalence
	The Principle of Equivalence in Newtonian Gravity.
	The Principle of Equivalence in GR.
	Example.

	Gravity as a space-time geometry
	The principle of covariance

	Tensors
	The principle of covariance and tensors
	Transformation of coordinates
	Contravariant and covariant tensors
	Reciprocal tensors
	Examples

	Physical Geometry of Space-Time
	Proper time
	Physical distance
	Synchronization of clocks
	Invariant 4-volume

	Covariant differentiation
	Parallel translation
	Covariant derivatives and Christoffel symbols
	The Christoffel symbols and the metric tensor
	Physical applications
	Application of (IV.32) to the metric tensor itself
	Application of (IV.32) to the motion of test particle


	Motion of a Test Particle in a Gravitational Field
	Hamilton-Jacobi equation
	Eikonal equation
	The motion in a spherically symmetric static gravitational field

	Curvature of Space-Time
	The Riemann curvature tensor
	Symmetry properties of the Riemann tensor
	Bianchi Identity
	The Ricci tensor and the scalar curvature
	The important consequence of Bianchi identity

	Geodesic deviation equation
	Stress-Energy Tensor
	Conservation of energy-momentum in gravitational field

	Heuristic "Derivation" of EFEs

	Rigorous Derivation of EFEs 
	The principle of the least action
	The action function for the gravitational field
	The action function for matter
	The stress-energy tensor and the action density 
	The final EFEs

	Solving EFEs
	Weak field and slow motion approximation
	The Schwarzschild metric as an exact solution of EFEs
	Physical singularity versus coordinate singularity in the Schwarzschild metric

	Black Holes
	Limit of stationarity
	Event horizon
	Schwarzschild black holes
	Kerr Black Holes
	Limit of stationarity
	Event horizon

	"Ergosphere" and Penrose process
	Ergosphere
	Penrose process 


	In vicinity of the Schwarzschild Black Hole
	Test particles in the Schwarzschild Metric
	Stable and Unstable Circular Orbits
	Propagation of light in the Schwarzschild metric

	Experimental Confirmation of GR and Gravitational Waves (GWs)
	Relativistic experiments in the Solar system and Binary pulsar
	Propagation of GWs
	Detection of GWs
	Generation of GWs
	Examples, problems and summary

	Summary of the course

