Week	Exam	Торіс	Homework
1	1^{st}	Complex Numbers	
2	1^{st}	Coordinates and Integration	HW1
3	1^{st}	cont ^d , Vectors	HW2
4	1^{st}	cont ^d , Vector Fields	HW3
5	1^{st}	Line and Surface Integrals,	HW4
		Div, Grad and Curl in Physics	
6	2^{nd}	Matrices	HW5
7		Reading Week (no classes)	
8	2^{nd}	FIRST EXAM. Matrices,	HW6
		Determinants	
9	2^{nd}	cont ^d , Eigenvectors	HW7
10	2^{nd}	cont ^d , Fourier Analysis,	HW8
		Differential Equations	
11	2^{nd}	$\dots \operatorname{cont}^d, \dots$	HW9
12	2^{nd}	cont ^d . SECOND EXAM.	

MT2 Course Outline

1. Revision of Complex Numbers

1.1 Definitions and Rules

• $\underline{c = a + ib}$ 'complex' = 'real' + i×'real' $i = +\sqrt{-1}$

$a = \operatorname{Re}(c)$	real part of <i>c</i>
$b = \operatorname{Im}(c)$	imaginary part of c

- <u>Addition:</u> Then $c_1 + c_2 = a_1 + ib_1$ and $c_2 = a_2 + ib_2$ $= (a_1 + ib_1 + a_2 + ib_2 = a_1 + a_2 + ib_1 + ib_2)$
- <u>Subtraction:</u> Let $c_1 = a_1 + ib_1$ and $c_2 = a_2 + ib_2$ Then $c_1 - c_2 = a_1 + ib_1 - a_2 - ib_2 = a_1 - a_2 + ib_1 - ib_2$ $= (a_1 - a_2) - i(b_1 + b_2)$
- <u>Multiplication:</u> Let $c_1 = a_1 + ib_1$ and $c_2 = a_2 + ib_2$ Then $c_1 c_2 = a_1a_2 + a_1ib_2 + ib_1a_2 + ib_1ib_2 = a_1a_2 + a_1ib_2 + ib_1a_2 + i^2b_1b_2$ $= (a_1a_2 - b_1b_2) + i(a_1b_2 + b_1a_2)$
- <u>Complex Conjugate:</u> Let c = a + ibIts 'complex conjugate' is $c^* = a - ib$ Notice that $cc^* = (a + ib) (a - ib) = a^2 + b^2$

which is real

• <u>Modulus:</u> Let c = a + ibIts 'modulus' is $|c| = \sqrt{cc^*} = \sqrt{a^2 + b^2}$ Notice that $|c| \ge 0$ and that |c| = 0 if and only if $c^* = 0$, i.e. a = 0 and b = 0.

• Division:
Let
$$c_1 = a + ib$$
 and $c_2 = x + iy$
Then $\frac{c_1}{c_2} = \frac{a + ib}{x + iy} = \frac{(a + ib)(x - iy)}{(x + iy)(x - iy)} = \frac{(ax - by) + i(bx - ay)}{x^2 + y^2}$
 $= \frac{ax - by}{x^2 + y^2} + i\frac{bx - ay}{x^2 + y^2}$
 $= real + i \times real = complex number$

• Solutions of Equations: E.g.
$$ax^2 + bx + c = 0$$

Solutions are $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
If b^2 -4ac ρ 0 then solutions are real
If b^2 -4ac < 0 then solutions are complex, and

$$x = -\frac{b}{2a} \pm i \frac{\sqrt{4ac - b^2}}{2a}$$

real + i × real

1.2 The Argand Diagram

Complex Numbers, like Vectors, are "Ordered Pairs of Numbers", and so add the same way

Note:
$c_1 - c_2 = c_1 + (-c_2)$ Subtract by adding $-c_2$ to c_1

1.3 Polar Form of Complex Numbers

Now, a well-known series is:

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \dots$$

So,

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} + \dots + \frac{(i\theta)^n}{n!} + \dots$$

Collecting alternate terms,

$$e^{i\theta} = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} \dots + \frac{(-1)^{2n} \theta^{2n}}{(2n)!} + \dots + i \left(\theta - \frac{\theta^3}{3!} + \dots + \frac{(-1)^{2n+1} \theta^{2n+1}}{(2n+1)!} + \dots \right)$$

