4. Vectors

4.0 Vectors are ordered multiplets of numbers. In three dimensions these are ordered triplets, $\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)$.

The three numbers are the components of the vector, in a rectilinear coordinate system:

4.1 Definitions

- Addition

$$
\begin{gathered}
\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right) \\
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right) \\
\mathbf{w}=\mathbf{u}+\mathbf{v}=\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right)
\end{gathered}
$$

- Multiplication by a number λ

$$
\begin{aligned}
\mathbf{u} & =\left(u_{x}, u_{y}, u_{z}\right) \\
\mathbf{w}=\lambda \mathbf{u} & =\left(\lambda u_{x}, \lambda u_{y}, \lambda u_{z}\right)
\end{aligned}
$$

Some Consequences:

$$
\begin{array}{rlrl}
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} & \text { Commutivity } \\
\lambda(\mathbf{a}+\mathbf{b})=\lambda \mathbf{a}+\lambda \mathbf{b} & & \text { Distributivity } \\
(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) & \text { Associativity } \\
\exists \mathbf{O}=(0,0,0) & \text { Null Vector } \\
\exists \hat{\mathbf{i}}=(1,0,0) & \text { Unit ... } \\
\exists \hat{\mathbf{j}}=(0,1,0) & \ldots \text { Vectors along ... } \\
\exists \hat{\mathbf{k}}=(0,0,1) & \ldots \text { Co-ordinates } \\
|\mathbf{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} & \text { Modulus, or Length }
\end{array}
$$

- Multiplication by a vector

1. Vector 'times' vector \rightarrow number

$$
\text { u.v } \rightarrow \text { scalar }
$$

2. Vector 'times' vector \rightarrow vector
$\mathbf{u} \times \mathbf{v} \rightarrow$ vector

- The Dot Product

$$
\begin{aligned}
\mathbf{u} . \mathbf{v} & =\left(u_{x}, u_{y}, u_{z}\right) \cdot\left(v_{x}, v_{y}, v_{z}\right) \\
& =\sum_{i=1}^{3} u_{i} v_{i}=\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right)
\end{aligned}
$$

Some Consequences:

$$
\begin{array}{cl}
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} . \mathbf{a} & \text { Commutivity } \\
\mathbf{a . a}=|\mathbf{a}|^{2} & \text { Square of length } \\
\mathbf{a . (\mathbf { b } + \mathbf { c }) = \mathbf { a } . \mathbf { b } + \mathbf { a . c }} & \text { Distributivity } \\
\mathbf{a . b}=|\mathbf{a}| \times|\mathbf{b}| \times \cos \theta & \theta \text { is angle between a and } \mathbf{b} \\
\hat{\mathbf{i} . \mathbf{a}}=(\mathbf{1}, \mathbf{0}, \mathbf{0}) \cdot\left(a_{x}, a_{y}, a_{z}\right)=a_{x} & \text { i. projects out } \boldsymbol{a}_{x} \\
\hat{\mathbf{j}} . \mathbf{a}=(\mathbf{0}, \mathbf{1}, \mathbf{0}) \cdot\left(a_{x}, a_{y}, a_{z}\right)=a_{y} & \text { j. projects out } \boldsymbol{a}_{y} \\
\hat{\mathbf{k} . \mathbf{a}=(\mathbf{0}, \mathbf{0}, \mathbf{1}) \cdot\left(a_{x}, a_{y}, a_{z}\right)=a_{z}} & \text { k. projects out } a_{z} \\
\mathbf{a}=a_{x} \hat{\mathbf{i}}+a_{y} \hat{\mathbf{j}}+a_{z} \hat{\mathbf{k}} & \text { i, j} \text { and } \mathbf{k} \text { span the space } \\
\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|} & \text { Unit vector along a }
\end{array}
$$

- The Cross Product

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(u_{x}, u_{y}, u_{z}\right) \times\left(v_{x}, v_{y}, v_{z}\right) \\
& =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right) \\
& \text { which is a vector, } \quad-\text { normal to plane of } \mathbf{u} \text { and } \mathbf{v} \\
& - \text { of length }|\mathbf{u}| \times|\mathbf{v}| \times \sin \theta
\end{aligned}
$$

Some Consequences:

$$
\begin{gathered}
\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} \\
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \\
\hat{\mathbf{i}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} \times \hat{\mathbf{k}}=0 \\
\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}, \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}}, \hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} \\
\mathbf{a} .(\mathbf{a} \times \mathbf{b})=0=\mathbf{b} .(\mathbf{a} \times \mathbf{b})
\end{gathered}
$$

Non-Commutivity
Distributivity
Non-Associativity

- Pseudovectors The direction (\pm) of $\mathbf{a} \times \mathbf{b}$ is conventional:

We use the right-hand rule according to which a spiral, screw-thread, corkscrew, etc, turning from \mathbf{a} to \mathbf{b}, advances along +ve \mathbf{c}

4.2 Interpretation of Dot and Cross Products

- Dot Product How alike are two vectors? How much of one is in the other?
- Cross Product
- Physical Examples

Area of the parallelogram which is spanned by two vectors represented as a vector by its normal

Flux of a field \mathbf{E} through a surface \mathbf{S} is $\mathbf{E} . \mathbf{S}$
Torque is $T=r \times F$
Angular momentum is $\mathbf{L}=\mathbf{r} \times \mathbf{p}$

