Harmonic Oscillator

Classical HO
Particle mass m; restoring force constant K; equation
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Solution to this which has x =0 at ¢t =0 is
z = AsinwT (3)
with frequency of oscilation v = 2%; w is called the angular frequency.
Quantum HO
Potential corresponding to force —Kz is
L. 5
V(z) = §K x (4)
Schrodinger equation:
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Complimentary solution
First solve simpler equation
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(can think of this as equation as |y| — c0). Gives
L, L,
¥(y) = Aexp (—§y ) + Bexp (5.@ ) 9)

Boundary conditions for a localised problem give B = 0 so that ¢ — 0 as |y| — oc.
Assume full solution of form
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which gives
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so the equation to solve is
d*H dH
W (= DH =0 (12)

This equation has p(y) = —2y and ¢(y) = —(e — 1), so there are no singular points. So
can obtain two simple series solution about y = 0, these will have radius of convegence,
p = oo. Also note that the equation is even so expect separate even and odd solutions

oo
= Z any”;
n=0

——Znany -
n=0

PH -
e = Zon(n - Da,y™ ? (13)
SO -
> n(n—1)ay"" —QZnany —(e—1) Zany =0 (14)
n=0

tidying this up and changing the dummy Varlable on the ﬁrst sum by n — n 4 2 gives
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Z (n+1)(n+ 2)ay”™ + i(e —1-2n)a,y" =0 (15)

For this equation to be true for all values of y, the coefficient of each power of ¥y must be
separately equated to zero. This gives

209+ (e —1)ag =0 coef. of 3°;
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giving a recurrence relation
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The series must terminate otherwise H(y) and hence 1 (z) go as exp(y?), ie as the
solution already rejected. If highest power of y in a solution is y", then a,; and a0
must be zero. This means
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which gives

2n—e+1=0 (19)
or ¢ = 2n + 1 as the physically allowed levels of the HO, which are
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The polynomials H(y) are called Hermite Polynomials, generally written H,(y). By
convention they are written so that a, = 2". They have recurrence relation
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First few Hermite polynomials
HO(y) = 1a
Hl(y) = 2ya
Hy(y) = 4y* - 2, (22)
Normalisation constant: )
o 2
722! (23)