Which can be identified as the series expansion of

$$\underline{e^{i\theta} = \cos\theta + i\,\sin\theta}$$

So we have

$$c = a + ib = r (\cos\theta + i \sin\theta) = \frac{r e^{i\theta}}{\text{Polar Form}}$$

This is useful for

- Multiplication and Division $c_1c_2 = r_1e^{i\theta_1}r_2e^{i\theta_2} = r_1r_2e^{i(\theta_1+\theta_2)}$ $\frac{c_1}{c_2} = \frac{r_1e^{i\theta_1}}{r_2e^{i\theta_2}} = \frac{r_1}{r_2}e^{i(\theta_1-\theta_2)}$
- de Moivre's Theorem

 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

Proof: $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n$ = $e^{i(n\theta)}$ = $\cos n\theta + i \sin n\theta$

• One of the most beautiful relationships in mathematics: Put $\theta = \pi$ (180°) in de Moivre's theorem. Then

$$e^{i\pi}+1=0$$

1.4 Complex Roots

First notice that: $e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$

So $e^{2\pi ni} = 1$ also (with *n* integer)

And $e^{i(2\pi n+\theta)} = e^{i\theta}$

Taking roots: For $c = re^{i\theta} = e^{i(2\pi k + \theta)}$

 $\sqrt[n]{c} = c^{\frac{1}{n}} = r^{\frac{1}{n}} e^{\frac{i(\theta + 2\pi k)}{n}}$ with $k = 0, 1, 2 \dots n-1$

are the *n* different n^{th} roots of *c*. (For $k \ge n$ they repeat.)

1.5 Complex Variables

Complex numbers used as *variables* in *functions*. We often use z' as a complex variable, and c' as a complex constant.

So $z = x + iy = re^{i\theta}$ with x = Re(z), y = Im(z), is a point anywhere on the Argand diagram, a point on the '*Complex Plane*'

Examples:

1.
$$|z|$$
 is a *function* of z. We may have

$$f(z) = |z| = R$$

which we can solve to get an equation for *x* and *y* (the equation of a circle of radius *R*.)

2. $\operatorname{Arg}(z)$ is a function of z. We may have $g(z) = \operatorname{Arg}(z) = \theta_0$ which we can solve to get an equation for x and y (the equation of a straight line of gradient θ_0 .)

3.
$$\left|\frac{z-c}{z+c}\right|^2 = 1$$
 Solve for x and y, getting
 $ax + by = 0$ (a straight line) – Exercise: prove it

4.
$$\alpha (z^2 + z^{*2}) + 2\beta z z^* = 1$$

with
$$\alpha = \frac{1}{4} (a^{-2} - b^{-2})$$
 and $\beta = \frac{1}{4} (a^{-2} + b^{-2})$

Simplifies to $x^2 a^{-2} + y^2 b^{-2} = 1$ – Ellipse

1.5.2 Integrating Complex Functions

Complex functions integrate just like real functions. Examples:

1. $\int_{0}^{2\pi} e^{ikx} dx = \int_{0}^{2\pi} (\cos kx + i \sin kx) dx = \left[\frac{\sin kx}{k} - i \frac{\cos kx}{k} \right]_{0}^{2\pi} = 0$ *k* integer, $k \neq 0$.

If
$$k = 0$$
 then $\int_0^{2\pi} e^{ikx} dx = \int_0^{2\pi} 1 dx = [x]_0^{2\pi} = 2\pi$

These results are used later, for Fourier Series. They may be stated as

$$\int_{0}^{2\pi} e^{ikx} dx = \begin{cases} 0 \text{ if } k \neq 0\\ 2\pi \text{ if } k = 0 \end{cases} = 2\pi \delta_{0k}$$

The Kronecker delta is defined by $\delta_{ij} = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \\ i, j \text{ integers} \end{cases}$

 $2. \qquad \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2 + ikx} dx$

Rearrange:

$$= \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-ik)^2 - \frac{1}{2}k^2} dx$$

Substitute *u* for *x* - *ik*

$$= e^{-\frac{1}{2}k^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2}u^2} du$$

$$= \sqrt{2\pi} e^{\frac{1}{2}k^2}$$

(which is needed in quantum mechanics.)

Exercise: Can you show that $\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = \sqrt{2\pi}$