4.3 Triple Products

- $\quad \mathbf{a} .(\mathbf{b} \times \mathbf{c})$ is a number (a scalar)

It is the volume of the parallelepiped (warped cube)
spanned by \mathbf{a}, \mathbf{b} and \mathbf{c}
Proof: $\mathbf{a} .(\mathbf{b} \times \mathbf{c})=|\mathbf{a}| \mathbf{b} \times \mathbf{c} \mid \cos \theta$
$=|\mathbf{a}| \cos \theta(|\mathbf{b}||\mathbf{c}| \sin \varphi$ Height Area of base

- Coplanarity: By inspection, if \mathbf{a}, \mathbf{b} and \mathbf{c} are all non-zero, then $V=\mathbf{a} .(\mathbf{b} \times \mathbf{c})=0$ if and only if \mathbf{a}, \mathbf{b} and \mathbf{c} are coplanar.

Formal Proofs:
(1) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar,

$$
\begin{aligned}
\text { Then } \mathbf{a} & =\beta \mathbf{b}+\gamma \mathbf{c} \text { for some } \beta, \gamma \\
\text { So } \mathbf{a} .(\mathbf{b} \times \mathbf{c}) & =(\beta \mathbf{b}+\gamma \mathbf{c}) .(\mathbf{b} \times \mathbf{c}) \\
& =\beta \mathbf{b} \cdot(\mathbf{b} \times \mathbf{c})+\gamma \mathbf{c} .(\mathbf{b} \times \mathbf{c}) \\
& =0 \text { by an earlier result. }
\end{aligned}
$$

Thus coplanarity $\Rightarrow \mathbf{a}$. $(\mathbf{b} \times \mathbf{c})=0$
(2) Let $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0$ and assume linear independence

$$
(\mathbf{a} \neq \beta \mathbf{b}+\gamma \mathbf{c})
$$

i.e. $\mathbf{a}=\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}$ for some δ and $\mathbf{d} \perp \mathbf{b}, \mathbf{d} \perp \mathbf{c}$

Then $0=\mathbf{a} .(\mathbf{b} \times \mathbf{c})=(\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}) .(\mathbf{b} \times \mathbf{c})$

$$
=\delta \mathbf{d} .(\mathbf{b} \times \mathbf{c}) \neq 0 \text { (because }(\mathbf{b} \times \mathbf{c}) 7 \mathbf{d})
$$

The assumption has generated a contradiction, therefore must be false.

4.4 Two Identities

- Lagrange’s Identity
$(\mathbf{a} \times \mathbf{b}) .(\mathbf{c} \times \mathbf{d})=(\mathbf{a} . \mathbf{c})(\mathbf{b} . \mathbf{d})-(\mathbf{b} . \mathbf{c})(\mathbf{a} . \mathbf{d})$
Use Maple to prove this.
- Another Identity

$$
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{a} . \mathbf{c}) \mathbf{b}-(\mathbf{b} . \mathbf{c}) \mathbf{a}
$$

Use Maple to prove this.

4.5 Rotations of Coordinates

x^{\prime}, y^{\prime} are coordinate axes rotated by angle α w.r.t. x, y

$$
\begin{aligned}
& \mathbf{i} . \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{i}^{\prime} \cdot \mathbf{i}^{\prime}=\mathbf{j}^{\prime} \cdot \mathbf{j}^{\prime}=1 \\
& \mathbf{i} \mathbf{j}=\mathbf{j} . \mathbf{i}=\mathbf{i}^{\prime} \cdot \mathbf{j}^{\prime}=\mathbf{j}^{\prime} \cdot \mathbf{i}^{\prime}=0 \\
& \mathbf{i} . \mathbf{i}^{\prime}=\mathbf{j} \cdot \mathbf{j}^{\prime}=\cos \alpha \\
& \mathbf{i} \cdot \mathbf{j}^{\prime}=\cos \left(\alpha+\frac{\pi}{2}\right)=-\sin \alpha \\
& \mathbf{i}^{\prime} \cdot \mathbf{j}=\cos \left(-\alpha+\frac{\pi}{2}\right)=\sin \alpha \\
& \mathbf{r}=r_{x} \mathbf{i}+r_{y} \mathbf{j}=r_{x}^{\prime} \mathbf{i}^{\prime}+r_{y}^{\prime} \mathbf{j}^{\prime}
\end{aligned}
$$

So,

$$
\begin{aligned}
r_{x}=\mathbf{r} . \mathbf{i} & =\left(r_{x}^{\prime} \mathbf{i}^{\prime}+r_{y}^{\prime} \mathbf{j}^{\prime}\right) . \mathbf{i} \\
& =r_{x}^{\prime} \cos \alpha-r_{y}^{\prime} \sin \alpha
\end{aligned}
$$

Similarly,

$$
r_{y}=r_{x}^{\prime} \sin \alpha+r_{y}^{\prime} \cos \alpha
$$

Thus the coordinate transformation is

$$
\begin{aligned}
& x=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha \\
& y=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha
\end{aligned}
$$

and equivalently

$$
\begin{aligned}
& x^{\prime}=x \cos \alpha+y \sin \alpha \\
& y^{\prime}=x \sin \alpha-y \cos \alpha
\end{aligned}
$$

- The formal definition of a vector in two dimensions is:

An ordered pair of numbers (x, y) that transform as above.

- The formal definition of a scalar is:

A quantity (a number) x that is invariant under rotation.

