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PART I: INTRODUCTION

Radiation and Matter



Section 1

Radiation

Almost all the astrophysical information we can derive about distant sources results from the

radiation that reaches us from them. Our starting point is, therefore, a review of the principal

ways of describing radiation. (In principle, this could include polarization properties, but we

neglect that for simplicity).

The fundamental de�nitions of interest are of (speci�c) intensity and (physical) �ux.

1.1 Speci�c Intensity, Iν

The speci�c intensity (or radiation intensity, or surface brightness) is de�ned as:

the rate of energy �owing at a given point,

per unit area,

per unit time,

per unit frequency interval,

per unit solid angle (in azimuth φ and direction θ to the normal; refer to the

geometry sketched in Fig. 1.1)

or, expressed algebraically,

Iν(θ, φ) =
dEν

dS dt dν dΩ

=
dEν

dA cos θ dt dν dΩ
[J m−2 s−1 Hz−1 sr−1]. (1.1)

We've given a `per unit frequency de�nition', but we can always switch to `per unit wavelength'

by noting that, for some frequency-dependent physical quantity ‘X', we can write

Xν dν = Xλ dλ

1



dA

dr

dl

dS

φ

θ

Figure 1.1: Geometry used to de�ne radiation quantities. The element of area dA might, for

example, be on the surface of a star.

or

Xλ = Xν

∣∣∣∣ dνdλ
∣∣∣∣

(which has the same dimensionality on each side of the equation). Mathematically,

dν/ dλ = −c/λ2, but physically this just re�ects the fact that increasing frequency means

decreasing wavelength (clearly, we require a positive physical quantity on either side of the

equation), so speci�c intensity per unit wavelength is related to Iν by

Iλ = Iν

∣∣∣∣dνdλ
∣∣∣∣ = Iν

c

λ2
[J m−2 s−1 m−1 sr−1]

where the θ, φ dependences are implicit (as will generally be the case; the sharp-eyed will note

also that we appear to have `lost' a minus sign in evaluating dν/dλ, but this just is because

frequency increases as wavelength decreases). Equation (1.1) de�nes the monochromatic

speci�c intensity (`monochromatic' will usually also be implicit); we can de�ne a total intensity

by integrating over frequency:

I =

∞∫
0

Iν dν [J m−2 s−1 sr−1].

1.1.1 Mean Intensity, Jν

The mean intensity is, as the name suggests, the average of Iν over solid angle; it is of use when

evaluating the rates of physical processes that are photon dominated but independent of the

2



angular distribution of the radiation (e.g., photoionization and photoexcitation rates).

Jν =

∫
Ω Iν dΩ∫

dΩ
=

1
4π

∫
Ω

Iν dΩ

=
1
4π

2π∫
0

π∫
0

Iν sin θ dθ dφ [J m−2 s−1 Hz−1 sr−1] (1.2)

since ∫
Ω

dΩ =

2π∫
0

π∫
0

sin θ dθ dφ. (1.3)

Introducing the standard astronomical nomenclature µ = cos θ (whence dµ = − sin θ dθ), we

have ∫
dΩ =

− 2π∫
0

−1∫
+1

dµ dφ =

 2π∫
0

+1∫
−1

dµ dφ (1.4)

and eqtn. (1.2) becomes

Jν =
1
4π

2π∫
0

+1∫
−1

Iν(µ, φ) dµ dφ (1.5)

(where for clarity we show the µ, φ dependences of Iν explicitly).

If the radiation �eld is independent of φ but not θ (as in the case of a stellar atmosphere

without starspots, for example) then this simpli�es to

Jν =
1
2

+1∫
−1

Iν(µ) dµ. (1.6)

From this it is evident that if Iν is completely isotropic (i.e., no θ[≡ µ] dependence, as well as
no φ dependence), then Jν = Iν . (This should be intuitively obvious � if the intensity is the

same in all directions, then the mean intensity must equal the intensity [in any direction].)

1.2 Physical Flux, Fν

The physical �ux (or radiation �ux density, or radiation �ux, or just `�ux') is the net rate of

energy �owing across unit area (e.g., at a detector), from all directions, per unit time, per unit

frequency interval:

Fν =

∫
Ω dEν

dA dt dν
[J m−2 s−1 Hz−1]

3



It is the absence of directionality that crucially distinguishes �ux from intensity, but the two

are clearly related. Using eqtn. (1.1) we see that

Fν =
∫

Ω
Iν cos θ dΩ (1.7)

=

2π∫
0

π∫
0

Iν cos θ sin θ dθ dφ [J m−2 Hz−1] (1.8)

=

2π∫
0

+1∫
−1

Iν(µ, φ)µ dµ dφ

or, if there is no φ dependence,

Fν = 2π

+1∫
−1

Iν(µ)µ dµ. (1.9)

Because we're simply measuring the energy �owing across an area, there's no explicit

directionality involved � other than if the energy impinges on the area from `above' or `below'.1

It's therefore often convenient to divide the contributions to the �ux into the `upward'

(emitted, or `outward') radiation (F+
ν ; 0 ≤ θ ≤ π/2, Fig 1.1) and the `downward' (incident, or

`inward') radiation (F−
ν ;π/2 ≤ θ ≤ π), with the net upward �ux being Fν = F+

ν − F−
ν :

Fν =

2π∫
0

π/2∫
0

Iν cos θ sin θ dθ dφ +

2π∫
0

π∫
π/2

Iν cos θ sin θ dθ dφ

≡ F+
ν − F−

ν

As an important example, the surface �ux emitted by a star is just F+
ν (assuming there is no

incident external radiation �eld);

Fν = F+
ν =

2π∫
0

π/2∫
0

Iν cos θ sin θ dθ dφ

or, if there is no φ dependence,

= 2π

π/2∫
0

Iν cos θ sin θ dθ.

= 2π

+1∫
0

Iν(µ)µ dµ. (1.10)

1In principle, �ux is a vector quantity, but the directionality is almost always implicit in astrophysical situations;

e.g., from the centre of a star outwards, or from a source to an observer.
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If, furthermore, Iν has no θ dependence over the range 0�π/2 then

Fν = πIν (1.11)

(since
∫ π/2
0 cos θ sin θ dθ = 1/2). If Iν is completely isotropic, then F+

ν = F−
ν , and Fν = 0.

1.3 Flux vs. Intensity

A crucial di�erence between Iν and Fν should be noted: the speci�c intensity is independent of

distance from the source (but requires the source to be resolved), while the physical �ux falls o�

as r−2.

This can be understood by noting that speci�c intensity is de�ned in terms of `the rate of

energy �ow per unit area of surface. . . per unit solid angle'. The energy �ow per unit area falls

o� as r−2, but the area per unit solid angle increases as r2, and so the two cancel.

δA

δa

δ ω
δ Ω

DetectorSource

D

Expressing this formally: suppose some area δA on a source at distance D subtends a solid angle

δΩ at a detector; while the detector, area δa, subtends a solid angle δω at the source. The energy

emitted towards (and received by) the detector is

E = Iν δA δω; but

δA = D2δΩ and δω = δa/D2, so

E

δΩ
= IνD

2 δa

D2
;

that is, the energy received per unit solid angle (i.e., the intensity) is distance independent.

Equivalently, we can say that the surface brightness of source is distance independent (in the

absence of additional processes, such as interstellar extinction).

A source must be spatially resolved for us to be able to measure the intensity; otherwise, we can

measure `only' the �ux � if the source is unresolved, we can't identify di�erent directions towards

it. Any spatially extended source will, at some large enough distance D, produce an image source

at the focal plane of a telescope that will be smaller than the detector (pixel) size. For such an

unresolved source, the detected energy is

E = Iν δa δΩ

= Iν δa
δA

D2

and we recover the expected inverse-square law for the detected �ux.
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1.3.1 Flux from a star

To elaborate this, consider the �ux from a star at distance D.

The observer sees the projected area of the annulus as

dA = 2πr dr

and since

r = R sin θ (dr = R cos θ dθ)

we have

dA = 2πR sin θ R cos θ dθ

= 2πR2 sin θ cos θ dθ

= 2πR2µ dµ

where as usual µ = cos θ. The annulus therefore subtends a solid angle

dΩ =
dA

D2
= 2π

„
R

D

«2

µ dµ.

The �ux received from this solid angle is

dfν = Iν(µ)dΩ

so that the total observed �ux is

fν = 2π

„
R

D

«2
1Z

0

Iνµ dµ

or, using eqtn. (1.10),

=

„
R

D

«2

Fν

= θ2∗Fν [J m−2 s−1 Hz−1]

where θ∗ is the solid angle subtended by the star (measured in radians).
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1.4 Flux Moments

Flux moments are a traditional `radiation' topic, of use in studying the transport of radiation

in stellar atmospheres. The nth moment of the radiation �eld is de�ned as

Mν ≡
1
2

+1∫
−1

Iν(µ)µn dµ. (1.12)

We can see that we've already encountered the zeroth-order moment, which is the mean

intensity:

Jν =
1
2

+1∫
−1

Iν(µ) dµ. (1.6)

We have previously written the �ux as

Fν = 2π

+1∫
−1

Iν(µ)µ dµ; (1.9)

to cast this in the same form as eqtns. (1.12) and (1.6), we de�ne the `Eddington �ux' as

Hν = Fν/(4π), i.e.,

Hν =
1
2

∫ +1

−1
Iν(µ)µ dµ. (1.13)

We see that Hν is the �rst-order moment of the radiation �eld.

The second-order moment, the so-called ‘K integral', is, from the de�nition of moments,

Kν =
1
2

+1∫
−1

Iν(µ)µ2 dµ (1.14)

In the special case that Iν is isotropic we can take it out of the integration over µ, and

Kν =
1
2

µ3

3
Iν

∣∣∣∣+1

−1

=
1
3
Iν

[
also =

1
3
Jν for isotropy

]
(1.15)

We will see in Section 1.8 that the K integral is straightforwardly related to radiation pressure.

Higher-order moments are rarely used. So, to recap (and using the notation �rst introduced by

Eddington himself), for n = 0, 1, 2:
n = 0 Mean Intensity Jν = 1

2

∫ +1
−1 Iν(µ) dµ

n = 1 Eddington �ux Hν = 1
2

∫ +1
−1 Iν(µ)µ dµ

n = 2 K integral Kν = 1
2

∫ +1
−1 Iν(µ)µ2 dµ
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(all with units [J m−2 s−1 Hz−1 sr−1]).

We can also de�ne the integral quantities

J =
∫ ∞

0
Jν dν

F =
∫ ∞

0
Fν dν

K =
∫ ∞

0
Kν dν

1.5 Other `Fluxes', `Intensities'

Astronomers can be rather careless in their use of the terms `�ux'. and `intensity'. The `�uxes'

and `intensities' discussed so far can all be quanti�ed in terms of physical (e.g., SI) units.

Often, however, astronomical signals are measured in more arbitrary ways (such `integrated

signal at the detector', or even `photographic density'); in such cases, it's commonplace to refer

to the `intensity' in a spectrum, but this is just a loose shorthand, and doesn't allude to the

true speci�c intensity de�ned in this section.

There are other physically-based quantities that one should be aware of. For example,

discussions of model stellar atmospheres may refer to the `astrophysical �ux'; this is given by

Fν/π (also called, rarely, the `radiative �ux'), which is evidently similar to the Eddington �ux,

Hν = Fν/(4π), which has itself also occasionally been referred to as the `Harvard �ux'.

Confusingly, some authors also call it just `the �ux', but it's always written as Hν (never Fν).

1.6 Black-body radiation (reference/revision only)

In astrophysics, a radiation �eld can often be usefully approximated by that of a `black body', for

which the intensity is given by the Planck function:

Iν = Bν(T ) =
2hν3

c2


exp

„
hν

kT

«
− 1

ff−1

[J m−2 s−1 Hz−1 sr−1]; or (1.16)

Iλ = Bλ(T ) =
2hc2

λ5


exp

„
hc

λkT

«
− 1

ff−1

[J m−2 s−1 m−1 sr−1] (1.17)

(where Bν dν = Bλ dλ).

We have seen that

Fν = 2π

+1Z
−1

Iν(µ)µ dµ. (1.9)
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If we have a surface radiating like a black body then Iν = Bν(T ), and there is no µ dependence,

other than that the energy is emitted over the limits 0 ≤ µ ≤ 1; thus the physical �ux for a

black-body radiator is given by

Fν = F+
ν = 2π

+1Z
0

Bν(T )µ dµ = Bν
2πµ2

2

˛̨̨̨+1

0

= πBν . (1.18)

(cp. eqtn. (1.11): Fν = πIν)

1.6.1 Integrated �ux

The total radiant energy �ux is obtained by integrating eqtn. (1.18) over frequency,Z ∞

0

Fν dν =

Z ∞

0

πBν dν

=

Z ∞

0

2πhν3

c2


exp

„
hν

kT

«
− 1

ff−1

dν. (1.19)

We can solve this by setting x = (hν)/(kT ) (whence dν = [kT/h] dx), soZ ∞

0

Fν dν =

„
kT

h

«4
2πh

c2

Z ∞

0

x3

exp(x)− 1
dx

The integral is now a standard form, which has the solution π4/15, whenceZ ∞

0

Fν dν =

„
kπ

h

«4
2πh

15c2
T 4 (1.20)

≡ σT 4 (1.21)

where σ is the Stefan-Boltzmann constant,

σ =
2π5k4

15h3c2
= 5.67× 10−5 [J m−2 K−4 s−1].

1.6.2 Approximate forms

There are two important approximations to the Planck function which follow directly from

eqtn. 1.16:

Bν(T ) ' 2hν3

c2


exp

„
hν

kT

«ff−1

for
hν

kT
� 1 (1.22)

(Wien approximation), and

Bν(T ) ' 2ν2kT

c2
for

hν

kT
� 1 (1.23)

(Rayleigh-Jeans approximation; exp(hν/kT ) ' 1 + hν/kT ).

The corresponding wavelength-dependent versions are, respectively,

Bλ(T ) ' 2hc2

λ5


exp

„
hc

λkT

«ff−1

,

Bλ(T ) ' 2ckT

λ4
.
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Figure 1.2: Upper panel: Flux distributions for black bodies at several di�erent temperatures. A hotter black

body radiates more energy at all wavelengths than a cooler one, but the increase is greater at shorter wave-

lengths. The peak of the black-body distribution migrates blueward with increasing temperature, in accordance

with Wien's law (also plotted).

Lower panel: Flux distribution for the Sun (actually, a Kurucz solar model) compared with a black-body distri-

bution at the same temperature. The black body is a reasonable, though far from perfect, match to the model,

the main di�erences arising because of line blocking in the sun at short wavelengths. This energy must come out

elsewhere, and appears as an excess over the black body at long wavelengths.

(Flux units are 107 J m−2 s−1 µm−1.)
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The Wien approximation to the Planck function is very good at wavelengths shortwards of and up

to the peak of the �ux distribution; but one generally needs to go something like ∼ 10× the peak

wavelength before the long-wavelength Rayleigh-Jeans approximation is satisfactory.

1.6.3 Wien's Law

Wien's displacement law (not to be confused with the Wien approximation!) relates the

black-body temperature to the wavelength of peak emission. To �nd the peak, we di�erentiate

eqtn. (1.17) with respect to wavelength, and set to zero:

∂B

∂λ
= 8hc

„
hc

λ7kT

exp {hc/λkT}
(exp {hc/λkT} − 1)2

− 1

λ6

5

exp {hc/λkT} − 1

«
= 0

whence

hc

λmaxkT
(1− exp {−hc/λmaxkT})−1 − 5 = 0

An analytical solution of this equation can be obtained in terms of the Lambert W function; we

merely quote the result,

λmax

µm
=

2898

T/K

We expect the Sun's output to peak around 500 nm (for Teff = 5770 K) � just where the human

eye has peak sensitivity, for obvious evolutionary reasons.

1.7 Radiation Energy Density, Uν

Consider some volume of space containing a given number of photons; the photons have energy,

so we can discuss the density of radiant energy. From eqtn. (1.1), and referring to Fig. 1.1,

dEν = Iν(θ) dS dt dν dΩ.

We can eliminate the time dependence2 by noting that there is a single-valued correspondence3

between time and distance for radiation. De�ning a characteristic length ` = ct, dt = d`/c, and

dEν = Iν(θ) dS
d`
c
dν dΩ

=
Iν(θ)

c
dV dν dΩ (1.24)

where the volume element dV = dS d`. The mean radiation energy density per unit frequency

per unit volume is then

Uν dν =
1
V

∫
V

∫
Ω
dEν

=
1
c

∫
Ω

Iν dν dΩ

2Assuming that no time dependence exists; that is, that for every photon leaving some volume of space, a

compensating photon enters. This is an excellent approximation under many circumstances.
3Well, nearly single-valued; the speed at which radiation propagates actually depends on the refractive index

of the medium through which it moves � e.g., the speed of light in water is only 3c/4.
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whence

Uν =
1
c

∫
Iν dΩ

=
4π

c
Jν [J m−3 Hz−1] [from eqtn. (1.2): Jν = 1/4π

∫
Iν dΩ] (1.25)

Again, this is explicitly frequency dependent; the total energy density is obtained by integrating

over frequency:

U =

∞∫
0

Uν dν.

For black-body radiation, Jν(= Iν) = Bν , and

U =

∞∫
0

4π

c
Bν dν

but
∫

πBν = σT 4 (eqtn. (1.21)) so

U =
4σ

c
T 4 ≡ aT 4

= 7.55× 10−16 T 4 J m−3 (1.26)

where T is in kelvin, σ is the Stefan-Boltzmann constant and a is the `radiation constant'. Note

that the energy density of black-body radiation is a �xed quantity (for a given temperature).

For a given form of spectrum, the energy density in radiation must correspond to a speci�c

number density of photons:

Nphoton =

∞∫
0

Uν

hν
dν.

