4. Vectors

4.0 Vectors are ordered multiplets of numbers. In three dimensions these are ordered triplets, $\vec{u} = (u_x, u_y, u_z)$.

The three numbers are the components of the vector, in a rectilinear coordinate system:

4.1 Definitions

•

Addition $\mathbf{u} = (u_x, u_y, u_z)$ $\mathbf{v} = (v_x, v_y, v_z)$ $\mathbf{w} = \mathbf{u} + \mathbf{v} = (u_x + v_x, u_y + v_y, u_z + v_z)$

• Multiplication by a number λ

$$\mathbf{u} = (u_x, u_y, u_z)$$
$$\mathbf{w} = \lambda \mathbf{u} = (\lambda u_x, \lambda u_y, \lambda u_z)$$

Some Consequences:

$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	Commutivity
$\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$	Distributivity
$(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$	Associativity
$\exists \mathbf{O} = (0, 0, 0)$	Null Vector
$\exists \hat{\mathbf{i}} = (1, 0, 0)$	Unit
$\exists \hat{\mathbf{j}} = (0, 1, 0)$	Vectors along
$\exists \hat{\mathbf{k}} = (0, 0, 1)$	Co-ordinates
$\left \mathbf{a}\right = \sqrt{a_x^2 + a_y^2 + a_z^2}$	Modulus, or Length

• Multiplication by a vector

1. Vector 'times' vector \rightarrow number **u.v** \rightarrow scalar

2. Vector 'times' vector \rightarrow vector $\mathbf{u} \times \mathbf{v} \rightarrow$ vector

• The Dot Product

$$\mathbf{u}.\mathbf{v} = (u_x, u_y, u_z). (v_x, v_y, v_z)$$

$$= \sum_{i=1}^{3} u_i v_i = (u_x v_x + u_y v_y + u_z v_z)$$

Some Consequences:

Commutivity **a.b** = **b.a** $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ **Square of length** $\mathbf{a.}(\mathbf{b} + \mathbf{c}) = \mathbf{a.b} + \mathbf{a.c}$ **Distributivity** $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \times |\mathbf{b}| \times \cos \theta$ θ is angle between a and b $\hat{\mathbf{i}}.\mathbf{a} = (\mathbf{1}, \mathbf{0}, \mathbf{0}).(a_x, a_y, a_z) = \mathbf{a}_x$ i. projects out a_x $\hat{\mathbf{j}}.\mathbf{a} = (\mathbf{0}, \mathbf{1}, \mathbf{0}).(a_x, a_y, a_z) = \mathbf{a}_y$ j. projects out a_y $\hat{\mathbf{k}}.\mathbf{a} = (\mathbf{0}, \mathbf{0}, \mathbf{1}).(a_x, a_y, a_z) = \mathbf{a}_z$ **k.** projects out a_z $\mathbf{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$ i, j and k span the space $\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$ Unit vector along a

The Cross Product $\mathbf{u} \times \mathbf{v} = (u_x, u_y, u_z) \times (v_x, v_y, v_z)$ $\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = (u_y v_z - u_z v_y, u_z v_x - u_x v_z, u_x v_y - u_y v_x)$ which is a vector, - normal to plane of \mathbf{u} and \mathbf{v} - of length $|\mathbf{u}| \times |\mathbf{v}| \times \sin \theta$

Some Consequences:

 $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$ $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \, \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \, \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$ $\mathbf{a}.(\mathbf{a} \times \mathbf{b}) = 0 = \mathbf{b}.(\mathbf{a} \times \mathbf{b})$

Non-Commutivity Distributivity Non-Associativity

The direction (\pm) of $\mathbf{a} \times \mathbf{b}$ is conventional:

We use the *right-hand rule* according to which a spiral, screw-thread, corkscrew, etc, *turning from* **a** *to* **b**, *advances along* +ve **c**

4.2 Interpretation of Dot and Cross Products

•	Dot Product	How alike are two vectors? How much of one is in the other?
•	Cross Product	Area of the parallelogram which is spanned by two vectors represented as a vector by its normal
•	Physical Examples	Flux of a field E through a surface S is E.S Torque is $T = r \times F$ Angular momentum is $L = r \times p$

