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VII. RIGOROUS DERIVATION OF EFES

The principle of the least action VII A

The action function for the gravitational field VII B

The action function for matter VII C

The stress-energy tensor and the action density VII D

The final EFEs VII E

A. The principle of the least action

The derivation of EFEs is very important material for understanding GR. In this lecture we will derive rigorously the
Einstein Field equations (EFEs) from the principle of the least action.
This principle says that

δ(Sg + Sm) = 0, (VII.1)

where Sg and Sm are the actions of gravitational field and matter respectively. Taking into account that we are going
to derive EFEs, the subject of variations is all components of the metric tensor.
To derive EFEs we should understand what are Sg and Sm .

B. The action function for the gravitational field

First of all Sg should depend on configuration of gravitational field, or geometry, in the whole space-time, hence it
should be expressed in terms of a scalar integral over the all space and over the time coordinate between two given
moments of time

Sg =
∫

GdΩ̃, (VII.2)

where dΩ̃ is invariant element of 4-volume (see Lecture 3) and G is some scalar function called the action density.
We know that the final equations should contain derivatives of gik no higher than the second. Otherwise we could not
obtain Newtonian Poisson’s equation (see the previous lecture). In other words, G must contain only gik and Γl

mn, i.e

G = G(gik,Γi
kl). (VII.3)

Immediately we confront with the following problem : this is impossible to construct the scalar from gik and Γl
mn .

The only scalar in gravitational field, the scalar curvature R, contains the second derivatives of gik. Fortunately, there
is rather simple resolution of this paradox: R is linear with respect to the second derivatives and for this reason, as
we will see later, all terms containing second derivatives don’t contribute to the variations of the action. Let us write
the action function in the following form

Sg = α

∫
R
√
−gdΩ, (VII.4)

where α is a constant which will be determined later.
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Because of the linearity of R with respect to the second derivatives, the invariant action function can be transformed
in the following way

Sg = α

∫
R
√
−gdΩ = α

∫
G
√
−gdΩ + α

∫
wl

,ldΩ, (VII.5)

where G contains only gik and gik,n, w is a function which we can be obtained by straightforward calculations:
√
−gR =

√
−ggikRik =

√
−g
{
gikΓl

ik,l − gikΓl
il,k + gikΓl

ikΓm
lm − gikΓm

il Γl
km

}
, (VII.6)

obviously
√
−ggikΓl

ik,l = (
√
−ggikΓl

ik),l − Γl
ik(
√
−ggik),l (VII.7)

and
√
−ggikΓl

il,k = (
√
−ggikΓl

il),k − Γl
il(
√
−ggik),k = (

√
−ggilΓk

ik),l − Γk
ik(
√
−ggil),l. (VII.8)

Then we obtain
√
−gR = (

√
−ggikΓl

ik −
√
−ggilΓk

ik),l +
√
−gG = wl, l +

√
−gG, (VII.9)

where

wl =
√
−g(gikΓl

ik − gilΓk
ik) (VII.10)

and
√
−gG = Γm

im(
√
−ggik), k − Γl

ik(
√
−ggik),l − (Γm

il Γl
km − Γl

ikΓm
lm)
√
−ggik (VII.11)

Γi
ki =

1
2
gim ∂gim

∂xk
. (VII.12)

According to the Gauss’ theorem the volume integral of a full derivative is reduced to the integral over boundary.
Taking into account that our objective is to obtain proper equations by applying the principle of the least action, we
should keep all boundary conditions fixed. Hence, w disappears after variation. As a result

δ

∫
R
√
−gdΩ = δ

∫
G
√
−gdΩ. (VII.13)

Thus we don’t need G any more, because we proved that the variation of the integral with R is the same as the
variation of the integral with G, hence we can work with R only.

δ

∫
R
√
−gdΩ = δ

∫
gikRik

√
−gdΩ =

∫
{Rik

√
−gδgik + gikRikδ(

√
−g) + gik√−gδRik}dΩ. (VII.14)

There are three terms in the variation of the action function. Let us first calculate the second term.

δ(
√
−g) = − 1

2
√
−g

δg = − 1
2
√
−g

∂g

∂gik
δgik = − 1

2
√
−g

M ikδgik, (VII.15)

where M ik is the minor of the determinant g corresponding to the component gik. Indeed, the determinant g depends
on all components gik. Calculating g with the help, say the first raw, one can write g = M1ig1i, where M1i are minors
of the components in the first row. Obviously M1i do not contain g1i. Hence

∂g

∂g1i
= M1i. (VII.16)

This is true for any row in determinant:

∂g

∂gni
= Mni. (VII.17)
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Taking into account that gik is reciprocal to gik, i.e. gikgkn = δn

i , (gik is inverse matrix of gik), one can write
gik = M ik/g, i.e. M ik = ggik. Thus

dg =
∂g

∂gik
dgik = M ikdgik = ggikdgik, (VII.18)

hence

gikdgik =
dg

g
= d ln |g| = d ln(−g) = 2 ln

√
−g. (VII.19)

Then gikdgik = d(gikgik)− gikdgik = dδi
i − gikdgik = −gikdgik.