For the particular case of a black-body spectrum,

Nphoton ' 2× 107 T 3 photons m−3. (1.27)

Dividing eqtn. (1.26) by (1.27) gives the mean energy per photon for black-body radiation,

hν = 3.78× 10−23T = 2.74kT (1.28)

(although there is, of course, a broad spread in energies of individual photons).
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1.8 Radiation Pressure

A photon carries momentum E/c (= hν/c).4 Momentum �ux (momentum per unit time, per

unit area) is a pressure.5 If photons encounter a surface at some angle θ to the normal, the

component of momentum perpendicular to the surface per unit time per unit area is that

pressure,

dPν =
dEν

c
× cos θ

1
dt dA dν

(where we have chosen to express the photon pressure `per unit frequency'); but the speci�c

intensity is

Iν =
dEν

dA cos θ dΩ dν dt
, (1.1)

whence

dPν =
Iν

c
cos2 θ dΩ

i.e.,

Pν =
1
c

∫
Iνµ

2 dΩ [J m−3 Hz−1 ≡Pa Hz−1] (1.29)

We know that∫
dΩ =

2π∫
0

+1∫
−1

dµ dφ (1.4)

so

Pν =
2π

c

∫ +1

−1
Iνµ

2 dµ;

however, the K integral is

Kν =
1
2

+1∫
−1

Iν(µ)µ2 dµ (1.14)

(from Section 1.4), hence

Pν =
4π

c
Kν (1.30)

4Classically, momentum is mass times velocity. From E = mc2 = hν, the photon rest mass is hν/c2, and its

velocity is c, hence momentum is hν/c.
5Dimensional arguments show this to be true; in the SI system, momentum has units of kg m s−1, and

momentum �ux has units of kg m s−1, m−2, s−1; i.e., kg m−1 s−2,= N m−2 = Pa � the units of pressure.

Pressure in turn is force per unit area (where force is measured in Newtons, = J m−1 = kg m s−2).
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For an isotropic radiation �eld Kν = 1/3Iν = 1/3Jν (eqtn. (1.15)), and so

Pν =
4π

3c
Iν =

4π

3c
Jν .

In this isotropic case we also have

Uν =
4π

c
Jν =

4π

c
Iν

(eqtn. (1.25)) so � for an isotropic radiation �eld � the radiation pressure is

Pν =
1
3
Uν

or, integrating over frequency (using
∫

Uν dν = aT 4 = 4σ/cT 4; eqtn. (1.26)),

PR =
1
3
aT 4 =

4σ

3c
T 4 [J m−3 ≡ N m−2 ≡ Pa]. (1.31)

In that equation (1.31) expresses the relationship between pressure and temperature, it is the

equation of state for radiation.

Note that in the isotropic case, Pν (or PR) is a scalar quantity � it has magnitude but not

direction (like air pressure, locally, on Earth). For an anisotropic radiation �eld, the radiation

pressure has a direction (normally outwards from a star), and is a vector quantity. (This

directed pressure, or force per unit area, becomes important in luminous stars, where the force

becomes signi�cant compared to gravity; Section 10.9.)
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Section 2

The interaction of radiation with

matter

As a beam of radiation traverses astrophysical material (such as a stellar interior, a stellar

atmosphere, or interstellar space), energy can be added or subtracted � the process of `radiative

transfer'. A large number of detailed physical processes can contribute to these changes in

intensity, and we will consider some of these processes in subsequent sections. First, though, we

concentrate on general principles.

2.1 Emission: increasing intensity

A common astrophysical1 de�nition of the (monochromatic) emissivity is the energy generated

per unit volume,2 per unit time, per unit frequency, per unit solid angle:

jν =
dEν

dV dt dν dΩ
[J m−3 s−1 Hz−1 sr−1]; (2.1)

If an element of distance along a line (e.g., the line of sight) is ds, then the change in speci�c

intensity along that element resulting from the emissivity of a volume of material of unit

cross-sectional area is

dIν = +jν(s) ds (2.2)

1Other de�nitions of `emissivity' occur in physics.
2The emissivity can also be de�ned per unit mass (or, in principle, per particle).
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2.2 Extinction: decreasing intensity

`Extinction' is a general term for the removal of light from a beam. Two di�erent classes of

process contribute to the extinction: absorption and scattering. Absorption (sometimes called

`true absorption') results in the destruction of photons; scattering merely involves redirecting

photons in some new direction. For a beam directed towards the observer, scattering still has

the e�ect of diminishing the recorded signal, so the two types of process can be treated

together for the present purposes.

The amount of intensity removed from a beam by extinction in (say) a gas cloud must depend

on

� The initial strength of the beam (the more light there is, the more you can remove)

� The number of particles (absorbers)

� The microphysics of the particles � speci�cally, how likely they are to absorb (or scatter)

an incident photon. This microphysics is characterized by an e�ective cross-section per

particle presented to the radiation.

By analogy with eqtn. (2.2), we can write the change in intensity along length ds as

dIν = −aνnIν ds (2.3)

for a number density of n extinguishing particles per unit volume, with aν the `extinction

coe�cient', or cross-section (in units of area) per particle.

2.3 Opacity

In astrophysical applications, it is customary to combine the cross-section per particle (with

dimensions of area) and the number of particles into either the extinction per unit mass, or the

extinction per unit volume. In the former case we can set

aνn ≡ κνρ

and thus write eqtn. (2.3) as

dIν = −κνρ(s)Iν ds

for mass density ρ, where κν is the (monochromatic) mass extinction coe�cient or, more

usually, the opacity per unit mass (dimensions of area per unit mass; SI units of m2 kg−1).
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For opacity per unit volume we have

aνn ≡ kν

whence

dIν = −kνIν ds.

The volume opacity kν has dimensions of area per unit volume, or SI units of m−1. It has a

straightforward and useful physical interpretation; the mean free path for a photon moving

through a medium with volume opacity kν is

`ν ≡ 1/kν. (2.4)

[In the literature, κ is often used generically to indicate opacity, regardless of whether `per unit

mass' or `per unit volume', and the sense has to be inferred from the context. (You can always

do this by looking at the dimensions involved.)]

2.3.1 Optical depth

We can often calculate, but rarely measure, opacity as a function of position along a given

path. Observationally, often all that is accessible is the cumulative e�ect of the opacity

integrated along the line of sight; this is quanti�ed by the optical depth,

τν =
∫ D

0
kν(s) ds =

∫ D

0
κν ρ(s) ds =

∫ D

0
aν n(s) ds (2.5)

over distance D.

2.3.2 Opacity sources

At the atomic level, the processes which contribute to opacity are:

• bound-bound absorption (photoexcitation � line process);

• bound-free absorption (photoionization � continuum process);

• free-free absorption (continuum process); and

• scattering (continuum process).
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Absorption process can be thought of as the destruction of photons (through conversion into

other forms of energy, whether radiative or kinetic).

Scattering is the process of photon absorption followed by prompt re-emission through the

inverse process. For example, resonance-line scattering is photo-excitation from the ground

state to an excited state, followed quickly by radiative decay. Continuum scattering processes

include electron scattering and Rayleigh scattering.

Under most circumstances, scattering involves re-emission of a photon with virtually the same

energy (in the rest frame of the scatterer), but in a new direction.3

Calculation of opacities is a major task, but at the highest temperatures (T & 107 K) elements

are usually almost fully ionized, so free-free and electron-scattering opacities dominate. Under

these circumstances, κ ' constant. Otherwise, a parameterization of the form

κ = κ0ρ
aT b (2.6)

is convenient for analytical or illustrative work.

3In Compton scattering, energy is transferred from a high-energy photon to the scattering electron (or vice

versa for inverse Compton scattering). These processes are important at X-ray and γ-ray energies; at lower

energies, classical Thomson scattering dominates. For our purposes, `electron scattering' can be regarded as

synonymous with Thomson scattering.
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Rate coe�cients and rate equations (reference/revision

only)

Before proceeding to consider speci�c astrophysical environments, we review the coe�cients

relating to bound-bound (line) transitions. Bound-free (ionization) process will be considered in

sections 5 (photoionization) and 11.2 (collisional ionization).

Einstein (radiative) coe�cients

Einstein (1916) proposed that there are three purely radiative processes which may be involved in

the formation of a spectral line: induced emission, induced absorption, and spontaneous emission,

each characterized by a coe�cient re�ecting the probability of a particular process.

[1] Aji (s
−1): the Einstein coe�cient, or transition probability, for spontaneous decay from an

upper state j to a lower state i, with the emission of a photon (radiative decay); the time

taken for an electron in state j to spontaneously decay to state i is 1/Aji on average

If nj is the number density of atoms in state j then the change in the number density of

atoms in that state per unit time due to spontaneous emission will be

dnj

dt
= −

X
i<j

Ajinj

while level i is populated according to

dni

dt
= +

X
j>i

Ajinj

[2] Bij (s−1 J−1 m2 sr): the Einstein coe�cient for radiative excitation from a lower state i to

an upper state j, with the absorption of a photon.

dni

dt
= −

X
j>i

BijniIν ,

dnj

dt
= +

X
i<j

BijniIν

[3] Bji (s
−1 J−1 m2 sr): the Einstein coe�cient for radiatively induced de-excitation from an

upper state to a lower state.

dnj

dt
= −

X
i<j

BjinjIν ,

dni

dt
= +

X
j>i

BjinjIν

where Iν is the speci�c intensity at the frequency ν corresponding to Eij , the energy di�erence

between excitation states.

For reference, we state, without proof, the relationships between these coe�cients:

Aji =
2hν3

c2
Bji;

Bijgi = Bjigj

where gi is the statistical weight of level i.
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In astronomy, it is common to work not with the Einstein A coe�cient, but with the absorption

oscillator strength fij , where

Aji =
8π2e2ν2

mec3
gi

gj
fij

and fij is related to the absorption cross-section by

aij ≡
Z
aν dν =

πe2

mec
fij .

Because of the relationships between the Einstein coe�cients, we also have

Bij =
4π2e2

mehνc
fij ,

Bji =
4π2e2

mehνc

gi

gj
fij

Collisional coe�cients

For collisional processes we have analogous coe�cients:

[4] Cji (m
3 s−1): the coe�cient for collisional de-excitation from an upper state to a lower state.

dnj

dt
= −

X
j>i

Cjinjne,

dni

dt
= +

X
i<j

Cjinjne

(for excitation by electron collisions)

[5] Cij (m3 s−1): the coe�cient for collisional excitation from a lower state to an upper state.

dni

dt
= −

X
j>i

Cijnine,

dnj

dt
= +

X
i<j

Cijnine

These coe�cients are related through

Cij

Cji
=
gj

gi
exp


− hν

kTex

ff
for excitation temperature Tex.

The rate coe�cient has a Boltzmann-like dependence on the kinetic temperature

Cij(Tk) =

„
2π

Tk

«1/2
h2

4π2m
3/2
e

Ω(ij)

gi
exp


−∆Eij

kTk

ff
∝ 1√

Te

exp


−∆Eij

kTk

ff
[m3 s−1] (2.7)

where Ω(1, 2) is the so-called `collision strength'.

Statistical Equilibrium

Overall, for any ensemble of atoms in equilibrium, the number of de-excitations from any given

excitation state must equal the number of excitations into that state � the principle of statistical

equilibrium. That is,X
j>i

BijniIν +
X
j 6=i

Cijnine =
X
j>i

Ajinj +
X
j>i

BjinjIν +
X
j 6=i

Cjinjne (2.8)
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Section 3

Radiative transfer

3.1 Radiative transfer along a ray

Iν Iν
Iν

  Sd

τ(ν)=0 τ(ν)

+

d

S

Consider a beam of radiation from a distant point source (e.g., an unresolved star), passing

through some intervening material (e.g., interstellar gas). The intensity change as the radiation

traverses the element of gas of thickness ds is the intensity added, less the intensity taken away

(per unit frequency, per unit time, per unit solid angle):

dIν (((((((
( dA dν dω dt) = + jν ds(((((((

dA dν dω dt

− kν Iν ds(((((((
dA dν dω dt

i.e.,

dIν = (jν − kν Iν) ds,
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or

dIν

ds
= jν − kνIν , (3.1)

which is the basic form of the Equation of Radiative Transfer.

The ratio jν/kν is called the Source Function, Sν . For systems in thermodynamic equilibrium

jν and kν are related through the Kirchho� relation,

jν = kνBν(T ),

and so in this case (though not in general) the source function is given by the Planck function

Sν = Bν

Equation (3.1) expresses the intensity of radiation as a function of position. In astrophysics, we

often can't establish exactly where the absorbers are; for example, in the case of an absorbing

interstellar gas cloud of given physical properties, the same absorption lines will appear in the

spectrum of some background star, regardless of where the cloud is along the line of sight. It's

therefore convenient to divide both sides of eqtn. 3.1 by kν ; then using our de�nition of optical

depth, eqtn. (2.5), gives a more useful formulation,

dIν

dτν
= Sν − Iν . (3.2)

3.1.1 Solution 1: jν = 0

We can �nd simple solutions for the equation of transfer under some circumstances. The very

simplest case is that of absorption only (no emission; jν = 0), which is appropriate for

interstellar absorption lines (or headlights in fog); just by inspection, eqtn. (3.1) has the

straightforward solution

Iν = Iν(0) exp {−τν} . (3.3)

We see that an optical depth of 1 results in a reduction in intensity of a factor e−1 (i.e., a factor

∼ 0.37).

3.1.2 Solution 2: jν 6= 0

To obtain a more general solution to transfer along a line we begin by guessing that

Iν = F exp {C1τν} (3.4)

22



where F is some function to be determined, and C1 some constant; di�erentiating eqtn. 3.4,

dIν

dτν
= exp {C1τν}

dF
dτν

+ FC1 exp {C1τν}

= exp {C1τν}
dF
dτν

+ C1Iν , = Sν − Iν (eqtn. 3.2).

Identifying like terms we see that C1 = −1 and that

Sν = exp {−τν}
dF
dτν

,

i.e.,

F =

Z τν

0

Sν exp {tν}dtν + C2

where t is a dummy variable of integration and C2 is some constant. Referring back to eqtn. (3.4),

we now have

Iν(τν) = exp {−τν}
Z τν

0

Sν(tν) exp {tν} dtν + Iν(0) exp {−τν}

where the constant of integration is set by the boundary condition of zero extinction (τν = 0). In

the special case of Sν independent of τν we obtain

Iν = Iν(0) exp {−τν}+ Sν (1− exp {−τν})

3.2 Radiative Transfer in Stellar Atmospheres

Having established the principles of the simple case of radiative transfer along a ray, we turn to

more general circumstances, where we have to consider radiation coming not just from one

direction, but from arbitrary directions. The problem is now three-dimensional in principle; we

could treat it in cartesian (xyz) coördinates,1 but because a major application is in spherical

objects (stars!), it's customary to use spherical polar coördinates.

Again consider a beam of radiation travelling in direction s, at some angle θ to the radial

direction in a stellar atmosphere (Fig. 3.1). If we neglect the curvature of the atmosphere (the

`plane parallel approximation') and any azimuthal dependence of the radiation �eld, then the

intensity change along this particular ray is

dIν

ds
= jν − kνIν , (3.1)

as before.

We see from the �gure that

dr = cos θ ds ≡ µds

1We could also treat the problem as time-dependent; but we won't . . . A further complication that we won't

consider is motion in the absorbing medium (which introduces a directional dependence in kν and jν); this

directionality is important in stellar winds, for example.
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Figure 3.1: Geometry used in radiative-transfer discussion, section 3.2.

so the transfer in the radial direction is described by

µ

kν

dIν

dr
=

jν

kν
− Iν , (3.5)

(where we've divided through by kν); and since jν/kν = Sν and dτν = −kν dr (eqtn. 2.5,

measuring distance in the radial direction, and introducing a minus because the sign convention

in stellar-atmosphere work is such that optical depth increases with decreasing r) we have

µ
dIν

dτν
= Sν − Iν . (3.6)

This is the standard formulation of the equation of transfer in plane-parallel stellar

atmospheres.

For arbitrary geometry we have to consider the full three-dimensional characterization of the

radiation �eld; that is

dIν

ds
=
∂Iν

∂r

dr

ds
+
∂Iν

∂θ

dθ

ds
+
∂Iν

∂φ

dφ

ds
, (3.7)

where r, θ, φ are our spherical polar coördinates. This is our most general formulation, but in the

case of stellar atmospheres we can often neglect the φ dependence; and we rewrite the θ term by

noting not only that

dr = cos θ ds ≡ µds

but also that

−r dθ = sin θ ds.

(The origin of the minus sign may be clari�ed by reference to Fig. 3.1; for increasing s we have

increasing r, but decreasing θ, so r dθ is negative for positive ds.)

Using these expressions in eqtn. (3.7) gives a two-dimensional form,

dIν

ds
=
∂Iν

∂r
cos θ − ∂Iν

∂θ

sin θ

r
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but this is also

= jν − kνIν

so, dividing through by kν as usual,

cos θ

kν

∂Iν

∂r
+

sin θ

kνr

∂Iν

∂θ
=
jν
kν
− Iν

= Sν − Iν

Once again, it's now useful to think in terms of the optical depth measured radially inwards:

dτ = −kν dr,

which gives us the customary form of the equation of radiative transfer for use in extended stellar

atmospheres, for which the plane-parallel approximation fails:

sin θ

τν

∂Iν

∂θ
− µ

∂Iν

∂τν
= Sν − Iν . (3.8)

We recover our previous, plane-parallel, result if the atmosphere is very thin compared to the

stellar radius. In this case, the surface curvature shown in Fig. 3.1 becomes negligible, and dθ

tends to zero. Equation (3.8) then simpli�es to

µ
∂Iν

∂τν
= Iν − Sν , (3.6)

which is our previous formulation of the equation of radiative transfer in plane-parallel stellar

atmospheres.

