3C25 Solid State Physics

5. Vibrational Dynamics and Thermal Properties

Atoms always have kinetic energy, and move around their equilibrium positions.

Three consequences:
(). Energy can be stored as vibrational energy, and this is reflected in the behaviour of the heat
capacity.

(ii). Motion contributes to the entropy of the solid, hence free energy, and affects the selection
of structure.

(iii).  Vibrations can be transferred through the structure.
= sound (acoustic) waves.
The treatment of vibrations is known as “lattice dynamics”. Relies upon the properties of
the simple harmonic oscillator (SHO).

5.1 Review of the SHO

Traditional example:

>Uu Mass mmoving on a frictionless surface,
attached to a rigid wall through a massless
elastic rod.

SO

Ey — Young's modulus for the rod material.
A — cross sectional area of rod.
| —length of rod.

5.1.1 Mechanics

Displace mass by U.

Restoring force: F = gA O = stress = Ey&

u
£ is the strain = I—

Au
So, F (U) = _Ey |_
EyA
=-Ku Where K is the spring constant. K =
I
Stored potential energy at displacement U:
u
V=-[ Fu)du =1 Ku? (5.1)
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Kinetic energy T =imu?
Hamiltonian H=T+V =2 mu +2 Ku? (5.2)
nd dp_ dv )
Newton’s 2™ Law: — = where p=mu
dt du
K \z
= U =-ou with angular frequency w = —j
m
Solution U = U, cos(ai + CD) Umax = amplitude
(aI + CD) = phase
Total energy =3 KuZ,, (5.3)

5.1.2 Thermodynamics

Expose system to a heat bath at temperature T. Equivalent to solving an SHO with a random
external driving force. Construct a partition function.

Classically:

Z :%Idu dpexp(- H/k,T)

1= - Ku? | -p°
=—| duexpl —— || dpex
nl p[ KT ]j P p(zkaTJ
_1( 27k T
K

N =

- ]; (27amk,T)

— kBT
how

Mean energy (E) = %%I du dpH exp(- H /k,T)

=-dinz where B =1/KkgT
0B
0
=—In(haB) =1/ B=K,T 5.4
Y (heB) =11 B =Kg (54)
This is just %2 K, T per degree of freedom: (K.E. and P.E.)
o d(E)
So heat t C=——"=
0 heat capacity is qT 5

And root mean square displacement is

(u®) =%%_[du dpu® exp(-H/keT) =k, T/k =k T/mw® soas T 1,{u)1.
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5.1.3 Quantised SHO

e (B & (-(+ihe
Now we have Z—;exp(kBT)—geXp( T )
-hw
_ P 2k, T 1
B _ha) a . ha)
_ 2snh
1 exp( K, ] SN 2k, T
-dInZ
E)=
(g)==2"
=((n)+rw
1
(5.5)

with (N} exp(h %BT)_:L

which is the mean number of quanta in the oscillator (Bose-Einstein statistics).

(n)

- So we increase number of quantaas T t.

Heat capacity C = %

ha)2 how
k. T exka
=kg~2 = (5.6)

&

N
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S
~—
|
=

C
ke T
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5.1.4 Helmholtz Free Energy

F=E-TS (Gibbs free energy with p = 0)
We have F=-ksTInZ
So for the SHO:
F::kBTInKZth(éi:;]] (5.7)
F Yhw The decline in F is a reflection of the increase in

entropy with T.

T
</
S:(E—F) S
T
= B(1+|n(kBT D
hw
forlarge T
AsTT,STand<u2>1. T

i.e. more displacement from the mean position, more disorder.
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5.2 Lattice Dynamics in the Harmonic Approximation

We aim to relate the vibrations of atoms in a crystalline structure to the properties of an SHO.
This will allow us to determine the entropy of the structure. Also will provide phonon picture.

5.2.1 Single Atom in Motion

Consider a linear chain of N atoms of mass m, interacting through a pair potential ¢(r), r is the
separation.

The minimum P.E. is V{, at nearest neighbour separation a.
Separations from atom O : r = | [ |a
= rh=a
<2 2a
) () o> [ ) Qo ..

Label -2 -1 0 1 2

Displace atom labelled O from its equilibrium position by a distance Ug to the right :

N/2 N/2
change inP.E.is V(U,) -V, = Z:(go(ri —Uy) —@r))+ Z:((a(ri +U, — (1))
i=1 i=1
Changesin R‘I-rISi nteractions Changesin Lﬁsinteracti ons

N/2 2
:Z ¢(ri)_d_$‘ Uo+%U§d 4 +O(ug)_¢(ri)
i=1 r=r,

dr., dr?| _
N/2 2
+z ¢(ri)+d_¢ Uy +%u§d ? +O(Uc3>)_¢(ri)

i=1 dr r=r dr =

N/2 d2
so V(U )=V, +1Koul +O(ug) where K¢ = ZZde‘
i=1 r=r;
kinetic energy T =2 mu¢
= H =V, +$Kgug +3mug +0(U§) (5.8)

If we neglect the terms of order ué, we make the “harmonic approximation”. Equivalent to an

assumption that the displacement U, is small.
Reduces the Hamiltonian to that of an SHO (See eq. 5.2). This means we can use previous work:
<E> =V, +kgT classically (See eq. 5.4)

1 1
or: <E> =V, +(exp(hw/kBT)—1+§Jhw for quantised cases (See eq. 5.5)

K %
where: a):(—E)
m
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5.2.2 All Atoms in Motion

