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5. Vibrational Dynamics and Thermal Properties

Atoms always have kinetic energy, and move around their equilibrium positions.

Three consequences:
 (i). Energy can be stored as vibrational energy, and this is reflected in the behaviour of the heat

capacity.

 (ii). Motion contributes to the entropy of the solid, hence free energy, and affects the selection
of structure.

 (iii). Vibrations can be transferred through the structure.�  sound (acoustic) waves.
The treatment of vibrations is known as “lattice dynamics”.  Relies upon the properties of
the simple harmonic oscillator (SHO).

5.1 Review of the SHO

Traditional example:

Mass m moving on a frictionless surface,
attached to a rigid wall through a massless
elastic rod.

Ey – Young’s modulus for the rod material.
A – cross sectional area of rod.
l   – length of rod.

5.1.1 Mechanics

Displace mass by u.

Restoring force: AF σ= σ = stress = Eyε

ε  is the strain 
l

u=

So, ( )
l

Au
EuF y−=

 Ku−= Where K is the spring constant.  
l

AE
K

y=

Stored potential energy at displacement u:

( ) 2
2
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0
KuuduFV

u�
=′′−= (5.1)
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Kinetic energy 2
2
1 umT �=

Hamiltonian 2
2
12

2
1 KuumVTH +=+= � (5.2)

Newton’s 2nd Law:
du

dV

dt

dp −= where ump �=

� uu 2ω−=�� with angular frequency 
2
1�����	

=
m

Kω

Solution ( )Φ+= tuu ωcosmax umax = amplitude

      ( ) =Φ+tω phase

Total energy 2
max2

1 Ku= (5.3)

5.1.2 Thermodynamics

Expose system to a heat bath at temperature T.  Equivalent to solving an SHO with a random
external driving force. Construct a partition function.

Classically:

( )

( )

ω

ππ


 Tk

Tmk
K

Tk

h

Tmk

p
dp

Tk

Ku
du

h

TkHdpdu
h

Z

B

B
B

BB

B

=

��
���
=

���
���� −���
���� −=

−= � �
�

∞

∞−

∞

∞−

2
1

2
1

2
21

2
exp

2
exp

1

exp
1

22

Mean energy ( )TkHHdpdu
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   where TkB/1=β
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∂ βωβ
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/1)ln( �       (5.4)

This is just ½ TkB  per degree of freedom: (K.E. and P.E.)

So heat capacity is Bk
dT

Ed
C =

��
=

 And root mean square displacement is

( ) 222 //exp
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↑ 2, uT .
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5.1.3 Quantised SHO

Now we have
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which is the mean number of quanta in the oscillator (Bose-Einstein statistics).

- So we increase number of quanta as T ↑.

Heat capacity
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5.1.4 Helmholtz Free Energy

F = E – TS             (Gibbs free energy with p = 0)

We have ZTkF B ln−=

So for the SHO: ''()**+, ''()**+,=
Tk

TkF
B

B 2
sinh2ln

ω
-

     (5.7)

The decline in F is a reflection of the increase in
entropy with T.
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for large T

As T ↑, S ↑ and 2u  ↑.

i.e. more displacement from the mean position, more disorder.
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for quantised cases (See eq. 5.5)

5.2 Lattice Dynamics in the Harmon i c Approximation

We aim to relate the vibrations of atoms in a crystalline structure to the properties of an SHO.
This will allow us to determine the entropy of the structure. Also will provide phonon picture.

5.2.1 Single Atom in Motion

Consider a linear chain of N atoms of mass m, interacting through a pair potential )(rφ , r is the
separation.

The minimum P.E. is V0, at nearest neighbour separation a.

Separations from atom 0 : airi =

Displace atom labelled 0 from its equilibrium position by a distance u0 to the right :

change in P.E. is   444 5444 67444 5444 67
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If we neglect the terms of order 4
0u , we make the “harmonic approximation”. Equivalent to an

assumption that the displacement 0u  is small.

Reduces the Hamiltonian to that of an SHO (See eq. 5.2). This means we can use previous work:

           TkVE B+= 0 classically (See eq. 5.4)
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Label    -2        -1          0           1          2
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5.2.2 All Atoms in Motion

Again consider linear chain, but now displace all atoms labelled i by ui.

Use compact notation:

( ) ( )( )H
−−+=∆

ij
ijjiij ruurV φφ2

1

where jiij rrr −= : separation between atoms i and j.