3.3 Energy transport in stellar interiors

3.3.1 Radiative transfer

In optically thick environments � in particular, stellar interiors � radiation is often the

most important transport mechanism,2 but for large opacities the radiant energy

doesn't �ow directly outwards; instead, it di�uses slowly outwards.

The same general principles apply as led to eqtn. (3.6); there is no azimuthal

dependence of the radiation �eld, and the photon mean free path is (very) short

compared to the radius. Moreover, we can make some further simpli�cations. First,

the radiation �eld can be treated as isotropic to a very good approximation. Secondly,

the conditions appropriate to `local thermodynamic equilibrium' (LTE; Sec. 11.1)

apply, and the radiation �eld is very well approximated by black-body radiation.

2Convection can also be a signi�cant means of energy transport under appropriate conditions, and is discussed

in Section 3.3.3.
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Box 3.1. It may not be immediately obvious that the radiation �eld in stellar interiors is, essentially,

isotropic; after all, outside the energy-generating core, the full stellar luminosity is transmitted across

any spherical surface of radius r. However, if this �ux is small compared to the local mean intensity,

then isotropy is justi�ed.

The �ux at an interior radius r (outside the energy-generating core) must equal the �ux at R (the

surface); that is,

πF = σT 4
eff
R2

r2

while the mean intensity is

Jν(r) ' Bν(T (r)) = σT 4(r).

Their ratio is

F

J
=

„
Teff

T (r)

«4 „
R

r

«2

.

Temperature rises rapidly below the surface of stars, so this ratio is always small; for example, in

the Sun, T (r) ' 3.85 MK at r = 0.9R�, whence F/J ' 10−11. That is, the radiation �eld is isotropic

to better than 1 part in 1011.

We recall that, in general, Iν is direction-dependent; i.e., is Iν(θ, φ) (although we have

generally dropped the explicit dependence for economy of nomenclature). Multiplying

eqtn. (3.6) by cos θ and integrating over solid angle, using dΩ = sin θ dθ dφ = dµ dφ,

then

d

dτν

Z 2π

0

Z +1

−1

µ2Iν(µ, φ)dµ dφ =

Z 2π

0

Z +1

−1

µIν(µ, φ)dµ dφ−
Z 2π

0

Z +1

−1

µSν(µ, φ)dµ dφ;

or, for axial symmetry,

d

dτν

Z +1

−1

µ2Iν(µ)dµ =

Z +1

−1

µIν(µ)dµ−
Z +1

−1

µSν(µ)dµ.

Using eqtns. (1.14) and (1.9), respectively, for the �rst two terms, and supposing that

the emissivity has no preferred direction (as is true to an excellent aproximation in

stellar interiors; Box 3.1) so that the source function is isotropic (and so the �nal term

is zero), we obtain

dKν

dτν
=
Fν

4π

or, from eqtn. (1.15),

1

3

dIν

dτν
=
Fν

4π
.

In LTE we may set Iν = Bν(T ), the Planck function; and dτν = −kν dr (where again

the minus arises because the optical depth is measured inwards, and decreases with

increasing r). Making these substitutions, and integrating over frequency,Z ∞

0

Fν dν = −4π

3

Z ∞

0

1

kν

dBν(T )

dT

dT

dr
dν (3.9)

To simplify this further, we introduce the Rosseland mean opacity, kR, de�ned by

1

kR

Z ∞

0

dBν(T )

dT
dν =

Z ∞

0

1

kν

dBν(T )

dT
dν.
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Recalling thatZ ∞

0

πBν dν = σT 4 (1.21)

we also haveZ ∞

0

dBν(T )

dT
dν =

d

dT

Z ∞

0

Bν(T )dν

=
4σT 3

π

so that eqtn. 3.9 can be written asZ ∞

0

Fν dν = −4π

3

1

kR

dT

dr

acT 3

π
(3.10)

where a is the radiation constant, 4σ/c.

The luminosity at some radius r is given by

L(r) = 4πr2
Z ∞

0

Fν dν

so, �nally,

L(r) = −16π

3

r2

kR

dT

dr
acT 3, (3.11)

which is our adopted form of the equation of radiative energy transport.

Box 3.2. The radiative energy density is U = aT 4 (eqtn. 1.26), so that dU/dT = 4aT 3, and we can

express eqtn. (3.10) as

F =

Z ∞

0

Fν dν

= − c

3kR

dT

dr

dU

dT

= − c

3kR

dU

dr

This `di�usion approximation' shows explicitly how the radiative �ux relates to the energy gradient;

the constant of proportionality, c/3kR, is called the di�usion coe�cient. The larger the opacity, the

less the �ux of radiative energy, as one might intuitively expect.

3.3.2 Convection in stellar interiors

Energy transport can take place through one of three standard physical processes:

radiation, convection, or conduction. In the rari�ed conditions of interstellar space,

radiation is the only signi�cant mechanism; and gases are poor conductors, so

conduction is generally negligible even in stellar interiors (though not in, e.g.,

neutron stars). In stellar interiors (and some stellar atmospheres) energy transport

by convection can be very important.
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Conditions for convection to occur

We can rearrange eqtn. (3.11) to �nd the temperature gradient where energy

transport is radiative:

dT
dr

= − 3
16π

kR

r2

L(r)
acT 3

,

If the energy �ux isn't contained by the temperature gradient, we have to invoke

another mechanism � convection � for energy transport. (Conduction is negligible

in ordinary stars.) Under what circumstances will this arise?

Suppose that through some minor perturbation, an element (or cell, or blob, or

bubble) of gas is displaced upwards within a star. It moves into surroundings at

lower pressure, and if there is no energy exchange it will expand and cool

adiabatically. This expansion will bring the system into pressure equilibrium (a

process whose timescale is naturally set by the speed of sound and the linear scale

of the perturbation), but not necessarily temperature equilibrium � the cell (which

arose in deeper, hotter layers) may be hotter and less dense than its surroundings.

If it is less dense, then simple buoyancy comes into play; the cell will continue to

rise, and convective motion occurs.3

We can establish a condition for convection by conmsidering a discrete bubble of

gas moving upwards within a star, from radius r to r + dr. We suppose that the

pressure and density of the ambient background and within the bubble are

(P1, ρ1), (P2, ρ2) and (P ∗
1 , ρ∗1), (P ∗

2 , ρ∗2),
respectively, at (r), (r + dr).

The condition for adiabatic expansion is that

PV γ = constant

where γ = CP /CV , the ratio of speci�c heats at constant pressure and constant

volume. (For a monatomic ideal gas, representative of stellar interiors, γ = 5/3.)

Thus, for a blob of constant mass (V ∝ ρ−1),

P ∗
1

(ρ∗1)
γ =

P ∗
2

(ρ∗2)
γ ; i.e.,

(ρ∗2)
γ =

P ∗
2

P ∗
1

(ρ∗1)
γ .

A displaced cell will continue to rise if ρ∗2 < ρ2. However, from our discussion above,

we suppose that P ∗
1 = P1, ρ∗1 = ρ1 initially; and that P ∗

2 = P2 �nally. Thus

3Another way of looking at this is that the entropy (per unit mass) of the blob is conserved, so the star is

unstable if the ambient entropy per unit mass decreases outwards.

28



convection will occur if

(ρ∗2)
γ =

P2

P1
(ρ1)γ < ρ2.

Setting P2 = P1 − dP , ρ2 = ρ1 − dρ, we obtain the condition

ρ1

(
1− dP

P1

)1/γ

< ρ1 − dρ.

If dP � P1, then a binomial expansion gives us(
1− dP

P

)1/γ

' 1− 1
γ

dP
P

(where we have dropped the now super�uous subscript), and so

−ρ

γ

dP
P

< −dρ, or

−1
γ

1
P

dP
dr

< −1
ρ

dρ
dr

(3.12)

However, the equation of state of the gas is P ∝ ρT , i.e.,

dP
P

=
dρ
ρ

+
dT
T

, or

1
P

dP
dr

=
1
ρ

dρ
dr

+
1
T

dT
dr

;

thus, from eqtn. (3.12),

1
P

dP
dr

<
1
γ

1
P

dP
dr

+
1
T

dT
dr

<

(
γ

γ − 1

)
1
T

dT
dr

, or (3.13)

d(lnP ))
d(lnT )

<
γ

γ − 1

for convection to occur.

Schwarzschild criterion

Start with adiabatic EOS

Pρ−γ = constant (3.14)

i.e.,

d ln ρ

d lnP
=

1
γ

(3.15)
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To rise, the cell density must decrease more rapidly than the ambient density; i.e.,

d ln ρc

d lnPc
>

d ln ρa

d lnPa
(3.16)

Gas law, P = nkT = ρkT/µ gives

d ln ρ

d lnP
= 1 +

d lnµ

d lnP
− d lnT

d lnP
(3.17)

whence the Schwarzschild criterion for convection,

d lnTa

d lnPa
> 1− 1

γ
+

d lnµ

d lnP
. (3.18)

3.3.3 Convective energy transport

Convection is a complex, hydrodynamic process. Although much progress is being

made in numerical modelling of convection over short timescales, it's not feasible at

present to model convection in detail in stellar-evolution codes, because of the vast

disparities between convective and evolutionary timescales. Instead, we appeal to

simple parameterizations of convection, of which mixing-length `theory' is the most

venerable, and the most widely applied.

We again consider an upwardly moving bubble of gas. As it rises, a temperature

di�erence is established with the surrounding (cooler) gas, and in practice some

energy loss to the surroundings must occur.

XXXWork in progress
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PART II: THE DIFFUSE NEUTRAL
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Section 4

Introduction: Gas and Dust in the ISM

4.1 Gas

The interstellar medium (ISM) is a complex, dynamic environment. In order to reduce this

complexity to a tractable summary of the broad characteristics of the ISM, we identify four

gas-phase constituents that are in approximate pressure equilibrium. We describe each of these

as `ionized' or `neutral', referring to the dominant state of the dominant element, i.e., hydrogen.

(Note, however, that there are is some always some ionized hydrogen even in `neutral' regions,

because of X-ray and cosmic-ray ionization; and there are always some neutral hydrogen atoms

even in `ionized' regions, because of continual recombination; see Section 5).

(i) Hot, ionized gas, occupying most of the volume of the ISM, with

number density n ∼ 103 m−3;

kinetic temperature Tk ∼ 106K;

�lling factor f ∼ 70%;

(nT ∼ 109 m−3 K).

A probable origin for this hot gas is overlapping old supernova remnants.

(ii) Cold, neutral gas, occupying a smaller volume fraction but providing most of the mass, in

the form of `clouds' with

number density n ∼ 107 m−3;

kinetic temperature Tk ∼ 30�100K;
(nT ∼ 109 m−3 K).

Characteristic length scales are of order ∼pc. As well as atoms (and dust grains) they

contain some simple molecules (such as H2 and CO)

At the interface between the hot ionized gas and cool neutral clouds are an outer
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(iii) Warm, ionized medium (with an ionization fraction X ∼ 0.7, generated by

photoionization), and an inner

(iv) Warm, neutral medium (X ∼ 0.1, maintained by X-rays and cosmic rays), each with

n ∼ 105 m−3 and

Tk ∼ 8000K
(nT ∼ 109 m−3 K).

There are, in addition, two important gas-phase components not in pressure equilibrium:

(v) Molecular clouds are colder, denser regions in which hydrogen is predominantly molecular

(not atomic), and other molecules are present (typically detected by their microwave

emission).

n ∼ 109�1013 m−3 and

Tk ∼ 10�50K;
typical length scales again ∼pc, with larger clouds tending to have lower densities. A

large cloud (r ∼ 30pc, ρ ∼ 109 m−3) has a mass of ∼ 106M�. These clouds have large

optical depths in the visible, and are studied through their long-wavelength emission.

Smaller, denser clouds may be star-forming.

(vi) Photoionized regions (H ii regions and planetary nebulae) � discussed in detail later

(page 37 et seq.).

This summary is not exhaustive, but accounts for most of the ISM.

4.2 Dust

The colder regions, at least, contain interstellar dust in addition to the gas. There is extensive

evidence for this dust in the ISM:

(i) Interstellar absorption (`holes' in the sky)

(ii) Interstellar reddening

(iii) Solid-state spectral features (e.g., the 10-µm `silicate' feature)

(iv) Re�ection nebulae

(v) Depletion of elements from the gas phase
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Figure 4.1: The normalized interstellar extinction curve.

Dust grains are intermingled with gas throughout the ISM, with one dust grain for, roughly,

every ∼ 1012 atoms. Dust grains show a power-law size distribution,

n(r) ∝ r−3.5, (4.1)

derived from an analysis of the interstellar extinction curve, discussed below. Although there is

a large range, `typical' grain sizes are of order 102 nm (0.1 µm).

4.2.1 The normalized interstellar extinction curve

Extinction by dust is the removal of continuum light from starlight, including both absorption

and scattering.1 When `extinction' is used without quali�cation in interstellar astrophysics, it

is often this continuous dust extinction that is meant.2

Extinction removes a fraction of incident radiation (not an absolute amount; eqtn. 3.3). Since

removing a �xed fraction of radiation corresponds to a �xed magnitude change, dust extinction

is conventionally expressed in magnitudes, as a function of wavelength:

m(λ) = m0(λ) + A(λ) (4.2)

1Recall: an absorbed photon is destroyed, with its energy used in ejecting an electron, or converted into internal

energy of the dust grain; while a scattered photon is re-emitted, normally in a di�erent direction to that which it

came in.
2The distinction between the smallest dust grains and the largest molecules is moot. Particularly in the

infrared, there is structure in the extinction curve (on scales much larger than that of atomic absorption lines)

that is attributable to large molecules, such as polycyclic aromatic hydrocarbons.
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where m(λ) is the observed magnitude, m0(λ) is the magnitude which would be observed in the

absence of extinction, and A(λ) is the extinction (a positive quantity). Of course, it is not

possible to separate the two terms on the right-hand side of eqtn. (4.2). Fortunately, however,

the wavelength dependence of extinction comes to our aid. If we observe at two wavelengths

then

m(λ2)−m(λ1) = m0(λ2)−m0(λ1) + A(λ2)−A(λ1) (4.3)

The left-hand side is an observed quantity, while m0(λ2)−m0(λ1) can be estimated from

observations of unreddened stars of the same spectral type as the target; these stars are

assumed to have the same temperature, and the same intrinsic colours, as the target.

The di�erential extinction, A(λ2)−A(λ1) still depends on the absolute extinction (it's bigger

for more heavily reddened stars). It is convenient to take out this dependence by normalizing

the extinction curve such that

A(B)−A(V ) ≡ E(B − V ) ≡ 1

where λB ' 440nm and λV ' 550nm.3 Then for any other wavelength

A(λ)−A(V )
A(B)−A(V )

=
E(λ− V )
E(B − V )

=
A(λ)

E(B − V )
− A(V )

E(B − V )
(4.4)

We plot this quantity against 1/λ (Fig. 4.1). The general trend is one of increasing extinction

towards shorter wavelengths (at least, down to the Lyman edge at 91.2 nm), with little

large-scale structure excepting the so-called `2200Å bump'. In particular, because the

extinction is greater at B than at V, a star which undergoes extinction appears reddened; and

interstellar reddening is generally used synonymously with interstellar extinction.

The form of the curve is a function of the chemical composition of the grains, and their size

distribution. The overall shape is fairly constant along di�use sightlines in our Galaxy, but

there are signi�cant di�erences in denser environments, and in galaxies with di�erent

metallicities (e.g., the 2200Å bump is much weaker in many SMC sightlines, presumably a

consequence of the lower metallicity there).

4.2.2 The ratio of total to selective extinction.

The normalization to unit E(B − V ) in eqtn. (4.4) has the advantage that we can compare the

di�erential extinction curves of di�erent stars (per unit E(B − V )); but the unknown value of

the constant term A(V )/E(B − V ) means that we don't know the absolute extinction at any

wavelength.

3The precise value of the `e�ective wavelength' of a �lter depends on then colour of the target being observed.
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Di�erential extinction (e.g. E(B − V )) may be referred to as a selective extinction. The total

extinction at any wavelength (e.g. V ) is found by extrapolating the extinction curve in the

infrared and assuming that

A(λ) → 0 as λ →∞

(which is a prediction of scattering theory, veri�ed by everyday experience � brick walls are

transparent to radio waves). The intercept on the y axis equals −R, where

R =
A(V )

E(B − V )

is referred to as `the' ratio of total to selective extinction. A value close to R = 3.1 is found for

di�use clouds in general, although larger values are found in dense clouds (where the grain

composition is di�erent�e.g. ice mantles). In fact, R is a crude size indicator�optical theory

shows that bigger dust grains produce a bigger value of R.

4.3 Other ingredients

We have already mentioned the di�use radiation �eld arising from the integrated light of stars;

the ISM is also permeated by the cosmic microwave background, and by a �ux of high-energy

cosmic rays (which can play and important role in ionization and dissociation in dense clouds,

where few photons penetrate).
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PART III: IONIZED NEBULAE
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Section 5

Ionization equilibrium in H ii Regions

Photons with energies hν > 13.6eV (= IH, the ground-state ionization potential for hydrogen)

may photoionize neutral hydrogen atoms. Excess energy hν − IH is carried away as kinetic

energy of the ejected electron (and hence goes into heating the gas).

The inverse process is recombination, and in equilibrium

H0 + hν ↔ H+ + e−

where essentially all ionizations are from the n = 1 level, but recombinations are to all levels.

We will consider these processes in some detail, considering a pure hydrogen nebula.

5.1 Recombination

Recombination may occur to any level (principal quantum number n), and is followed by

cascading down to the n = 1 level. The rate of recombinations per unit volume into level n, ṅn,

depends on the density squared, and on the electron temperature:

ṅn = nenpαn(Te) ' n2
eαn(Te) [m−3 s−1]. (5.1)

where αn(Te) is the recombination coe�cient (to level n at electron temperature Te).