Again consider linear chain, but now displace all atoms labelled i by U;. r. +u

Use compact notation:
AVZEZ((”(rij+Ui_UJ)_¢’(riJ)) ® d
j

where I, =TI, =TI, : separation between atoms i and J. oy € >

Sum is over all i and J, % to avoid double counting. r; +U; —u,

Pair potential has properties:

r
and d(-r

d
and, ¢(r) =d—‘20‘

[Check these properties with the L-J potential]

Now Taylor expand:

VoVo =V :5Z(ui —uj){d(rij)+%(ui —uj)z(p"(rij)+o(ui3)

ij

we have U, Z ¢ (rij )= 0 by symmetry (cancelation of equal and opposite pairs of terms)
i
e.g. qp’(a )+q0’(—a )=0
so, AV =13k, (ui —u; )2 with Kk, = ¢'(I’ij) ; these are the
ij

spring constants, aka coupling constants.
Alternatively AV = Z% K; (ui —u, )2 where the sum is over all pairs.
i>]
Compare this with eq. (5.1). Each pair of atoms is effectively joined together by a spring with
spring constant Ki;.
It is better to write AV as a quadratic form in the displacements:
=1
AV =33 u,Dyu,
ij

Hamiltonian is now:

—_ 1 1 -2
H= Vo +1) uDu, +> imu
ij i

= N Y
equilibrium  Change in PE due KE
PE to displacement
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An example: N = 2 chain with fixed ends.

......
) () CRMNRRIHD

Approximation: neglect non-nearest neighbour interactions. Label atoms 1 and 2 with
displacements U; and Us.

AV :%K(ul)z +% K(Ul _u2)2 +%K(U2)2

K is the nearest neighbour spring constant.

K
2

=%(U1“2>(-21 _2 )[‘Lt)
2

= %ui Dij u;
ij
D, =2K
with  D,, =2K
D,=D, =-K (D is deliberately made symmetric)

Transform H to a harmonic oscillator form by diagonalising the D matrix.
Define vV =/Auwhere uand Vare N component vectors (elements U; and V;), and A is an
N %X N orthogonal matrix. V are linear combinations of the atomic displacements.

1\
(/\ l) =N definition of an orthogonal matrix.
Wehave Uu=A"'v and u=A"v
And > UZ=u'u
i

Bt u' =(AN) =v (A1) =v'A
So  UU=VAANN=VTY

More importantly:
1 — 1,7
32.uD;u; =3u’Du
ij

v ADA v where M = ADA™
v Mv

1
2
1
2

Choose A\ such that M is diagonal with diagonal elements ;. These are the eigenvalues of M
and D, since A is an orthogonal matrix. /\ is the matrix of eigenvectors of D.
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Then: H :VO+Z%/]ivi2+Z%m\'/i2
i i

So, after much effort, we have transformed H to look like the Hamiltonian of N simple harmonic
oscillators. The position and velocity coordinates V, and V, are called normal coordinates, which

are linear combinations of the atomic coordinates. The oscillatory modes of motion described by
these coordinates are called normal modes. They are the natural modes of oscillation of the
structure. Each can be excited independently.

AV
The N oscillators have angular frequencies @ = (—' .
m

2 —
e.g. for the N = 2 chain, D = K
-1 2

1(1Y 1(1
Eigenvalues A =K,3K. Eigenvectors —— —
’ ’ J2 @,ﬁ [1]

ao{n) (3

ﬁfa,_
m) 2
—»> —»>
@

A=K
A=3K > -
. _ . dp, oH
Alternatively, solve equations of motion: F = _6_ (Newton’s second law)
U
ie. mi=-) D,u,
j

and by inserting a trial oscillatory displacement pattern U, = A COSat we then need to solve
— 2 _——
W'mA =3 Dy A
j
which is the same problem of finding the eigenvalues maw? and eigenvectors A of the matrix D.

Either way, we can derive the frequency Density of A
spectrum, which in this example takes the states of
form of two delta functions. (Delta functions normal modes
are infinitely high, infinitely narrow peaks

located at the point where the argument is

00
00

zero. Main property is j_ O'(X—X0 )dx =1)
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For N atoms in the 1-d chain, there are N delta functions. For large N, it is useful to introduce a
density of states G(&J), such that G(&) dw is the number of frequencies (i.e. delta functions)
lying in the range & — & +daw .

So, for N =2 G(w) = dw-w) + o(w-w,)

More generally
G(w) Shape depends on structure

and couplings k;

In detail G(w) is still a set of delta
functions. The curve shown measures
the density of these along the axis.

>
Can be extended to 3-d. In the harmonic approximation, H is equivalent to 3N simple harmonic
oscillators. There is a density of states G( ) in 3-d too.

What are these normal mode frequencies useful for? Calculating thermodynamic properties,
since we know the properties of single oscillators.

E=V, +[ daG(w){(exp(h%BT)—lj_l +ﬂhw

| hw
F =V, + [ daG(e)k,T In(Zsmh( 2T J]

How do we calculate the frequency spectrum, or density of states?

5.3 Models of normal mode frequencies

5.3.1 The Einstein Model

Einstein analysed the dynamics of an atom assuming all other atoms were stationary (mean field
approximation).

H is combination of Hamiltonians from equation (5.8).

_ 1 2 2 2 1112 2092 442
H _VO +Z§ KE(uix +uiy +uiz)+25m(uix +uiy +uiz)
i i
i.e. single atom in motion case extended to 3-d.
K_\:
= All 3N oscillators have frequency W, = —E | . Einstein frequency.
m

Density of states: G(a)) = 3N5(w— wE) . 3N modes for N atoms in 3-d.

28