Sum is over all i and j, ½ to avoid double counting.

Pair potential has properties:
( ) ( )rr φφ =−� ( ) ( )rr φφ ′−=−′

and ( ) ( )rr φφ ′′=−′′
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d
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[Check these properties with the L-J potential]

Now Taylor expand:
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we have ( )I
=′

j
iji ru 0φ   by symmetry (cancelation of equal and opposite pairs of terms)

e.g. ( ) ( ) 0=−′+′ aa φφ

so, ( )I
−=∆

ij
jiij uukV 2

4
1 with ( )ijij rk φ ′′=  ; these are the

spring constants, aka coupling constants.

Alternatively ( )I
>

−=∆
ji

jiij uukV 2

2
1   where the sum is over all pairs.

Compare this with eq. (5.1).  Each pair of atoms is effectively joined together by a spring with
spring constant kij.
It is better to write V∆  as a quadratic form in the displacements:I

=∆
ij

jiji uDuV 2
1

Hamiltonian is now:
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An example: N = 2 chain with fixed ends.

Approximation: neglect non-nearest neighbour interactions.  Label atoms 1 and 2 with
displacements u1 and u2.
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K is the nearest neighbour spring constant.
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Transform H to a harmonic oscillator form by diagonalising the D matrix.

Define uv Λ= where u and v are N component vectors (elements ui and vi), and Λ is an
NN ×  orthogonal matrix.  v are linear combinations of the atomic displacements.

( ) Λ=Λ− T1 definition of an orthogonal matrix.

We have    vuvu PP 11    and    −− Λ=Λ=
And Z =

i

T
i uuu [[[ 2

But ( ) ( ) Λ=Λ=Λ= −− TTTTT vvvu [[[[ 11

So vvvvuu TTT [[[[[[ =ΛΛ= −1

More importantly:
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\
where 1−ΛΛ= DM

Choose Λ such that M is diagonal with diagonal elements λi.  These are the eigenvalues of M
and D, since Λ is an orthogonal matrix. Λ is the matrix of eigenvectors of D.

(D is deliberately made symmetric)
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Then:
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So, after much effort, we have transformed H to look like the Hamiltonian of N simple harmonic

oscillators.  The position and velocity coordinates iv  and iv[  are called normal coordinates, which

are linear combinations of the atomic coordinates.  The oscillatory modes of motion described by
these coordinates are called normal modes. They are the natural modes of oscillation of the
structure. Each can be excited independently.

The N oscillators have angular frequencies 
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Alternatively, solve equations of motion: 
i

i

u

H

dt

dp

∂
∂−=  (Newton’s second law)

i.e. j
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and by inserting a trial oscillatory displacement pattern tAu ii ωcos=  we then need to solve\
−=−

j
jiji ADmA2ω

which is the same problem of finding the eigenvalues 2ωm and eigenvectors iA of the matrix D.

Either way, we can derive the frequency
spectrum, which in this example takes the
form of two delta functions. (Delta functions
are infinitely high, infinitely narrow peaks
located at the point where the argument is

zero. Main property is  ( )
d ∞

∞−
=− 10 dxxxδ  )

ω

Density of
states of
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For N atoms in the 1-d chain, there are N  delta functions.  For large N , it is useful to introduce a

density of states G(ω), such that G(ω) dω   is the number of frequencies (i.e. delta functions)
lying in the range ωωω d+→ .

So, for N = 2 ( ) ( ) ( )21 ωωδωωδω −+−=G

More generally

Can be extended to 3-d.  In the harmonic approximation, H is equivalent to 3N  simple harmonic
oscillators. There is a density of states G(ω) in 3-d too.

What are these normal mode frequencies useful for? Calculating thermodynamic properties,
since we know the properties of single oscillators.
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How do we calculate the frequency spectrum, or density of states?

5.3 Models of normal mode frequen c ies

5.3.1 The Einstein Model

Einstein analysed the dynamics of an atom assuming all other atoms were stationary (mean field
approximation).

H is combination of Hamiltonians from equation (5.8).
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i.e. single atom in motion case extended to 3-d.�  All 3N oscillators have frequency 
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K E
Eω .  Einstein frequency.

Density of states: ( ) ( )ENG ωωδω −= 3 .  3N modes for N atoms in 3-d.

ω

G(ω) Shape depends on structure
and couplings kij

In detail  G(ω) is still a set of delta
functions. The curve shown measures
the density of these along the axis.