Obviously, the recombination rate is proportional to the number of available protons, np, and

the number of available electrons, ne; and for a pure hydrogen nebula, np = ne. The

temperature dependence of αn(Te) arises for two reasons:

(i) The higher the temperature the faster the electrons, and the more likely they are to

encounter a proton; but,

(ii) the faster the electron the less likely it is to be `captured' by the proton.
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The latter term is more important, so the recombination coe�cient is smaller at higher

temperatures.

For the purpose of calculating the overall ionization balance, we evidently need the rate of

recombinations to all levels (so called `case A recombination'):

ṅA =
∞∑

n=1

nenpαn(Te) ≡ nenpαA(Te)

However � recombination to n = 1 will always result in a photon with hν > 13.6eV (i.e., a

Lyman continuum photon), which will quickly be re-absorbed in a photoionization. Thus

recombinations to n = 1 may be followed by ionizations from n = 1.1 In the `on the spot'

aproximation, photons generated in this way are assumed to be re-absorbed quickly and locally,

and thus have no overall e�ect on the ionization balance.

In case B recombination, we therefore do not include recombination direct to the ground state;

ṅB =
∞∑

n=2

nenpαn(Te) ≡ nenpαB(Te). (5.2)

A reasonable numerical approximation to detailed calculations is

αB(Te) ' 2×10−16 T−3/4
e m3 s−1. (5.3)

5.2 Ionization

The lifetime of an excited level in the hydrogen atom (1/Aji) is ∼ 10−6�10−8s. This is very

much less than the ionization timescale, so the probability of a photoionization from an excited

state is negligible; essentially all ionization is from the ground state.

Suppose a star is embedded in a gas of uniform mass density. Then consider a volume element

dV in a thin shell of thickness dr at distance r from the ionizing star.

Let the number of photons from the star crossing unit area of the shell per unit time be

NP (ν) (m−2 s−1);

then the photoionization rate from level 1 is

ṅ1 =
∫ ∞

ν0

aν n(H0) NP (ν) dν

= a1n(H0)NP (I) (m−3 s−1). (5.4)

1In principle, recombination of su�ciently energetic electrons to other levels can also result in ionizing photons,

but this is a rare outcome in practice.
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where ν0 is the photon frequency corresponding to the ground-state ionization potential of

hydrogen (hν = 13.6 eV) NP (I) is the number of ionizing photons, aν is the ground-state

photoionization cross-section (in units of m2), and a1 is the value of aν averaged over frequency.

In practice,

aν ' a0(ν0/ν)3

for hydrogen (and hydrogen-like atoms), where a0 is the cross-section at ν0. The

photoionization cross-section therefore peaks at a0; the �ux of ionizing photons also typically

peaks near ν0. It's therefore not too inaccurate (and certainly convenient) to assume

a1 ' a0 = 6.8× 10−22 m2.

5.3 Ionization equilibrium

We �rst introduce x, the degree of ionization, de�ned by

np[= n(H+)] = ne = xn(H)

where n(H) is the total number of hydrogen nuclei, np + n(H0); that is, x = 0 for a neutral gas,

x = 1 for a fully ionized gas, and, in general,

n(H0) = (1− x)n(H)

The condition of ionization equilibrium is that the number of recombinations equals the number

of (ground-state) ionizations:

ṅR(≡ ṅB) = ṅ1.

That is

nenpαB(Te) = a0(1− x) n(H) NP (I)

(from eqtns. (5.2) and (5.4)). Noting that, for our pure hydrogen nebula,

nenp = n2
p = x2n2(H)

we obtain

x2

(1− x)
=

NP (I)
n(H)

a0

αB(Te)
. (5.5)

To estimate the photon �ux NP at a typical point in the nebula, we assume simple

inverse-square dilution of the stellar �ux [a good approximation except very near the star
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(where the geometry is slightly more complex) and near the edge of the nebula (where

absorption becomes important2)]:

NP '
S∗

4πr2
[m−2 s−1] (5.6)

where S∗ is the rate at which the star emits ionizing photons (s−1). For representative numbers,

n(H) = 108 m−3

r = 1 pc (3.08568025× 1016 m)

S∗ = 1049 s−1

(where S∗ corresponds roughly to an O6.5 main-sequence star � similar to the ionizing star in

the Orion nebula), eqtn. (5.6) gives

NP ' 8× 1014 m−2 s−1

and eqtn. (5.5) becomes

x2

(1− x)
' 3× 104 (5.7)

(for Te ∼ 104K). We can solve this (e.g., by Newton-Raphson), giving (1− x) = 3× 10−5; but

we can see by simple inspection that x ' 1 � i.e., where the gas is ionized it is, essentially, fully

ionized.

5.4 Nebular size and mass; the `Strömgren Sphere'

There is a simple physical limit to the size of a photoionized nebula; the total number of

(case B) recombinations per unit time within a nebula must equal the total number of ionizing

photons emitted by the star per unit time; that is, for a homogeneous nebula,

4
3
πR3

S nenpαB(Te) = S∗ (5.8)

where RS is the (ionized) nebular radius, or Strömgren radius,

RS =
[

3
4π

S∗
n2

eαB(Te)

]1/3

(5.9)

where we've used the fact that np = ne. The ionized volume is called the Strömgren sphere.

Again adopting S∗ = 1049 s−1 (and using Te ' 104K in eqtn. (5.3) to evaluate αB) we �nd

RS ' 7×105 n−2/3
e m−2 pc

2Recall that the attenuation is exponential, so there is a fairly rapid swicth from `ionized' to `neutral' as the

�ux of ionizing photons rapidly diminishes.
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For typical densities, Strömgren radii are of order ∼ 100�102 pc.

The mass is the volume times the (mass) density:

MS =
4
3
πR3

S nem(H)

=
S∗m(H)
neαB(Te)

(from eqtn. (5.8)). Typical values are of order ∼ 103M�, with a large dispersion.
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Section 6

The Radio-Frequency Continuum

Free-free emission (or bremstrahlung) is generated by the deceleration of thermal electrons in

the electric �eld of ions. This is a continuous process in wavelength, but the emission is most

readily observed in the radio regime, where it dominates the emission from an ionized gas. Here

we will discuss its application to ionized nebulae.

Self-absorption of free-free emission within the nebula can be signi�cant, and must be taken

into account � i.e., we must consider the radiative transfer within the nebula. To do this we

recall de�nitions from Section 1

• Iν , the (`speci�c') intensity of radiation � the rate of energy �ow energy,

� per unit frequency,

� per unit area,

� per unit solid angle,

� per unit time.

SI Units are thus J Hz−1 m−2 sr−1 s−1 (= J m−2 sr−1)

• jν , the emission coe�cient � the radiant energy emitted by the gas,

� per unit frequency,

� per unit volume,

� per unit solid angle,

� per unit time.

Units are thus J Hz−1 m−3 sr−1 s−1 (= J m−3 sr−1)

• kν , the absorption coe�cient, or opacity per unit volume.

From Section 3.1, the equation of radiative transfer can be written as

dIν

ds
= jν − kνIν , (3.1)
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where the ratio jν/kν is the Source Function, Sν . For systems in thermodynamic equilibrium,

the source function is given by the Planck function, Bν , and jν and kν are related through the

Kirchho� relation,

jν = kνBν(T ); i.e., Sν = Bν

(Section 11.1). Because free-free radiation is an essentially collisional process, in this respect

the nebula is in thermodynamic equilibrium, and we can use Sν = Bν . Then eqtn. (3.1) can be

written in the form

dIν

dτν
= Bν(Te)− Iν

(cp. eqtn. (3.2)), where we have use the de�nition of optical depth,

dτν = kν ds.

The solution of this �rst-order di�erential equation is

Iν = Bν(Te)(1− exp{−τν}). (6.1)

where τν is the total optical depth through the region. Note that we have made two implicit

assumptions �

• Te is constant throughout the region

• Iν = 0 at τν = 0; i.e., there is no external or background radiation.

There are two obvious limiting forms of eqtn. (6.1):

1. For τν � 1, exp{−τν} → 0, and

Iν ' Bν(Te) (6.2)

2. For τν � 1, exp{−τν} → [1− τν ] and

Iν ' Bν(Te)τν (6.3)

Free-free opacity (reference only)

From Allen (AQ), the free-free opacity is given by:

kff =
4π

3
√

3

Z2e6

hcm2
eve

gff
ν3
neni [m−1]

where gff is the free-free gaunt factor. Using

ve =

r
πkT

2me
.

44



as the mean velocity, and allowing for stimulated emission,

kν = 3.692× 108Z
2gffneni

ν3
√
T

»
1− exp


− hν
kT

ff–
for electron velocity ve, ionic charge Z, electron and ion densities neni, and cgs units throughout

(λ in cm). Normally ne ' ni ' n(H) (and certainly ne, ni ∝ n(H)); then expanding the exponential

term,

exp


− hν
kT

ff
' 1− hν

kT
+

1

2

„
hν

kT

«2

· · ·

gives

kff ∝ gffν
−2T−3/2n2(H)

In the case of free-free radiation at radio wavelengths, the opacity can be approximated by

kν ∝ ν−2.1T−1.35
e nenp

(where we have made allowance for the weak ν, T dependences of gff), so that for a

pure-hydrogen nebula (ne = np)

τν = kνL ∝ ν−2.1T−1.35
e n2

eL (6.4)

for path length L through the nebula; the quantity n2
eL is a �xed quantity, called the Emission

Measure (usually expressed in units of m−6 pc), for a given nebula. Note that the optical depth

is smaller at higher frequencies (shorter wavelengths).

At radio frequencies we can use the Rayleigh-Jeans approximation to the Planck function

(eqtn. 1.23),

Bν(Te) =
2hν3

c2

1
exp{hν/kTe}

' 2kTe

c2
ν2 (6.5)

[since (hν)/(kTe) � 1 for small ν, so exp{(hν)/(kTe)} ' 1 + (hν)/(kTe)].

ν 2

lo
g

I ν ν −0.1

log ν

ν 0
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In the optically thin limit (small optical depth; high frequencies, short wavelengths)

eqtns. (6.4), (6.5) and (6.3) give

Iν ∝ ν−0.1T−0.35
e n2

eL

while in the optically thick limit (large optical depths; small frequencies, long wavelengths)

eqtns. (6.4), (6.5) and (6.2) give give

Iν ∝ ν2Te.

That is, we can determine the nebular temperature, directly (and independent of distance1

from the intensity at optically thick frequencies; then knowing Te, we can determine the

emission measure from the emission at any optically thin frequency (or from eqtn. (6.4) by

determining the `turnover frequency', ν0, at which the optical depth is unity).

1For a spatially resolved source; cf. section 1.3
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Section 7

Heating & Cooling in the Interstellar

Medium

7.1 Heating

In general terms, we can imagine two categories of heating processes in the di�use ISM:1

large-scale (mechanical, e.g., cloud-cloud collisions), and `microscopic' (absorption of photon

energy by gas or dust). The second dominates under most circumstances, but, in any event, we

should note that collisions normally enforce a Maxwellian velocity distribution of particles

(eqtn. 8.15), and the kinetic temperature serves as the most useful characterization of `the'

temperature.

7.1.1 Photoionization

The principal source of heating in the gas phase is photoionization � the ejection of an electron

from some species X (a parent atom, ion, or molecule):

X + hν → X+ + e−

The ejected electron carries away some energy which goes into heating the gas; that energy is

the di�erence between the photon energy and the ionization potential, hν − IP.

Ionized gas

In H ii regions, photoionization of hydrogen dominates (because of its abundance); the gas is

heated through the energy of freed electrons, E = hν − IH (where IH is the ionization potential
1We exclude molecular clouds from this treatment, where cosmic rays are a signi�cant heating source.
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of hydrogen, 13.6eV, corresponding to λ ≤ 91.2nm).

The heating rate G (for `Gain') � that is, the energy input to the gas (per unit volume per unit

time) � is

G = ṅI Q(= ṅR Q in equilibrium) [Jm−3 s−1] (7.1)

where Q is the average energy input into the gas per hydrogen photoionization (= hν − IH) and
ṅI , ṅR are the hydrogen ionization and recombination rates (ṅ meaning dn/ dt). As in

Section 5, we write the recombination rate as

ṅR = nenpαB(Te) [ m−3 s−1] (5.2)

where αB is the case B recombination coe�cient for hydrogen, for which numerical values are

given by equation (5.3).

Neutral gas

By de�nition, hydrogen is almost entirely neutral in the `di�use neutral clouds' (some

ionization is produced by cosmic rays and X-rays). This means there must be a negligible

density of photons with energies ≥13.6eV, and as a result only species with IP < 13.6eV can be

photoionized in neutral clouds.

Of such species, neutral carbon is the most important, with IP = 11.3eV, corresponding to

photons with wavelengths shortward of 110nm. (Neutral nitrogen and oxygen, for example,

have IPs of 14.4eV and 13.6eV, and so they remain largely un-ionized.)

However, photoionization of C0 (and other species) is not an e�ective heating mechanism,

because

(i) carbon is not very abundant (∼ 10−4 by number compared to hydrogen);

(ii) only photons with wavelengths in the narrow wavelength range 91.2�110.0nm can ionize;

(iii) The maximum energy release per ionization is only 13.6− 11.3eV = 2.3eV (and so the

average enegy release is only ∼1eV).

7.1.2 Photoejection

The dominant heating mechanism in the neutral ISM is, in fact, photoejection of electrons from

interstellar dust grains. The energy of the ejected electron is

Epe = hν −W

where hν is an average photon energy for the di�use interstellar radiation �eld and W is the

grain work function (analogous to the ionization potential). For typical values of hν ' 11eV
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and W ' 5eV, about 6eV is available, per photoejection, for heating the gas. Grain

photoejection is thus more e�ective than photoionization (primarily because W < IP).

The heating rate for photoejection, for grains of radius r, is given by

G =
∫ {

n(H)Ad(r)
∫ ν0

νW

[
Fν

hν
φd(ν, r) ype(ν, r)

]
Epe(ν) dν

}
dr (7.2)

Here

n(H) is the hydrogen-atom number density,

Ad(r) is the dust-grain projected surface area per hydrogen (so n(H)Ad is the total

dust-grain surface area per unit volume);

Fν/hν is the �ux of dphotons with frequency ν incident on the grain surface;

φd(ν) is the average photon absorption e�ciency of the grains (0 ≤ φd(ν) ≤ 1; this
measures how many incident photons are actually absorbed);

ype(ν) is the photoelectric e�ciency, or quantum yield (measuring how many electrons

are ejected per photoabsorption);

Epe(ν) is the mean energy of a photoejected electron as a function of energy of the

incident photon;

ν0 is the frequency corresponding to the IP of hydrogen (3.289× 1015 s−1), corresponding

in turn to the photon energy available in di�use, neutral clouds; and

νW is the frequency corresponding to the grain work function.

To see the physical signi�cance of eqtn. (7.2) we can rewrite it schematically as

G = n(H)Ad Fpe Epe (7.3)

where

n(H)Ad is the available grain area per unit volume of space,

Fpe is the �ux of photoejected electrons (per unit grain surface area), averaged over

frequency, for which observations of the di�use radiation �eld suggest

Fpe ' 2× 1011 ype φd m
−2 s−1.

where the numerical constant is a measure of the photon density in the di�use radiation

�eld, and
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Epe is the average energy of the ejected photoelectrons.

For the UV frequencies of interest, the mean dust absorption e�ciency is φd ' 1. Typical
values of ype are a few tenths, for average grain sizes and incident photon energies & 10eV).
However, smaller grains have larger yields; the mean free path for slowing a photoelectron

(before it can escape) is of order 10nm, and so, for dust grains of radius ∼ 5nm, ype ' 1.

Since small grains dominate the size distribution (eqtn. (4.1); as usual in astronomy, there are

lots of little 'uns and not many big 'uns), photoejection can be an e�cient heating mechanism.

If we adopt Epe = 5eV and Ad = 10−25 m2 per H atom, we �nd

G ' 2× 10−32 ype n(H) J s−1 (7.4)

where ype ' 0.1�1.0.

7.2 Cooling processes

Cooling processes fundamentally involve the conversion of kinetic energy (thermal motion) to

radiant energy (photons) which can escape from the system � the inverse of heating processes.

This typically occurs through collisional excitation, followed by radiative decay. Because

hydrogen and helium require rather high energies (i.e., high temperatures) for collisional

excitation from the ground state, cooling in interstellar gas is mostly through metal lines.

Moreover, if the radiative decay is in an `allowed' transition, the resulting photon is liable to be

re-absorbed elsewhere in the gas (in a photo-excitation), and so is ine�cient as a coolant. The

most important cooling lines therefore result from collisional excitation of `forbidden' (or

semiforbidden) transitions.

We designate the lower level of some species I with number density n(I), as i, and an excited

upper level as j. The collisional excitation rate from level i to j, resulting from collisions with

some particle X (typically an electron in ionized gas, or a hydrogen atom in di�use neutral

gas), is

ṅij = nX ni(I) Cij(Tk) [ m−3 s−1] (7.5)

where Cij(Tk) is the rate coe�cient for collisional excitation, at kinetic temperature Tk (with

typical values of order ∼ 10−4�10−2 m3 s−1).

We recall that this rate coe�cient (and hence the collisional excitation rate) has a Boltzmann-like

dependence on the kinetic temperature,

Cij(Tk) =

„
2π

Tk

«1/2
h2

4π2m
3/2
e

Ω(ij)

gi
exp


−∆Eij

kTk

ff
∝ 1√

Tk

exp


−∆Eij

kTk

ff
[m3 s−1] (2.7)
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If each excitation is followed by radiative decay (and emission of a forbidden-line photon of

energy ∆Eij), then the rate of energy loss is

Lij = ṅij∆Eij = nX ni(I) Cij(Te) ∆Eij [J m−3 s−1] (7.6)

Note that cooling is a two-body collisional process, and the loss rate depends on the product of

the densities of both bodies involved. Since each density depends on the overall density, cooling

is a density squared process; this contrasts with photo-heating, which only involves a single

particle (plus a photon).