4.3 Triple Products

• **a.(b** × **c)** is a number (a scalar) It is the volume of the parallelepiped (warped cube) spanned by **a**, **b** and **c**

> *Proof:* $\mathbf{a.}(\mathbf{b} \times \mathbf{c}) = |\mathbf{a}| |\mathbf{b} \times \mathbf{c}| \cos \theta$ = $|\mathbf{a}| \cos \theta (|\mathbf{b}| |\mathbf{c}| \sin \phi$ *Height Area of base*

• *Coplanarity:* By inspection, if **a**, **b** and **c** are all non-zero, then $V = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{0}$ if and only if **a**, **b** and **c** are coplanar.

Formal Proofs:

(1) If **a**, **b**, **c** are coplanar, Then $\mathbf{a} = \beta \mathbf{b} + \gamma \mathbf{c}$ for some β , γ So $\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = (\beta \mathbf{b} + \gamma \mathbf{c}).(\mathbf{b} \times \mathbf{c})$ $= \beta \mathbf{b}.(\mathbf{b} \times \mathbf{c}) + \gamma \mathbf{c}.(\mathbf{b} \times \mathbf{c})$ = 0 by an earlier result. Thus coplanarity $\Rightarrow \mathbf{a}.(\mathbf{b} \times \mathbf{c}) = 0$

(2) Let $\mathbf{a.}(\mathbf{b} \times \mathbf{c}) = 0$ and assume linear independence $(\mathbf{a} \neq \beta \mathbf{b} + \gamma \mathbf{c})$ i.e. $\mathbf{a} = \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d}$ for some δ and $\mathbf{d} \perp \mathbf{b}$, $\mathbf{d} \perp \mathbf{c}$ Then $0 = \mathbf{a.}(\mathbf{b} \times \mathbf{c}) = (\beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d}).(\mathbf{b} \times \mathbf{c})$ $= \delta \mathbf{d.}(\mathbf{b} \times \mathbf{c}) \neq 0$ (because $(\mathbf{b} \times \mathbf{c})7\mathbf{d}$) The assumption has generated a contradiction, therefore must be false.

4.4 Two Identities

• Lagrange's Identity

 $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a.c}) (\mathbf{b.d}) - (\mathbf{b.c}) (\mathbf{a.d})$

Use Maple to prove this.

• Another Identity

 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a.c})\mathbf{b} - (\mathbf{b.c})\mathbf{a}$

Use Maple to prove this.

x', y' are coordinate axes rotated by angle α w.r.t. x, y

 $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{i}' \cdot \mathbf{i}' = \mathbf{j}' \cdot \mathbf{j}' = 1$ $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = \mathbf{i}' \cdot \mathbf{j}' = \mathbf{j}' \cdot \mathbf{i}' = 0$ $\mathbf{i} \cdot \mathbf{i}' = \mathbf{j} \cdot \mathbf{j}' = \cos \alpha$ $\mathbf{i} \cdot \mathbf{j}' = \cos \left(\alpha + \frac{\pi}{2}\right) = -\sin \alpha$ $\mathbf{i}' \cdot \mathbf{j} = \cos \left(-\alpha + \frac{\pi}{2}\right) = \sin \alpha$ $\mathbf{r} = r_x \mathbf{i} + r_y \mathbf{j} = r'_x \mathbf{i}' + r'_y \mathbf{j}'$

So,

$$r_x = \mathbf{r}.\mathbf{i} = (r'_x\mathbf{i}' + r'_y\mathbf{j}').\mathbf{i}$$
$$= r'_x\cos\alpha - r'_y\sin\alpha$$

Similarly,

 $r_y = r'_x \sin \alpha + r'_y \cos \alpha$

Thus the coordinate transformation is

 $x = x' \cos \alpha - y' \sin \alpha$ $y = x' \sin \alpha + y' \cos \alpha$

and equivalently

 $x' = x \cos \alpha + y \sin \alpha$ $y' = x \sin \alpha - y \cos \alpha$

• The formal definition of a vector in two dimensions is:

An ordered pair of numbers (x, y) that transform as above.

• **The formal definition** of a scalar is:

A quantity (a number) *x* that is invariant under rotation.