Thus

δ(
√
−g) = − 1

2
√
−g

ggikδgik =
1

2
√
−g

ggikδgik = −1
2
√
−ggikδgik. (VII.20)

Now we can rewrite the variation of action as

δ

∫
R
√
−gdΩ =

∫
[(Rik −

1
2
gikR)

√
−gδgik + gik√−gδRik]dΩ. (VII.21)

Let us consider now the last term in the variation. For the calculation of δRik we can use the fact that although Γi
kn

is not a tensor, its variation, δΓi
kn, is a tensor.

Proof: Let Ai is an arbitrary vector at the point xi. After the parallel transport From the point xi to the point
xi + dxi, as we know, its components are

Ai(xn + dxn) = Ai(xn) + (Ai
,m(xn) + Γi

mp(x
n)Ap(xn))dxm. (VII.22)

Then

δAi(xn + dxn) = δΓi
mp(x

n)Ap(xn))dxm. (VII.23)

The left side is a vector because it is the difference between two vectors in the same point, hence the right side is also
a vector. Thus δΓi

mp(x
n) is a tensor.

In a locally galilean frame of reference

gikδRik = gik
{
δΓl

ik,l − δΓl
il,k

}
= gikδΓl

ik,l − gilδΓk
ik,l = W l

,l, (VII.24)

where

W l = gikδΓl
ik − gilδΓk

ik, (VII.25)

obviously W l is a vector.
Now let us prove that the covariant divergence of an arbitrary vector can be written as follows

An
; n =

1√
−g

(
√
−gAn),n. (VII.26)

Proof:

An
;n = An

,n + Γn
niA

i = An
,n +

1
2
gnm(gnm,i + gmi,n − gin,m)Ai = An

,n +
1
2
(gnmgnm,i + gnmgmi,n − gnmgni,m)Ai =

= An
,n +

1
2
gnmgnm,iA

i. (VII.27)

Taking into account (VII.18), one obtains

Ai
;i = An

,n +
g,n

2g
An =

1√
−g

[
√
−gAn

,n + (
√
−g),nAn] =

1√
−g

(
√
−gAi),i. (VII.28)

As follows from the proof above, in local galilean frame of reference, where g = −1

Ai
;i = Ai

,i, (VII.29)

hence, returning back to δRik, in local galilean frame of reference we have

gikδRik = W l
,l = W l

;l. (VII.30)
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Since this is a relation between two tensors (of 0-rank), once this is valid in one frame of reference it is valid in an
arbitrary frame of reference. Hence

√
−ggikδRik =

√
−gW l

;l = (
√
−gW l),l, (VII.31)

this means that according to the Gauss theorem the contribution of the third term in the variation of the action
function is equal to zero.
Finally we obtain

δSg = α

∫
(Rik −

1
2
gikR)δgik√−gdΩ. (VII.32)

C. The action function for matter

Similar to the action function for gravitational field, the action function for matter can be written as

Sm =
∫

Ψ
√
−gdΩ, (VII.33)

where Ψ is a scalar action density (by matter we mean any substance including all physical fields, for example,
electromagnetic field).
Let us calculate the variation of Sm. Immediately the following problem arises. Obviously Ψ can depend on many
physical parameters describing the physical system to which we are trying to apply the least action method. let us
denote all of them as qa, a = 1, 2, 3, 4, ........ Should we take into account the variations of all these qa? The answer is
no, all these variations should cancel each other by virtue of the ”equations of motion” of the physical system under
consideration, since these equations are obtained, according to the principle of the least action, from the condition
that the variations of Sm, related with the variations of qa, are equal to zero. Thus it is enough to take into account
the variations of the metric tensor only. Then we have

δSm =
∫ {

∂
√
−gΨ

∂gik
δgik +

∂
√
−gΨ

∂(gik
,l )

δ(gik
,l )

}
dΩ. (VII.34)

Then taking into account that

δ(gik
,l ) = (δgik),l, (VII.35)

which means that the partial differentiation, obviously, commutates with the procedure of taking variations, we can
integrate the second term in the previous formula by parts, as a result we obtain

δSm =
∫ {

∂
√
−gΨ

∂gik
− ∂

∂xl

∂
√
−gΨ

∂(gik
,l )

}
δgikdΩ. (VII.36)

Let us introduce the following notation

√
−g Aik =

∂
√
−gΨ

∂gik
− ∂

∂xl

∂
√
−gΨ

∂(gik
,l )

. (VII.37)

Then δSm takes the following form

δSm =
∫

Aikδgik√−gdΩ. (VII.38)
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D. The stress-energy tensor and the action density