7.2.1 Cooling of the neutral ISM

In the cool, neutral ISM:

(i) The electron densities are low (these are neutral clouds!), so it is impacts of atoms that are

most important. Hydrogen impacts dominate because of its abundance and relatively low mass

(resulting in relatively high speeds).

(ii) Because kinetic temperatures are low, the transitions that are excited in the di�use ISM

must be low-energy transitions, often corresponding to splitting of ground-state levels of the

atom by the �ne-structure interaction. (Not all atoms/ions undergo �ne-structure splitting of

the ground state; e.g., C0 and O0 do, but N0 doesn't.)

Because the transitions2 involve only small energy changes, the emitted photons are typically in

the far-IR:

Ion/Spectrum Transition Collider ∆E/k λ (µm)

Si+/[Si ii] 2P3/2 → 2P 1/2 (H), e 413K 34.8

O0/[O i] 3P1 → 3P 2 H, e 228K 63.2
3P0 → 3P 1 H, e 99K 146

C+/[C ii] 2P3/2 → 2P 1/2 H2, H, e 92K 158

One of the most important single coolants in di�use neutral clouds is the C ii 158-µm line, with

∆E/k = 92K. The cooling rate L (for `Loss') associated with the transition is, from eqtn. (7.6),

L(C ii) = const× n(H)n(C) T
−1/2
k exp(−92/Tk) m3 J s−1

(for excitation by neutral hydrogen), but we can write

n(C) = n(H)a(C)δ(C)

2Notation: (multiplicity)(L quantum number)(J)
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Figure 7.1: Schematic structure for O0

where a(C) is the abundance (by number) of carbon relative to hydrogen and δ(C) is the
depletion factor for gaseous carbon, which accounts for the fact that a signi�cant fraction of

carbon may be locked up in dust grains (and hence absent from the gas phase). Inserting

appropriate numerical values for the various constants (including an assumed `cosmic'

abundance for carbon) we obtain

L(C ii) = 8× 10−40 n2(H) δ((C)) exp(−92/T ) m3 J s−1

= 2.5× 10−40 n2(H) δ(C) m3 J s−1 at 80K. (7.7)

The depletion factor δ(C) is not particularly well known; clearly, δ(C) ≤ 1, and probably

δ(C) ∼ 0.1.

7.2.2 Cooling of the ionized gas

The importance of collisional excitation of forbidden lines of metals followed by radiative decay

as a coolant in H ii gas can be seen directly in the spectra of photoionized nebulae; the total

�ux in forbidden lines of metals exceeds that in the hydrogen lines. The e�ciency of collisional

excitation (in this case, by free electrons) is su�ciently high that it more than o�sets the low

abundances of metals compared to hydrogen.

We consider oxygen (one of the most important coolants of ionized gas) as an example. The IP

of O0, 13.6ev, is almost the same as that of hydrogen, so where hydrogen is ionized, so is

oxygen. (The IP of O+ is 35.1eV, so only the hotter O stars can produce O2+.)

All the labelled transitions in �g. 7.2 are forbidden (as electric dipole transitions; they can

occur as magnetic dipole transitions or electric quadrupole transitions, with transition

probabilities Aji ∼ 1 s−1 [compare with allowed transitions, Aji ∼ 108 s−1]). They are not

observed in the laboratory, where collisional de-excitation occurs before radiative decay can

take place. However, at the much lower densities of nebulae, radiative decays can occur more

rapidly than collisional de-excitations.
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Figure 7.2: Simpli�ed energy-level diagram for O+ (left) and O2+ (right). Unlabelled O ii and

O iii wavelengths are in nm.

Since the oscillator strengths are small the probability of a photon from a forbidden transition

being re-absorbed is small; these photons readily escape from (and hence cool) the nebula.

As in Section 7.2, if each excitation is followed by radiative decay (and emission of a

forbidden-line photon of energy ∆Eij), then the rate of energy loss is

Lij = ṅij∆Eij = ne ni(I) Cij(Te) ∆Eij [J m−3 s−1]. (7.6)

If we consider cooling due to collisional excitation to 2D5/2 and 2D3/2 in O+ (the 372.9 and

372.6 nm lines, �g. 7.2), then

L(O+) ' 1.1×10−33 y(O+)
n2(H)√

Te
exp

{
−3.89× 104

kTe

}
J m−3 s−1 (7.8)

where y(O+) is the ionization fraction, n(O+)/n(O); we have used ne ' n(H) and an oxygen

abundance by number n(H)/n(O) ≡ A(O) = 6× 10−4; and we assume negligible depletion onto

dust in the ionized gas (δ(O) = 0). Again note the strong (exponential) dependence of the

cooling rate on temperature.

53



7.3 Equilibrium Temperatures

7.3.1 The Di�use Neutral ISM

In equilibrium we require

G = L;

i.e., from eqtns. (7.4) and (7.7),

2× 10−32 ype n(H) = 8× 10−40 n2(H) δ(C) exp(−92/T ). (7.9)

For n(H) ∼ 108 m−3 and ype ' δ(C) ' 0.1 we obtain an equilibrium temperature of ∼70K � in

accord with observations. Although this is only a rough calculation, it does argue that we have

not overlooked any important processes, and that in the di�use, neutral ISM heating by

absorption of photons by dust grains (with subsequent photoejection of electrons) is balanced

by collisional excitation of low-lying levels in gas-phase species (followed by radiative decay).

7.3.2 Ionized gas

A pure hydrogen nebula

For illustration we �rst consider cooling of a pure hydrogen nebula by recombination (the

electron energies are too low for signi�cant cooling by collisional excitation of hydrogen). On

average, each recombination removes ∼ 3
2kTe (the average kinetic energy of the recombining

electrons) of energy from the gas. The total loss per unit volume per unit time is therefore

L =
3
2
kTe ṅR [Jm−3 s−1] (7.10)

In equilibrium L = G, and

G = ṅR Q; (7.1)

hence

Te =
2
3

Q

k
. (7.11)

where Q is the average energy input into the gas per hydrogen photoionization; its value

evidently depends on the radiation �eld emitted from the star,3

Q =

∫∞
ν0

4πJν
hν h(ν − ν0)dν∫∞
ν0

4πJν
hν dν

(7.12)

≡ 3
2
kTe,i (7.13)

3And on the distance from the star (because of the ν−3 dependence of the photoionization cross-section, which

means that photons near the ionization edge are absorbed close to the star; hence the radiation �eld hardens with

distance from the star)
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where Te,i is the initial kinetic temperature of the ejected photoelectron. As a rough

approximation, we suppose that the star radiates like a black body at temperature T∗; the

mean photon energy is then

hν = 2.7kT∗. (1.28)

but only those with energies greater than hν0 contribute to heating. Numerical integration of

eqtn. (7.12) shows that, roughly, Te,i ' T∗ whence

Q ' 3
2
kT∗ (7.14)

So we see, from eqtns. (7.11) and (7.14), that if cooling were solely by recombination we would

expect

Te ' T∗

Typical values for O-type stars are T∗ ' 30�50kK; the implied electron temperatures in the

nebula are much higher than observed values (∼ 104K). To reconcile observed and computed

temperatures, we need additional cooling processes.

For a pure hydrogen nebula, we have three possibilities:

Free-free radiation (bremsstrahlung),

Collisional excitation of hydrogen, and

Collisional ionization of hydrogen.

However, none of these processes are important coolants in practice. It's therefore necessary to

relax the assumption of a pure hydrogen nebula; the crucial cooling mechanism is collisional

excitation of forbidden lines of metals.

A more realistic calculation

As before (Section 7.3.1), to estimate an equilibrium temperature we set G = L; from

eqtns. (7.1) and (5.2), and using Q ' 3
2kT∗ (eqtn. 7.14),

G(= ṅI Q) = ṅR Q ' n2
eαB(Te)

3
2
kT∗

and using eqtn. (7.8) for the cooling rate L we �nd

T 1/4
e exp

{
−3.89× 104

kTe

}
= 3.75× 10−6 T∗

Numerically, Stellar Temp. Equlbm. Nebular

T∗ (K) Temp, Te (K)

2× 104 7500

4× 104 8600

6× 104 9300
which is in satisfactory agreement with observations.
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Note that over the entire factor-3 range of relevant stellar temperatures (cooler stars don't

produce ionized nebulae; hotter `normal' stars aren't found), the nebular temperature only

varies by ∼20%. Why? First, as Te increases, the recombination rate decreases, and so the

number density of neutral hydrogen goes down. A decrease in neutral hydrogen number density

reduces the rate of heating. Secondly, as Te increases, the cooling rate, eqtn. (2.7), goes up.

Both e�ects oppose the trend to increasing Te. This feedback mechanism, or `thermostat'

regulates the temperatures of H ii regions.

A notable consequence of of the importance of metals to cooling is that H ii regions in

low-metallicity environments (like the SMC) are signi�cantly warmer than those in our Galaxy.

Thermalization in the gas (for reference only)

A pure hydrogen nebula contains neutral hydrogen atoms, protons, and electrons.

Photoionization continuously injects energy into the nebula, through the energy of the

photoelectrons, which is determined by the energy distribution of ionizing photons (E = hν − I.P.)

� that is, by the e�ectve temperature of the ionizing star(s).

Following photoejection of the electron, collisions redistribute the electron energy among all

particles, thereby increasing the kinetic temperature. (The `collisions' are not physical impacts, of

course, but Coulomb interactions.) This happens so quickly (compared to

ionization/recombination timescales) that it can be regarded as essentially instantaneous, but the

energy redistribution is nonetheless hierarchical:

• The ejected electrons �rst share their energy with other electrons

• The electrons transfer energy to the protons, until equipartition of energy is achieved. (This

is a slower process because the mass di�erence between electrons and protons makes the

energy transfer ine�cient.)

• Finally, the neutrals (which are less a�ected by coulomb interactions) gain energy
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Section 8

Line Broadening

Absorption and emission lines in spectra are not in�nitely narrow, but are broadened by a

number of processes. These processes can be grouped under three broad headings:

� microscopic processes

� macroscopic processes

� instrumental processes

`Microscopic' processes are broadening mechanisms that occur on length scales smaller than the

photon mean free path. Typically such processes operate on an atomic (or molecular) scale,

and they are described in the following paragraphs. These microscopic processes change the

line strength (pro�le function) for a �xed number of absorbers, as discussed in the context of

interstellar lines in Section 9.1. They are the principal topic of this section.

Macroscopic broadening involves the redistribution of absorption through processes that

operate on length scales greater than the photon mean free path; an example is rotational

broadening of stellar absorption lines. They do not change the overall line strength, but merely

redistribute a �xed amount of absorption to di�erent wavelengths.

Instrumental broadening is a form of macroscopic broadening, but is usually considered

separately as it is not of astrophysical origin

At this point we should explicitly note, and thereby attempt to avoid, possible ambiguities in

the meaning of `absorption pro�le'. There is (i) the wavelength- (or frequency-)dependent

pro�le of an observed absorption line, and (ii) the frequency-dependent probability of

absorption by, or absorption cross-section of, some given absorber. Once we're aware of this
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di�erence, confusion is unlikely, but nevertheless these notes will generally stick to the

convention where the former is the `line pro�le' and the latter is the `absorption pro�le'.

We've already encountered the absorption pro�le aν in Section 2.2; it is, in e�ect, the

probability of an atom, or group of atoms, absorbing or scattering an incident photon, as a

function of frequency (or wavelength). It is often convenient to split the absorption pro�le into

two parts: a measure of overall line strength, and a description of the frequency dependence;

that is,

aν ≡ a0φν

where φν is the normalized pro�le function (or normalized absorption pro�le) � normalized

such its area, integrated over all frequencies, is unity.

The primary microscopic processes responsible for the �nite breadth of the absorption function

are:

(i) Natural broadening, intrinsic to the transition and resulting from the Heisenberg

uncertainty principle. This gives rise to a Lorentzian absorption cross-section.

(ii) Thermal (Doppler) broadening, due to random thermal motions of th atoms. For a

Maxwellian velocity distribution, the 1-D projected velocity distribution is Gaussian.

Other processes may contribute to line broadening; if these arise from physical changes on

length scales less than the photon mean free path, they change the pro�le function. Such

small-scale processes are generally brought together under the label of

(iii) `microturbulent' broadening � an ad hoc description of nonthermal motions. typically

assumed also to be characterized by a Gaussian line-of-sight velocity distribution.

As we shall see in Section 9, the foregoing processes in�uence the strength of a line pro�le, even

if all other parameters (such as number of absorbers) are �xed. Processes that act on length

scales longer than a photon mean free path (like stellar rotation) may change the shape, but

not the overall strength, of an absorption line.

8.1 Natural Line Broadening

From the Uncertainty Principle, any given atomic energy level i does not have a perfectly

de�ned energy Ei, but is rather a superposition of possible states spread1 around Ei. As a
1t∆E ' h/(2π), where t is the time an electron occupies the higher-energy state.
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result, transitions of electrons between any two energy levels do not correspond to any exact,

speci�c energy di�erence; equivalently, absorption of photons does not take place at one exact,

unique frequency/wavelength, but over a (small) range.

For reference, the classical result for an absorption cross-section,2 a(ω), is:

a(ω) =
8π e4

3m2
e c4

»
ω4

(ω2 − ω2
0)2 + γ2ω2

–
, (8.1)

where

ω = 2πν is the angular frequency,

ω0 = 2πν0 and ν0 is the line-centre frequency,

and

γ =

„
2 e2

3me c3

«
ω2

0

=

„
8π2 e2

3me c3

«
ν2
0

= 2.47× 10−22 ν2
0 s−1 (8.2)

is the classical damping constant.

This classical form (eqtn. (8.1)) applies in `real world' absorption lines, but with two modi�cations.

First, we replace the classical damping coe�cient, γ, by the quantum-mechanical damping

constant Γ, the sum of all transition probabilities for natural decay from each of the lower and

upper levels of the transition:

Γ = Γi + Γj (8.3)

where

Γi =
X
`<i

Ai`, (8.4)

Γj =
X
`<j

Aj`

and the Einstein coe�cient Ai` is the probability (in units of s−1) of a transition from the upper

level, i, to lower level `. The resulting pro�le for the absorption cross-section of a transition

between two states re�ects the intrinsic energy widths of both states.

Secondly, we incorporate the oscillator strength, f , as a correction/scaling factor, whence

eqtn. (8.1) becomes

aν =
8π e4

3m2
e c4

f

»
ν4

(ν2 − ν2
0 )2 + [Γ/(2π)]2ν2

–
. (8.5)

Line absorption is only important near the resonance frequency, ν0, so we can simplify eqtn. (8.5)

by substituting

(ν2 − ν2
0 )2 = (ν + ν0)

2(ν − ν0)
2

' (2ν0)
2(ν − ν0)

2 (8.6)

2Derived in PHAS2116?
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giving

aν '
2π e4

3m2
e c4

f

»
ν2
0

(ν − ν0)2 + [Γ/(4π)]2

–
(8.7)

or

aν ≡ a0 φν ;

i.e., the absorption cross-section can be expressed as a frequency-independent set of physical

constants (a0), and a frequency-dependent function,

φν =
C

(ν − ν0)2 + [Γ/(4π)]2
. (8.8)

The constant C is required to satisfy the normalization condition, and can be determined from it:Z ∞

0

φν dν ≡ 1 (8.9)

whence

1 = C

Z ∞

0

dν

(ν − ν0)2 + (Γ/4π)2

which is of the form

1 = C

Z ∞

0

dx

x2 + b2
(8.10)

with

x = (ν − ν0), b = Γ/4π. (8.11)

We can solve this as standard integral,Z +∞

−∞

dx

x2 + b2
=
π

b

giving

C =
Γ

4π2
(8.12)

Thus from eqtn. (8.8) we obtain our �nal result for the shape of the normalized absorption

cross-section for damping constant Γ:

φν =
Γ/(4π2)

(ν − ν0)2 + [Γ/(4π)]2
(8.13)

=
Γ

4π2(ν − ν0)2 + (Γ/2)2

which is, as anticipated, a natural, or Lorentz, function, with Γ the quantum-mechanical

damping constant (the sum of all transition probabilities for natural decay from each of the

lower and upper levels of the transition).
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Figure 8.1: Gaussian (solid) and Lorentz (dashed) pro�les, each normalized unit area and to

FWHM=1. The Lorentzian has much more extensive wings.

8.1.1 Peak value and width

We can characterize a function by its area (≡1 in this case), the peak (line-centre) value, and

the full-width at half maximum, FWHM. The maximum value of φν occurs when ν = ν0,

whence

φ0 = 4/Γ

(from eqtn. (8.13)). The value of the function at half-maximum is thus 2/Γ; to �nd the

corresponding full width at half maximum we therefore substitute φν = 2/Γ into eqtn. (8.13),

giving

Γ2

2
= 4π2(ν1/2 − ν0)2 +

(
Γ
2

)2

whence (ν1/2 − ν0)2 = Γ2/16π2, or

ν1/2 = ν0 ± Γ/4π.

The full-width at half maximum (FWHM), in frequency units, is 2ν1/2, or

∆ν1/2 =
Γ
2π

For allowed transitions, typical values might be in the region of ∼ 10−5 nm or less.
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8.2 Thermal Line Broadening

In a gas at kinetic temperature Tk, individual atoms will have random motions away from or

towards the observer, leading to red- or blue-wards frequency shifts.

If the (natural) absorption coe�cient for a stationary atom is aν at some frequency ν, then for an

atom moving at velocity v the same absorption occurs at observed frequency

νD = ν
“
1− v

c

”
= ν − ν

v

c

(where the `D' subscript can be taken as standing for Doppler, or Displaced). At a given observed

frequency ν, the total absorption coe�cient is the product of the absorption coe�cient of atoms

moving at some velocity, v, times the fraction of atoms at that velocity, f(v), integrated over

velocity:

aν =

Z +∞

−∞
a

“
ν − ν

v

c

”
f(v) dv. (8.14)

We want to express this thermally broadened cross-section aν as a function of the observable

quantity ν (instead of v), which requires some algebra.

Where the distribution of particle velocities is established by collisions (as is almost always the

case in normal astrophysical environments, like the interstellar medium, or in stars), the gas

particles follow a Maxwellian velocity distribution characterized by kinetic temperature Tk:

f(V ) dV = 4π

(
m

2πkTk

)3/2

V 2 exp
(
−1

2
mV 2

kTk

)
dV (8.15)

where V is the space velocity (V 2 = v2
x + v2

y + v2
z) for particles of mass m. The mean squared

velocity is〈
V 2
〉

=

∫∞
0 V 2 f(V ) dV∫∞

0 f(V ) dV

=
3kTk

m

and the mean kinetic energy is therefore

1
2
m
〈
V 2
〉

=
3
2
kTk

(which e�ectively de�nes `kinetic temperature'). The higher the temperature, or the less the

particle mass, the greater the mean velocity (and the spread in velocities).

For line formation, we're usually interested not in the space velocity, but in the line-of-sight

component of the velocity distribution; that is, the projection of eqtn. (8.15) onto a single axis,

which is a gaussian:

f(v) dv =
1√
π

(
m

2kTk

)1/2

exp
{
−mv2

2kTk

}
dv (8.16)
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for a particle of mass m at temperature Tk; then the (line of sight) thermal (doppler) width is

de�ned as

vth ≡
√

2kTk

m
(8.17)

or, in frequency units,

∆νth = ν0
vth

c
=

ν0

c

√
2kTk

m
(8.18)

Using eqtns. (8.16) and (8.17) in eqtn. (8.14) gives

aν =
1√
π

1

vth

Z ∞

−∞
a

“
ν − ν

v

c

”
exp


−mv2

2kTk

ff
dv (8.19)

We now switch between velocity space and frequency space by setting

ν′ ≡ ν
v

c

giving, from eqtn. (8.19),

aν =
1√
π

1

∆νth

Z ∞

0

a
`
ν − ν′

´
exp

(
−

„
ν′

∆νth

«2
)
dν′ (8.20)

The natural line width is much less than the thermal width and so here � where we're focussing on

the form of the thermal broadening, and not the combined e�ects of natural+thermal � it can be

approximated here by a δ function (i.e., an in�nitely narrow intrinsic line of unit area) at the

doppler-shifted position,

aν ' a0 δ(ν − ν0).

This means the integral has to be evaluated at only a single point, and gives our �nal form for

the thermally (or doppler) broadened pro�le,

aν =
a0√
π

1
∆νth

exp

{
−
(

ν − ν0

∆νth

)2
}

, (8.21)

where all the terms are constant except (ν − ν0), for given m and Tk. Eqtn. (8.21) therefore

again has the general form

aν = a0 φν ,

with

φν =
1√
π

1
∆νth

exp

{
−
(

ν − ν0

∆νth

)2
}

. (8.22)

Note that φν is a normalized gaussian which already satis�es∫ ∞

0
φν dν = 1

(and that, in e�ect, the algebra we have carried out has simply converted a gaussian velocity

distribution of particles into a gaussian pro�le for the absorption cross-section).
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8.2.1 Peak value and width

The peak value of φν , at ν = ν0, is given by eqtn. (8.22)

φ0 =
1√
π

1
∆νth

=
1√
π

c

ν0

1
vth

=
1√
π

c

ν0

(
m

2kTk

)1/2

. (8.23)

At half maximum φν(1/2) = 0.5φ0:

1
2 ���������
[

1√
π

c

ν0

√
m

2kTk

]
=

���������
[

1√
π

c

ν0

√
m

2kTk

]
exp

{
− mc2

2kTk

(
ν1/2 − ν0

ν0

)2
}

(where the left-hand side comes from eqtn. 8.23 and the right-hand side from eqtns. 8.22

and 8.18), giving

(
ν1/2 − ν0

)2 = ν2
0

(
2kTk

mc2

)
ln 2

so that

FWHM =
2ν0

c

[
2kTk

m
ln 2
]1/2

i.e.,∆ν1/2 = 2(ln 2)1/2 ∆νth

= 1.665 ∆νth

in frequency units; or

∆v = ∆ν
c

ν0
= 1.665∆νth

c

ν0

= 1.665∆vth
�
��

ν0

c �
��
c

ν0

i.e.,

∆v = 1.665
(

2kTk

m

)1/2

For example, for Hα (n = 3→2), m = m(H):

at 60K, ∆v = 1.7 km s−1(∆λ = 0.0036nm)

at 6000K, ∆v = 17 km s−1(∆λ = 0.036nm)

(Heavier elements will have smaller thermal line widths. For comparison, the natural width for

Hα is ∼ 2× 10−5nm, justifying our `δ function' approximation.)

64



8.3 `Turbulent' Broadening

The �nal broadening process is not well de�ned physically; it is, if you like, `the other stu�'.

This might include internal motions within an interstellar cloud, or even non-physical e�ects

(like unrecognized overlapping or unresolved lines from di�erent clouds). Without a �rm

physical model for these additional sources of velocity dispersion, it is customary to adopt a

gaussian line-of-sight velocity distribution, largely as a matter of convenience (and because this

assumption appears consistent with observation in general � which doesn't make it true!).

We know that the root-mean-square (rms) line-of-sight (1-D) thermal doppler velocity

dispersion arising from a Maxwellian velocity distribution is

vth ≡
√

2
kTk

m
(8.17)

We characterize the line-of-sight turbulent velocity distribution as gaussian, with an rms value

vturb; then the total doppler broadening is obtained simply by adding the thermal and

turbulent widths in quadrature,

v2
D = v2

turb + v2
th

and the form of the gaussian component of the absorption pro�le is unchanged.

In stellar physics, this turbulence is usually described as `microturbulence', and is supposed to

operate on length scales shorter than the photon mean free path. (Processes operating on

length scales much longer than the mean free path modify the observed line pro�le, but not the

absorption pro�le. Where a complete physical description of such large-scale processes does not

exist, or is unwieldy � as in surface `granulation' or convective cells � they may be characterised

as `macroturbulence'.) In studies of the interstellar medium, it's customary to use a

line-broadening parameter b, de�ned as

b =
[
2
kTk

m
+ 2v2

turb

]1/2

=
[
v2
th + 2v2

turb

]1/2
(8.24)

in the interstellar case discussed in Section 9; clearly, as

vth → 0, b →
√

2 vturb

vturb → 0, b → vth.
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As for thermal broadening,

FWHM = 2(ln 2)1/2 b

= 1.665 b

= 1.665
[
2kTk

m
+ 2v2

turb

]1/2

(8.25)

Can vturb and vth be separately determined? In principle, yes, because all elements should

share the same turbulent broadening, but will undergo di�erent (mass-dependent) thermal

broadening. In practice, this is very di�cult, because the turbulence is frequently the dominant

term.

8.4 Combined results

Combining (convolving) gaussian and lorentzian gives voigt.
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Section 9

Interstellar absorption lines

We can study di�use interstellar clouds through the absorption lines they produce in the

spectra of background stars. Because of the low densities in the ISM, most atoms are in the

ground state; that is, the con�guration with the lowest possible energy. As a consequence, most

atomic or ionic lines observed in the ISM are resonance lines, corresponding to transitions of a

valence electron from the ground state to some (usually) low-lying excited state. In practice,

this photo-excitation is quickly followed by a de-excitation back to the ground state, with

emission of a photon of almost the same wavelength as the incident photon � a scattering.

These resonance lines generally occur in the UV part of the spectrum, shortwards of 3000Å or

so, because the energy gaps from ground states to �rst excited states are quite large (although

there are a few important transitions in the optical � e.g., the Ca H & K lines at 3933.7,

3968.5Å and the Na D lines at 5890.0, 5895.9Å).

OB stars make particularly good background sources for interstellar-line studies because

Their spectral energy distributions peak in the UV;

They are intrinsically luminous (so are observable over relatively large distances)

They typically have rather broad photospheric lines (so that the narrow interstellar lines

are easily identi�ed and measured).
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Figure 9.1: Some interstellar lines in the UV spectrum of HD 50896.
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Figure 9.2: The equivalent width.
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9.1 The transformation between observed and theoretical

quantities

9.1.1 Equivalent width

Because of the low temperatures of di�use interstellar clouds, the thermal line broadening is

small (sec. 8.2), and the lines are intrinsically narrow (∼few km s−1) � too narrow to be

resolved by typical spectrographs. Since we can't usually study the intrinsic spectral-line

pro�les, it's often necessary to characterize the absorption by a simple line-strength

measurement, the equivalent width.

[Equivalent width is conserved through instrumental broadening, because that broadening is

characterized by a function ϕν (or ϕλ) which obeys the normalization∫
ϕν dν ≡ 1;

that is, instrumental e�ects just redistribute equivalent width over frequency, without changing

the actual value.]

The equivalent width, Wλ, is de�ned as

Wλ =
∫ ∞

0

(
IC
λ − Iλ

IC
λ

)
dλ

=
∫ ∞

0

(
1− Iλ

IC
λ

)
dλ (9.1)

where IC
λ is the (interpolated) continuum intensity1 and Iλ the actual intensity through the

spectral-line pro�le; the quantity Iλ/IC
λ is usually called the `recti�ed intensity' (and is,

obviously, dimensionless).

An equivalent `frequency' version can be constructed:

Wν =
∫ ∞

0

(
IC
ν − Iν

IC
ν

)
dν

=
∫ ∞

0

(
1− Iν

IC
ν

)
dν. (9.2)

The formal integration limits 0�∞ apply only to the line of interest; they can be used in a

theoretical calculation, but in practice for an observation the integration is truncated at the

edges of the line (the term in brackets being zero elsewhere).

1This is extremely commonplace usage, but rather sloppy in the context of the nomenclature outlined in

Section 1. The `intensity' here is nothing to do with the speci�c intensity, and is more closely allied to the

physical �ux. This `intensity' is measured in units of `counts per second per pixel', or something similar, rather

than being in SI units.
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Physically, Wλ is the width (in wavelength units) of the continuum that has the same area as

the line. The total �ux2 in the line is Wλ × IC
λ . By convention (and in agreement with the

above de�nitions), absorption-line equivalent widths take positive values, and emission lines

negative ones.

Equivalent Width to Optical Depth

The equivalent width of a line is evidently related to the optical depth along the line of sight.

Although equivalent width is usually expressed in wavelength units, optical depth is usually

expressed in frequency units. We can convert between the two by noting that

∆λ = ∆ν
dλ
dν

= ∆ν
c

ν2

= ∆ν
λ2

c
;

(where a minus sign has been compensated by an implicit change in ordinate direction;

wavelength increases as frequency decreases) i.e.,

Wλ = Wν
λ2

c
.

Recalling that Iν dν = Iλ dλ, we can then write eqtn. (9.2) as

Wλ =
λ2

0

c

∫ ∞

0

(
1− Iν

IC
ν

)
dν

or, since Iν = IC
ν exp {−τν} (eqtn. (3.3)) in the circumstances appropriate to interstellar-line

formation,

Wλ =
λ2

0

c

∫ ∞

0
(1− exp {−τν}) dν (9.3)

Eqtn. (9.3) is the basic relationship between Wλ and optical depth τν (customarily expressed in

wavelength and frequency units, respectively).

Optical Depth to Column Density

What we're really interested in is the column densities of di�erent species � that is, the number

of absorbers per unit area along a given sightline (in practice, normally measured in units of

cm−2). We know that

τν =
∫ D

0
kν ds =

∫ D

0
aν ni(s) ds (2.5)

2Again, loose terminology � this is not (normally) the physical �ux.
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with D the distance over which absorption occurs, and where kν is the `volume' opacity3 for

transition i → j, with aν the absorption cross-section (m2) and ni (m−3) the number density

(so τ is dimensionless).

For a line transition from levels i to j the absorption cross-section is given by

aν(ij) =
c2

8πν2

gj

gi
Ajiφν(s) (= a0φν(s)) (9.4)

where gi, gj are statistical weights for the lower, upper levels; Aji is the emission transition

probability (Einstein coe�cient); and φν(s) is the normalized pro�le function at position s. It

is usual, when considering absorption lines, to work not with the Einstein A coe�cient, but

with the absorption oscillator strength fij ; the two are related by

Aji =
8π2e2ν2

mec3

gi

gj
fij . (9.5)

so that

aν(ij) =
πe2

mec
fijφν(s). (9.6)

Substituting eqtn. (9.6) into the de�nition of optical depth, eqtn. (2.5),

τν =
πe2

mec
fij

∫ d

0
φν(s)ni(s) ds

or, if φν is independent of s,

=
πe2

mec
φνNifij (9.7)

where N is the `column density', the number of particles in a column of unit cross-section from

the observer to the background source,∫ d
0 ν(s)ni(s) ds.Inpractice, columndensityisusuallymeasuredinunitsof ‘cm−2'.

Eqtn. (9.7) is the relationship between optical depth (as a function of frequency) and column

density; with

Iν = IC
ν exp {−τν} (3.3)

it gives us the line pro�le; and on integrating the line pro�le (eqtn. (9.3) it de�nes the

relationship between the equivalent width, Wλ (an observable quantity), and the number of

absorbing atoms, N (a quantity of astrophysical interest) � the so-called Curve of Growth

(CoG).

Eqtn. (9.7) shows that the optical depth (hence the line pro�le) also depends on φν � i.e., on

the shape of the absorption pro�le, In other words, at some given frequency (e.g., the line

centre) the optical depth can be greater or smaller, depending on φν , for �xed N.
3In units of m−1; recall that one can also de�ne opacity κ in terms of area per unit mass.
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Line formation (for reference only)

For a pure absorption line

Iλ = Iλ(0) exp(−τλ) (3.3)

and (for a homogeneous medium)

τλ = Niaλ (9.8)

The absorption pro�le is, in general, the convolution of the natural broadening and the

line-of-sight velocity distribution; that is, if the number of atoms in the column with velocities in

the range v to v + dv is Niψ(v)dv then

aλ =
λ4

8π2c

gj

gi
Aji

Z +∞

−∞

Γλ

Γ2
λ + [λ− λ0(1 + v/c)]2

ψ(v)dv (9.9)

where g is the statistical weight, Aji is the transition probability, Γ is the damping constant,

Γλ = Γλ2/c and λ0 is the rest wavelength.

For the special case of a Gaussian line-of-sight velocity dispersion

ψ(v) =
1

b
√
π

exp


−(v − v0)

2

b2

ff
and eqtn. (9.9) reduces to

aλ =
λ4

8π2c

1

b
√
π

gj

gi
Aji

Z +∞

−∞

α exp(−y2)

α2 + (v − y)2
dy (9.10)

where

α = λcΓ/b

y = (v − vc)/b

and the subscript c indicates the line-centre wavelength/velocity. The Voigt function is

H(α, v) =
1

π

Z +∞

−∞

α exp(−y2)

α2 + (v − y)2
dy

so that eqtn. (9.10) further reduces to

aλ =
λ4

8πc

1

b
√
π

gj

gi
AjiH(α, v)

The transition probability is related to the oscillator strength by

Aji =
8π2e2ν2

mec

gi

gj
fij

so our �nal expression for the absorption coe�cient is

aλ =
λ2/c

b
√
π

πe2

mec
fijH(α, v)

where

a = λcΓ/b

v = c(λ− λc)/bλc

which allows us to calculate theoretical line pro�les.

72



9.2 Interstellar Curve of Growth

The `curve of growth' (CoG) is, essentially, a plot of line strength (expressed as equivalent

width, Wλ) as a function of column density of absorbers(N). It is a standard tool in interstellar

absorption-line studies. We �rst consider the general form of the CoG

9.2.1 Weak lines: optically thin limit

We �rst recall that

Wλ =
λ2

0

c

∫ ∞

0
(1− exp {−τν}) dν (9.3)

For weak lines, τν << 1; i.e., (1− exp(−τν)) ' τν , and so, from eqtn. (9.3),

Wλ '
λ2

0

c

∫ ∞

0
τν dν

or, using eqtn. (9.7),

Wλ

λ0
=

λ0

c

πe2

mec
Nifij

∫
φνdν

=
πe2

mec2
Niλ0fij (9.11)

A plot of log(Wλ/λ0) versus log(Nifijλ0) is a 1:1 straight line - this is the linear part of the

CoG. Doubling N doubles Wλ for an optically thin line, regardless of any details of the shape of

the spectral-line pro�le. Unfortunately, optically thin lines are often too weak to be reliably

measured.

9.2.2 General case without damping � �at part of the CoG.

As the line strength increases, the line centre (doppler core) becomes `black' � all the available

light has been removed from the spectral-line pro�le, and an increase in N produces no

signi�cant change in Wλ. The line is said to be saturated, and this is correspondingly the

`saturated part of the CoG'. (Eventually the damping wings become important and the line

strength again increases.) The details do now depend on the spectral-line pro�le � for an

intrinsically broader spectral line (e.g., high Tk) the absorption is spread out over a greater

velocity range, and a larger N is required before saturation becomes important.

Further analytical study becomes cumbersome, but we can illustrate the general role of broadening

on the spectral-line pro�le with an analytic demonstration of the intuitively obvious fact that more

strongly broadened lines saturate at higher N values. We know that

τν =
πe2

mec
Ni fij φν (9.7)
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while from eqtn. (8.23), for a thermally broadened line,

φ0 =
1√
π

c

ν0

1

vD

which we can generalize to include gaussian turbulence (eqtn. (8.24)) to write

φ0 =
1√
π

λ0

b
.