One can prove that the tensor Aik introduced in the previous section, is proportional to the stress-energy tensor Tik

introduced in the previous lecture.
Proof: Let us carry out infinitesimally small translation from the coordinates xi to the coordinates x′i = xi + ξi,
where ξi are infinitesimally small quantities. Considering this translation as a transformation of coordinates, we can
see that the contravariant metric tensor is transformed under these translations as

g′ik(x′l) = glm(xl)
∂x′i

∂xl

∂x′k

∂xm
= glm(δi

l +
∂ξi

∂xl
)(δl

m +
∂ξk

∂xm
) = gik(xl) + gimξk

,m + gklξi
,l. (VII.39)

On other hand, using the usual Tailor expansion we have

g′ik(x′l) = gik(xl + ξl) = g′ik(xl) + ξl ∂gik

∂xl
= g′ik(xl) + ξlgik

,l , (VII.40)

hence

gik(xl) + gimξk
,m + gklξi

,l = g′ik(xl) + ξlgik
,l . (VII.41)

We obtain that

g′ik(xl) = gik(xl)− ξlgik
,l + gilξk

,l + gklξi
l or g′ik = gik + δgik, (VII.42)

where

δgik = −ξlgik
,l + gilξk

,l + gklξi
l . (VII.43)

It easy to show that

δgik = gilξk
;l + gklξi

;l ≡ ξi;k + ξk;i. (VII.44)

Indeed,

δgik = −ξl(gik
;l − Γi

nlg
nk − Γk

nlg
in) + gil(ξk

;l − Γk
lnξn) + gkl(ξi

;l − Γi
lnξn) =

= ξl(Γi
nlg

nk + Γk
nlg

in) + gilξk
;l + gklξi

;l − ξn(Γk
lngil + Γi

lngkl) =

= ξl(Γi
nlg

nk + Γk
nlg

in − Γk
nlg

in − Γi
nlg

kn) + gilξk
;l + gklξi

;l =

= gilξk
;l + gklξi

;l ≡ ξi;k + ξk;i. (VII.45)

Now we know what is the variation of the contravariant metric tensor under infinitesimally small translation. If we
substitute this variation into Eq.(VII.38), we obtain

δSm =
∫

Aik(ξi; k + ξk; i)
√
−gdΩ. (VII.46)

From the definition of Aik follows that it is a symmetric tensor. From the fact that Sm is scalar follows that the
variation of Sm under translation (which is the sort of transformation of coordinates) is equal to zero, hence, we
obtain

0 =
∫

Aikξi; k√−gdΩ =
∫

(Ak
i ξi); k

√
−gdΩ−

∫
Ak

i; kξi√−gdΩ. (VII.47)

The first term in the last expression can be written as

(Ak
i ξi); k

√
−g =

√
−gAk

;k, where Ak = Ak
i ξi. (VII.48)
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As follows from Eq. (VII.26)

√
−gAk

; k = (
√
−gAk),k, (VII.49)

and gives zero contribution to the variation. As a result we obtain that∫
Ak

i; kξi√−gdΩ = 0 (VII.50)

nd because of arbitrariness of ξi we conclude that

Ak
i; k = 0. (VII.51)

Taking into account that the covariant divergence of the stress-energy tensor T i
k (see the previous lecture) is also equal

to zero, one can identify Ak
i with the physical stress energy tensor within a constant factors, β and Λ:

Ai
k = β(T i

k + Λδi
k). (VII.52)

E. The final EFEs

Finally, from the principle of least action we have

δ(Sg + Sm) = 0, (VII.53)

or ∫ [
α

(
Rik −

1
2
gikR

)
+ β(T(phys)ik + Λgik)

]
δgik√−gdΩ = 0. (VII.54)

Taking into account the arbitrariness of δ and dropping label ”(phys)” and putting Λ = 0 [because discussion of this
famous Λ-terms is out of the scope of this course] we obtain

Rik −
1
2
gikR = κTik, (VII.55)

where

κ = −β

α
. (VII.56)

The value of κ called the Eistein constant, can be easily obtained from the weak field and slow motion limit. As we
will see later

κ =
8πG

c4
. (VII.57)

This is the end of the rigorous derivation of the EFEs.
One can see that the EFEs can be rewritten in mixed components as

Ri
k −

1
2
δi
kR = κT i

k. (VII.58)

Contracting indices one can obtain

R− 1
2
4R = κT, R = −κT, T = T i

k. (VII.59)

Hence

Rik = κ(Tik −
1
2
gikT ). (VII.60)
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In empty space-time

T i
k = 0, hence Ri

k = 0. (VII.61)

However, it could happen that

Riklm 6= 0. (VII.62)

The tidal accelerations related with non zero components of the Riemann tensor in empty space are produced by
gravitational waves. From

T i
;i = 0 (VII.63)

follows that

(Ri
k −

1
2
δi
kR);i = Ri

k;i −
1
2
R,k = 0. (VII.64)

This is actually the case as it follows from the Bianchi identity. And vice versa, from pure geometrical Bianchi identity
one can obtain the full description of motion of all forms of matter and fields. This means that the EFEs is complete
and self-consistent description of the interaction between matter and geometry, i.e. gravitational field.
————————————————————————————————————————————-
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