Then the line-centre optical depth is

τ0 ≡ τν0 =
πe2

mec
Nifijφ0

=

√
πe2

mec

Nifijλ0

b
(9.12)

which explicitly shows the dependence of the spectral-line pro�le on the broadening parameter b �

for given N , the larger the b value, the smaller the line-centre optical depth τ0 (and the smaller the

degree of saturation). These e�ects are illustrated in Fig. 9.3

Writing ∆v/(b/λ0) as x, then, from eqtn. (9.3), after some manipulation we obtain

Wλ =
λ2

0

c

b

λ0

Z +∞

−∞

`
1− exp

`
−τ0 exp(−x2)

´´
dx (9.13)

For large τ the integral in eqtn. (9.13) (which has to be evaluated numerically) approaches

Wλ ∝ (ln τ0)1/2.

The dependence of Wλ on τ0 (i.e., on N ; eqtn. (9.12)) is thus very small, and this region is

therefore called the �at part of the CoG.4

9.2.3 Damping dominates � square root part of the CoG.

For very strong lines the gaussian core of the pro�le is saturated, but with increasing optical

depth the Lorentzian damping wings of the Voigt pro�le,

φν =
Γ

4π2(ν − ν0)2 + (Γ/2)2
, (8.13)

4If we expand the �rst of the exponents in eqtn. (9.13) in a Taylor series, we get

Wλ = π1/2bλ0

„
τν0

1!
√

1
−

τ2
ν0

2!
√

2
+

τ3
ν0

3!
√

3
− . . .

«
(Lundenburg 1930, Zs. Phys 65, 200) Then, using eqtn. (9.12), for small τν0 we get

Wλ

λ0
= π1/2bτν0 =

πe2

mec
Nifijλ0

which shows that this general form recovers the optically thin limit, eqtn. (9.11).
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become important.5 When the damping wings dominate, it can be shown (with considerable

algebra) that

Wλ

λ0
∝
(
λ2

0Ni

)1/2

This delineates the square-root section of the CoG. Note that this region of the CoG is again

independent of b (physically, no reasonable amount of gaussian turbulence is capable of

desaturating the pro�le).

In the di�use ISM, lines are not normally strong enough for damping wings to become

signi�cant (because stars behind large columns are heavily extinguished and therefore hard to

observe). However, the resonance line of hydrogen, at 121.6nm, is an important exception, and

is nearly always on the square root part of the CoG.

9.3 The Empirical Curve of Growth

A theoretical curve of growth is, in practice, a plot of log(Wλ/λ) vs. log(Nfλ). Observationally,
we can measure Wλ, and look up λ0 and fij � but we don't know the column density, N .

In order to derive the abundances of species in the gas phase of the ISM, we construct an

empirical CoG. From observations of equivalent widths of di�erent lines of a given atomic

species, we plot log(Wλ/λ0) against log(fijλ0) for observed lines.

In principle, we should construct separate CoG for each species. This is because each element

has a di�erent mass; so for a given temperature, each element will have a di�erent b value.

Also, we have no a priori reason to suppose that di�erent ions of a given element are formed at

the same temperatures, or necessarily, in the same place. However, in practice the principal

broadening process is often `turbulence' not thermal, and so we may combine observations of

di�erent dominant ions (in the di�use neutral ISM, those with IP<13.6eV). We do this by

overlaying various empirical CoGs, and sliding them along the horizontal axis to obtain a

smooth `global' curve. This gives a much better sampling of the empirical CoG, since normally

we only have a few lines of any one species, typically covering a small range in fλ.

If the shape of the curve indicates that the weaker lines are on the linear part of the CoG (N

independent of b) then we can determine N for those lines. Thus the empirical CoG can, in

principle, yield column densities for all species on the CoG, independently of any model

assumptions.

5The fwhm of the naturally-broadened Lorentzian is typically much narrower than that of the thermally-

broadened Gaussian core. However, the relative strength of the Lorentzian at large distances from the line centre

is much greater than that of the gaussian, so for large line strengths can dominate in the wings.
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Unfortunately, lines weak enough to be certainly unsaturated are, in practice, often so weak as

to be undetectable. We must then resort to overlaying the empirical CoG on a family of

theoretical CoGs (calculated for a range of b values). It is normally possible to �nd a horizontal

shift between the empirical and theoretical CoGs which gives a `best �t'. That shift yields

log N , the column density; and, as a by-product, b is also constrained. As before, log N is most

reliably determined if lines are observed on the steepest part of the CoG, i.e. on or near the

linear part. If lines are present only on the �at part of the CoG there will be large uncertainties

on log N ; if there is only one line observed, the best we can do is use the linear formula to

obtain a lower limit to N .

9.3.1 Results

Finally, what do we learn from such studies? Typically, we obtain column densities for a range

of elements occuring in the di�use, neutral ISM.6 We can derive the relative abundances

(ideally, relative to hydrogen), and compare them to the relative abundances in other

environments � especially the sun and stars.

Typically, we �nd that most atoms of particular elements (like silicon, calcium, and iron) are

apparently missing, or `depleted', from the gas phase. Where are these missing atoms? We can

assume that they are locked up in dust grains. This assumption is justi�ed in a number of

ways; for example, in high-velocity clouds, gas-phase abundances are often observed to be much

more nearly solar. This is consistent with the idea that the clouds are accelerated by passing

shock waves (e.g., from supernova remnants), which also shatter, or `sputter', the dust grains,

returning elelemnts to the gas.

6Any given element may occur in a range of ionization stages, but there will normally be a `dominant ion'. In

the di�use neutral ISM, this will be the �rst stage required more than 13.6eV for further ionization.
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Figure 9.3: Calculated spectral-line pro�les for increasing column densities and two di�erent b

values. Increasing line strengths correspond to column densities of 11, 13, 15, and 17 dex cm−2.
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Figure 9.4: Theoretical curves of growth, illustrating the dependence on b.

Figure 9.5: An empirical curve of growth for di�erent lines in the spectrum of HD 50896. The

solid line is a theoretical CoG with b = 10.5 km s−1.
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Figure 9.6: Depletions in the line of sight towards HD 50896 in two velocity systems. Upper panel:

a `low velocity' system, representing a typical di�use interstellar sightline. Some elements, such

as aluminium and calcium, are depleted by almost two orders of magnitude with respect to solar

values (that is, something like 99 atoms out of every 100 are `missing' � locked up in dust grains),

while others, such as sulphur and zinc, are essentially undepleted. Lower panel: a `high velocity'

system, with a line-of-sight velocity of ∼75 km s−1. No elements are signi�cantly depleted,

because dust grains have been destroyed in a high-velocity shock.

79



9.4 Summary

We've covered rather a lot of material in this section, so it's worth reviewing the major points

(so we can see the wood as well as the trees. . .).

1. Bound-bound transitions in di�use, interstellar gas clouds produce absorption lines in the

spectra of background sources. These absorption lines can tell us something about the

clouds � most importantly, the abundances of elements in the gas.

2. Of available background sources, OB stars are particularly useful for investigating the

Galactic interstellar medium. (Distant quasars are often used in exactly the same way to

investigate gas clouds at cosmological distances, and how metallicity evolves with age in

the universe.)

3. Increasing column density (i.e., increasing numbers of absorbers along the line of sight)

produces increasingly strong absorption lines. Column density is measured by N , the

number of atoms (of a particular element in a particular stage of ionization), and line

strength is measured by Wλ, the equivalent width (because the absorption lines are

usually too narrow to measure their shapes in detail). In practice we don't simply plot N

vs. Wλ (one good reason being that N for a given species is a �xed quantity along any

given sightline), but instead plot log(Nfλ) vs. log(Wλ/λ) � the Curve of Growth.

4. The Curve of Growth has three main sections:

• The linear part, for weak lines (Wλ/λ ∝ Nfλ).

• The �at part, for intermediate-strength (saturated) lines (Wλ/λ ∝ [ln(Nfλ)]1/2 � a

very weak dependence)

• The square-root part, for strong (damped) lines (Wλ/λ0 ∝
(
λ2

0Ni

)1/2).

5. We can calculate a theoretical CoG (for a given line-of-sight velocity distribution of

absorbers) or construct an empirical one. From the linear or square-root parts of the

empirical CoG, or (less reliably) by comparison with the theoretical CoG, we can

determine column densities in the line of sight. By comparing column densities of

dominant ions of di�erent elements (or by making corrections for unobserved ion stages)

we can determine relative abundances.

6. We �nd that many elements are signi�cantly depleted compared to solar abundances. The

inference is that the `missing' elements are locked up in the dust grains.
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PART IV: STARS � I



Section 10

The Equations of Stellar structure

10.1 Hydrostatic Equilibrium

Pd+P

d r

dA

r

P

Consider a volume element, density ρ, thickness dr and area dA, at distance r from a central

point.

The gravitational force on the element is

Gm(r)
r2

ρ(r) dA dr

where m(r) is the total mass contained within radius r.

In hydrostatic equilibrium the volume element is supported by the (di�erenc in the) pressure

force, dP (r) dA; i.e.,

dP (r) dA =
−Gm(r)

r2
ρ(r) dA dr
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or

dP (r)
dr

=
−Gm(r)ρ(r)

r2
= −ρ(r) g(r) (10.1)

or

dP (r)
dr

+ ρ(r) g(r) = 0

which is the equation of hydrostatic equilibrium. (Note the minus sign, which arises because

increasing r goes with decreasing P (r).)

More generally, the gravitational and pressure forces may not be in equilibrium, in which case

there will be a nett acceleration. The resulting equation of motion is simply

dP (r)
dr

+ ρ(r) g(r) = ρ(r) a (10.2)

where a is the acceleration, d2r/ dt2.

Note that we have not speci�ed the nature of the supporting pressure; in stellar interiors, it is

typically a combination of gas pressure,

P = nkT,

and radiation pressure

PR =
4σ

3c
T 4 (1.31)

(Section 10.8). Turbulent pressure may be important under some circumstances.

10.2 Mass Continuity

r rd

R
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The quantities m(r) and ρ(r) in eqtn. (10.1) are clearly not independent, but we can easily

derive the relationship between them. The mass in a spherical shell of thickness dr is

dm = 4π r2 dr × ρ(r).

Thus
dm
dr

= 4πr2ρ(r); (10.3)

the Equation of Mass Continuity.1

Spherical symmetry

Implicit in eqtn. (10.3) is the assumption of spherical symmetry. This assumption is reasonable as

long as the centrifugal force arising from rotation is small compared to Newtonian gravity The

centrifugal force is a maximum at the equator, so for a star of mass M∗ and equatorial radius Re

our condition for spherical symmetry is

mv2
e

Re
= mω2Re �

GM∗m

R2
e

for a test particle of mass m at the equator, where the rotational velocity is ve (equatorial angular

velocity ω); that is,

ω2 � GM∗

R3
e

, or, equivalently, (10.4)

ve �
r
GM∗

Re
giving (10.5)

Prot � 2π

ffir
GM∗

R3
e

(10.6)

This condition is true for most stars; e.g., for the Sun,

Prot ' 25.4 d (at the equator);

2π

ffir
GM∗

R3
e

= 104 s ' 0.1 d.

However, a few stars (such as the emission-line B stars) do rotate so fast that their shapes are

signi�cantly distorted. The limiting case is when the centrifugal acceleration equals the

gravitational acceleration at the equator:

GM∗m

R2
e

=
mv2

max

Re
,

or

vmax =

r
GM∗

Re

Equating the potential at the pole and the equator,

GM∗

Rp
=
GM∗

Re
+
v2
e

2

whence Re = 1.5Rp in this limiting case.

1Note that this returns the right answer for the total mass:

M∗ =

Z R∗

0

dm =

Z R∗

0

4πr2ρ(r)dr =
4

3
πR3ρ(R)
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Moving media

Equation 10.3 applies when hydrostatic equilibrium holds. If there is a �ow (as in the case of

stellar winds for example), the equation of mass continuity re�ects di�erent physics. In spherical

symmetry, the amount of material �owing through a spherical shell of thickness dr at some radius

r must be the same for all r. Since the �ow at the surface, 4πR2
∗ρ(R∗)v(R∗) is the stellar mass-loss

rate Ṁ , we have

Ṁ = 4πr2ρ(r)v(r)

10.3 Energy continuity

The increase in luminosity in going from r to r + dr is just the energy generation within the

corresponding shell:

dL = L(r + dr)− L(r)

= 4πr2dr ρ(r)ε(r);

i.e,

dL
dr

= 4πr2 ρ(r)ε(r) (10.7)

where ρ(r) is the mass density and ε(r) is the energy generation rate per unit mass at radius r.

Stars don't have to be in energy equilibrium moment by moment (e.g., if the gas is getting

hotter or colder), but equilibrium must be maintained on longer timescales.

Evidently, the stellar luminosity is given by integrating eqtn. (10.7):

L =
∫ R∗

0
4πr2ρ(r)ε(r) dr

if we make the approximation that the luminosity (measured at the surface) equals the

instantaneous energy-generation rate (in the interior). This assumption holds for most of a

star's lifetime, since the energy di�usion timescale is short compared to the nuclear timescale

(see discussions in Sections 12.3 and 12.4).

The equations of hydrostatic equilibrium (dP/dr), mass continuity (dm/dr), and energy

continuity (dL/dr), can be used (together with suitable boundary conditions) as a basis for the

calculation of stellar structures.

10.4 Virial Theorem

The virial theorem expresses the relationship between gravitational and thermal energies in a

`virialised system' (which may be a star, or a cluster of galaxies). There are several ways to
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obtain the theorem (e.g., by integrating the equation of hydrostatic equilibrium; see

Section 10.4); the approach adopted here, appropriate for stellar interiors, is particularly direct.

The total thermal energy of a star is

U =
∫

V

(
3
2
kT (r)

)
n(r) dV (10.8)

(mean energy per particle, times number of particles per unit volume, integrated over the

volume of the star); but

V =
4
3
πr3 whence dV = 4πr2 dr

and

P = nkT

so

U =
∫ R∗

0

3
2
4πr2P (r) dr.

Integrating by parts,

U =
3
2

[
4πP (r)

r3

3

]R∗

0

− 3
2

∫ PS

PC

4π
r3

3
dP

= 0 −
∫ PS

PC

2πr3 dP

where PS , PC are the surface and central pressures, and the �rst term vanishes because PS ' 0;
but, from hydrostatic equilibrium and mass continuity,

dP =
−Gm(r)ρ(r)

r2
× dm

4πr2ρ(r)
(10.1, 10.3)

so

U =
∫ M∗

0
2πr3 Gm(r)

r2

dm
4πr2

=
1
2

∫ M∗

0

Gm(r)
r

dm. (10.9)

However, the total gravitational potential energy (de�ned to be zero for a particle at in�nity) is

Ω = −
∫ M∗

0

Gm(r)
r

dm; (10.10)

comparing eqtns. (10.9) and (10.10) we see that

2U + Ω = 0 � the Virial Theorem. (10.11)
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An alternative derivation

From hydrostatic equilibrium and mass conservation,

dP (r)

dr
=
−Gm(r)ρ(r)

r2
, (10.1)

dm

dr
= 4πr2ρ(r) (10.3)

we have that

dP (r)

dm
=
−Gm(r)

4πr4
.

Multiplying both sides by 4/3πr3 ≡ V gives us

V dP = −4

3
πr3

Gm

4πr4
dm

= −1

3
Gmr dm.

Integrating over the entire star,Z R∗

0

V dP = PV |R∗
0 −

Z V (R∗)

0

P dV ,=
1

3
Ω

but P → 0 as r → R∗, so

3

Z V (R∗)

0

P dV + Ω = 0.

We can write the equation of state in the form

P = (γ − 1)ρu

where γ is the ratio of speci�c heats and u is the speci�c energy (i.e., internal [thermal] energy per

unit mass);

3

Z V (R∗)

0

(γ − 1)ρu dV + Ω = 0.

Now ρu is the internal energy per unit volume, so integrating over volume gives us the total

thermal energy, U ; and

3(γ − 1)U + Ω = 0.

For an ideal monatomic gas, γ = 5/3, and we recover eqtn. (10.11).

10.4.1 Implications

Suppose a star contracts, resulting in a more negative Ω (from eqtn. (10.10); smaller r gives

bigger |Ω|). The virial theorem relates the change in Ω to a change in U :

∆U = −∆Ω
2

.

Thus U becomes more positive; i.e., the star gets hotter as a result of the contraction. This is

as one might intuitively expect, but note that only half the change in Ω has been accounted for;

the remaining energy is `lost' � in the form of radiation.

Overall, then, the e�ects of gravitational contraction are threefold (in addition to the trivial

fact that the system gets smaller):
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(i) The star gets hotter

(ii) Energy is radiated away

(iii) The total energy of the system, T , decreases (formally, it becomes more negative � that

is, more tightly bound);

∆T = ∆U + ∆Ω

= −∆Ω/2 + ∆Ω

=
1
2
∆Ω

These results have an obvious implication in star formation; a contracting gas cloud heats up

until, eventually, thermonuclear burning may start. This generates heat, hence gas pressure,

which opposes further collapse as the star comes in to hydrostatic equilibrium.

10.4.2 Red Giants

The evolution of solar-type main-sequence stars is a one of the most dramatic features of stellar

evolution. All numerical stellar-evolution models predict this transition, and yet we lack a

simple, didactic physical explanation:

�Why do some stars evolve into red giants though some do not? This is a classic

question that we consider to have been answered only unsatisfactorily. This question

is related, in a more general context, to the formation of core-halo structure in

self-gravitating systems.� � D. Sugimoto & M. Fujimoto (ApJ, 538, 837, 2000)

Nevertheless, semi-phenomenological descriptions a�ord some insight; these can be presented in

various degrees of detail, of which the most straighforward argument is as follows.

We simplify the stellar structure into an inner core and an outer envelope, with masses and

radii Mc,Me and Rc, Re(= R∗) respectively. At the end of core hydrogen burning, we suppose

that core contraction happens quickly � faster than the Kelvin-Helmholtz timescale, so that the

Virial Theorem holds, and thermal and gravitational potential energy are conserved to a

satisfactory degree of approximation. We formalize this supposition by writing

Ω + 2U = constant (Virial theorem)

Ω + U = constant (Energy conservation)

These two equalities can only hold simultaneously if both Ω and U are individually constant,

summed over the whole star. In particular, the total gravitational potential energy is constant
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Stars are centrally condensed, so we make the approximation that Mc � Me; then, adding the

core and envelope,

|Ω| ' GM2
c

Rc

+
GMcMe

R∗

We are interested in evolution, so we take the derivative with respect to time,

d|Ω|
dt

= 0 = −GM2
c

R2
c

dRc

dt
− GMcMe

R2
∗

dR∗
dt

i.e.,

dR∗
dRc

= −Mc

Me

(
R∗
Rc

)2

.

The negative sign demonstrates that as the core contracts, the envelope must expand � a good

rule of thumb throughout stellar evolution, and, in particular, what happens at the end of the

main sequence for solar-type stars.

10.5 Mean Molecular Weight

The `mean molecular weight', µ, is2 simply the average mass of particles in a gas, expressed in

units of the hydrogen mass, m(H). That is, the mean mass is µm(H); since the number density

of particles n is just the mass density ρ divided by the mean mass we have

n =
ρ

µm(H)
and P = nkT =

ρ

µm(H)
kT (10.12)

In order to evaluate µ we adopt the standard astronomical nomenclature of

X = mass fraction of hydrogen

Y = mass fraction of helium

Z = mass fraction of metals.

(where implicitly X + Y + Z ≡ 1). For a fully ionized gas of mass density ρ we can infer

number densities:

Element: H He Metals

No. of nuclei Xρ

m(H)

Y ρ

4m(H)

Zρ

Am(H)

No. of electrons Xρ

m(H)

2Y ρ

4m(H)

(A/2)Zρ

Am(H)

2Elsewhere we've used µ to mean cos θ. Unfortunately, both uses of µ are completely standard; but fortunately,

the context rarely permits any ambiguity about which `µ' is meant. And why `molecular' weight for a potentially

molecule-free gas? Don't ask me. . .
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where A is the average atomic weight of metals (∼16 for solar abundances), and for the �nal

entry we assume that Ai ' 2Zi for species i with atomic number Zi.

The total number density is the sum of the numbers of nuclei and electrons,

n ' ρ

m(H)
(2X + 3Y/4 + Z/2) ≡ ρ

µm(H)
(10.13)

(where we have set Z/2 + Z/A ' Z/2, since A � 2). We see that

µ ' (2X + 3Y/4 + Z/2)−1 . (10.14)

We can drop the approximations to obtain a more general (but less commonly used) de�nition,

µ−1 =
∑

i

Zi + 1
Ai

fi

where fi is the mass fraction of element i with atomic weight Ai and atomic number Zi.

For a fully ionized pure-hydrogen gas (X = 1, Y = Z = 0), µ = 1/2;

for a fully ionized pure-helium gas (Y = 1, X = Z = 0), µ = 4/3;

for a fully ionized gas of solar abundances (X = 0.71, Y = 0.27, Z = 0.02), µ = 0.612.

10.6 Pressure and temperature in the cores of stars

10.6.1 Solar values

Section 10.10 outlines how the equations of stellar structure can be used to construct a stellar

model. In the context of studying the solar neutrino problem, many very detailed models of the

Sun's structure have been constructed; for reference, we give the results one of these detailed

models, namely Bahcall's standard model bp2000stdmodel.dat. This has

Tc = 1.568× 107 K

ρc = 1.524× 105 kg m−3

Pc = 2.336× 1016 N m−2

with 50% (95%) of the solar luminosity generated in the inner 0.1 (0.2) R�.

10.6.2 Central pressure (1)

We can use the equation of hydrostatic equilibrium to get order-of-magnitude estimates of

conditions in stellar interiors; e.g., letting dr = R∗ (for an approximate solution!) then

dP (r)
dr

=
−Gm(r)ρ(r)

r2
(10.1)
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becomes
PC − PS

R∗
' GM∗ρ

R2
∗

where PC, PS are the central and surface pressures; and since PC � PS,

PC '
GM∗ρ

R∗
(10.15)

=
3
4π

GM2
∗

R4
∗

' 1015 Pa (=N m−2)

(or about 1010 atmospheres) for the Sun. Because of our crude approximation in integrating

eqtn. (10.1) we expect this to be an underestimate (more nearly an average than a central

value), and reference to the detailed shows it falls short by about an order of magnitude.

Nevertheless, it does serve to demonstrate high core values, and the ∼M2/R4 dependence of

PC .

Central pressure (2)

Another estimate can be obtained by dividing the equation of hydrostatic equilibrium (10.1) by

the equation of mass continuity (10.3):

dP (r)

dr

ffi
dm

dr
≡ dP (r)

dm
=
−Gm(r)

4πr4

Integrating over the entire star,

−
Z M∗

0

dP (r)

dm
dm = PC − PS =

Z M∗

0

Gm(r)

4πr4
dm.

Evidently, because R∗ ≥ r, it must be the case thatZ M∗

0

Gm(r)

4πr4
dm ≥

Z M∗

0

Gm(r)

4πR4
∗
dm| {z }

=
GM2

∗
8πR4

∗
;

(10.16)

that is,

PC >
GM2

∗

8πR4
∗

(+PS, but PS ' 0)

> 4.5× 1013 N m−2

for the Sun. This is a weaker estimate than, but is consistent with, eqtn. (10.15), and shows the

same overall scaling of PC ∝ M2
∗/R

4
∗.

10.6.3 Central temperature

For a perfect gas,

P = nkT =
ρkT

µm(H)
(10.12)

90



but

PC '
GM∗ρ

R∗
(10.15)

so

TC '
µm(H)

k

GM∗
R∗

ρ

ρC

' 1.4× 107 K (10.17)

for the Sun � which is quite close to the results of detailed calculations. (Note that at these

temperatures the gas is fully ionized and the perfect gas equation is an excellent

approximation.)

10.6.4 Mean temperature

We can use the Virial Theorem to obtain a limit on the mean temperature of a star. We have

U =
∫

V

3
2
kT (r) n(r) dV (10.8)

=
∫

V

3
2
kT (r)

ρ(r)
µm(H)

dV

=
∫ M∗

0

3
2
kT (r)

ρ(r)
µm(H)

dm
ρ(r)

and

−Ω =
∫ M∗

0

Gm(r)
r

dm (10.10)

>

∫ M∗

0

Gm(r)
R∗

dm

>
GM2

∗
2R∗

From the Virial Theorem, 2U = −Ω (eqtn. 10.11), so

3k

µm(H)

∫ M∗

0
T dm >

GM2
∗

2R∗

The integral represents the sum of the temperatures of the in�nitesimal mass elements

contributing to the integral; the mass-weighted average temperature is

T =

∫M∗
0 T dm∫M∗
0 dm

=

∫M∗
0 T dm

M∗

>
GM∗
2R∗

µm(H)
3k
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For the Sun, this evaluates to T (�) > 2.3× 106 K (using µ = 0.61), i.e., kT ' 200 eV �

comfortably in excess of the ionization potentials of hydrogen and helium (and enough to

substantially ionize the most abundant metals), justifying the assumption of complete

ionization in evaluating µ.

10.7 Mass�Luminosity Relationship

We can put together our basic stellar-structure relationships to demonstrate a scaling between

stellar mass and luminosity. From hydrostatic equilibrium,

dP (r)
dr

=
−Gm(r)ρ(r)

r2
→ P ∝ M

R
ρ (10.1)

but our equation of state is P = (ρkT )/(µm(H)), so

T ∝ µM

R
.

For stars in which the dominant energy transport is radiative, we have

L(r) ∝ r2

kR

dT
dr

T 3 ∝ r2

κRρ(r)
dT
dr

T 3 (3.11)

so that

L ∝ RT 4

κRρ
.

From mass continuity (or by inspection) ρ ∝ M/R3, giving

L ∝ R4T 4

κRM

∝ R4

κRM

(
µM

R

)4

;

i.e.,

L ∝ µ4

κR
M3.

This simple dimensional analysis yields a dependency which is in quite good agreement with

observations; for solar-type main-sequence stars, the empirical mass�luminosity relationship is

L ∝ M3.5.
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10.8 The role of radiation pressure

So far we have, for the most part, considered only gas pressure. What about radiation

pressure? From Section 1.8, the magnitude of the pressure of isotropic radiation is

PR =
4σ

3c
T 4. (1.31)

Thus the ratio of radiation pressure to gas pressure is

PR/PG =
4σ

3c
T 4

/
kρT

µm(H)

' 1.85× 10−20 [kg m−3 K−3] × T 3

ρ
(10.18)

For ρ� = 1.4× 103 kg m−3 and TC(�) ' 107K, PR/PG ' 0.1. That is, radiation pressure is

relatively unimportant in the Sun, even in the core.

However, radiation pressure is is important in stars more massive than the Sun (which have

hotter central temperatures). Eqtn (10.18) tells us that

PR/PG ∝
T 3

ρ
∝ T 3R3

∗
M∗

but T ∝ M∗/R∗, from eqtn. (10.17); that is,

PR/PG ∝ M2
∗

10.9 The Eddington limit

Radiation pressure plays a particular role at the surfaces of luminous stars, where the radiation

�eld is, evidently, no longer close to isotropic (the radiation is escaping from the surface). As

we saw in Section 1.8, the momentum of a photon is hν/c.

If we consider some spherical surface at distance r from the energy-generating centre of a star,

where all photons are �owing outwards (i.e., the surface of the star), the total photon

momentum �ux, per unit area per unit time, is

L

c

/
(4πr2) [J m−3 = kg m−1 s−2]

The Thomson-scattering cross-section (for electron scattering of photons) is

σT

[
=

8π

3

(
e2

mec2

)2
]

= 6.7× 10−29 m2.

93



This is a major opacity source in ionized atmospheres, so the force is exerted mostly on

electrons; the radiation force per electron is

FR =
σTL

4πr2c
[J m−1 ≡ N]

which is then transmitted to positive ions by electrostatic interactions. For stability, this

outward force must be no greater than the inward gravitational force; for equality (and

assuming fully ionized hydrogen)

σTL

4πr2c
=

GM (m(H) + me)
r2

' GMm(H)
r2

.

This equality gives a limit on the maximum luminosity as a function of mass for a stable star �

the Eddington Luminosity,

LEdd =
4πGMc m(H)

σT

' 1.3× 1031 M

M�
[J s−1], or

LEdd

L�
' 3.37× 104 M

M�

Since luminosity is proportional to mass to some power (roughly, L ∝ M3−4 on the upper main

sequence; cf. Section 10.7), it must be the case that the Eddington Luminosity imposes an

upper limit to the mass of stable stars.

(In practice, instabilities cause a super-Eddington atmosphere to become clumpy, or `porous',

and radiation is able to escape through paths of lowered optical depth between the clumps.

Nevertheless, the Eddington limit represents a good approximation to the upper limit to stellar

luminosity. We see this limit as an upper bound to the Hertzsprung-Russell diagram, the

so-called `Humphreys-Davidson limit'.)
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How to make a star (for reference only)

10.10 Introduction

We've assembled a set of equations that embody the basic principles governing stellar

structure; renumbering for convenience, these are

dm(r)
dr

= 4πr2ρ(r) Mass continuity (10.3=10.19)

dP (r)
dr

=
−Gm(r)ρ(r)

r2
Hydrostatic equilibrium (10.1=10.20)

dL(r)
dr

= 4πr2 ρ(r)ε(r) Energy continuity (10.7=10.21)

and radiative energy transport is described by

L(r) = −16π

3
r2

kR(r)
dT
dr

acT 3 Radiative energy transport. (3.11=10.22)

The quantities P , ε, and kR (pressure, energy-generation rate, and Rosseland mean opacity)

are each functions of density, temperature, and composition; those functionalities can be

computed separately from the stellar structure problem. For analytical work we can reasonably

adopt power-law dependences,

kR(r) = κ(r) = κ0ρ
a(r)T b(r) (2.6=10.23)

and (anticipating Section 13)

ε(r) ' ε0ρ(r)Tα(r), (13.9=10.24)

together with an equation of state; for a perfect gas

P (r) = n(r)kT (r). (10.12=10.25)

Mass is a more fundamental physical property than radius (the radius of a solar-mass star will

change by orders of magnitude over its lifetime, while its mass remains more or less constant),
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so for practical purposes it is customary to reformulate the structure equations in terms of

mass as the independent variable. We do this simply by dividing the last three of the foregoing

equations by the �rst, giving

dr
dm(r)

=
1

4πr2ρ(r)
(10.26)

dP (r)
dm(r)

=
−Gm(r)

4πr4
(10.27)

dL(r)
dm(r)

= ε(r) = ε0ρ(r)Tα(r) (10.28)

dT (r)
dm(r)

= − 3kRL(r)
16π2r4acT 3(r)

(10.29)

(where all the radial dependences have been shown explicitly).

To solve this set of equations we require boundary conditions. At m = 0 (i.e., r = 0), L(r) = 0;
at m = M∗ (r = R∗) we set P = 0, ρ = 0. In practice, the modern approach is to integrate

these equations numerically.3 However, much progress was made before the advent of electronic

computers by using simpli�ed models, and these models still arguably provide more physical

insight than simply running a computer program.

10.11 Homologous models

Homologous stellar models are de�ned such that their properties scale in the same way with

fractional mass m ≡ m(r)/M∗. That is, for some property X (which might be temperature, or

density, etc.), a plot of X vs. m is the same for all homologous models. Our aim in constructing

such models is to formulate the stellar-structure equations so that they are independent of

absolute mass, but depend only on relative mass.

We therefore recast the variables of interest as functions of fractional mass, with the

dependency on absolute mass assumed to be a power law:

r = Mx1
∗ r0(m) dr = Mx1

∗ dr0

ρ(r) = Mx2
∗ ρ0(m) dρ(r) = Mx2

∗ dρ0

T (r) = Mx3
∗ T0(m) dT (r) = Mx3

∗ dT0

P (r) = Mx4
∗ P0(m) dP (r) = Mx4

∗ dP0

L(r) = Mx5
∗ L0(m) dL(r) = Mx5

∗ dL0

3The interested student can run his own models using the EZ (`Evolve ZAMS') code; W. Paxton, PASP, 116,

699, 2004.
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where the xi exponents are constants to be determined, and r0, ρ0 etc. depend only on the

fractional mass m. We also have

m(r) = mM∗ dm(r) = M∗dm

and, from eqtns. (2.6=10.23, 13.9=10.24)

κ(r) = κ0ρ
a(r)T b(r)b = κ0ρ

a
0(m)T

b
0 (m)Max2

∗ M bx3
∗

ε(r) ' ε0ρ(r)Tα(r), = ε0ρ0(m)Tα
0 (m)Mx2

∗ Mαx3
∗ ,

Transformed equations

We can now substitute these into our structure equations to express them in terms of

dimensionless mass m in place of actual mass m(r):

Mass continuity:

dr
dm(r)

=
1

4πr2ρ(r)
becomes (10.26)

M
(x1−1)
∗

dr0(m)
dm

=
1

4πr2
0(m)ρ0(m)

M
−(2x1+x2)
∗ (10.30)

The condition of homology requires that the scaling be independent of actual mass, so we can

equate the exponents of M∗ on either side of the equation to �nd

3x1 + x2 = 1 (10.31)

Hydrostatic equlibrium:

dP (r)
dm(r)

=
−Gm(r)

4πr4
becomes (10.27)

M
(x4−1)
∗

dP0(m)
dm

= − Gm

4πr4
0

M
(1−4x1)
∗ (10.32)

whence 4x1 + x4 = 2 (10.33)

Energy continuity:

dL(r)
dm(r)

= ε(r)

= ε0ρ(r)Tα(r) becomes (10.28)

M
(x5−1)
∗

dL0(m)
dm

= ε0ρ0(m)Tα
0 (m)Mx2+αx3

∗ (10.34)

whence x2 + αx3 + 1 = x5 (10.35)
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Radiative transport:

dT (r)
dm(r)

= − 3kRL(r)
16π2r4acT 3(r)

becomes (10.29)

M
(x3−1)
∗

dT0(m)
dm

= − 3(κ0ρ
a
0T

b
0 )L0

16π2r4
0acT 3

0 (m)
M

(x5+(b−3)x3+ax2−4x1)
∗ (10.36)

whence 4x1 + (4− b)x3 = ax2 + x5 + 1 (10.37)

Equation of state:

P (r) = n(r)kT (r)

=
ρ(r)kT (r)
µm(H)

(10.38)

(neglecting any radial dependence of µ)

Mx4
∗ P0(m) =

ρ0(m)kT0(m)
µm(H)

M
(x2+x3)
∗ (10.39)

whence x2 + x3 = x4 (10.40)

We now have �ve equations for the �ve exponents xi, which can be solved for given values of a,

b, and α, the exponents in eqtns. (2.6=10.23) and (13.9=10.24). This is quite tedious in

general, but a simple solution is a�orded by the (reasonable) set of parameters

a = 1

b = −3.5

α = 4

(xxx see Tayler); the solutions include

x1 = 1/13

x5 = 71/13(' 5.5)

which we will use in the next section.

98



10.11.1 Results

Collecting the set structure equations that describe a sequence of homologous models:

dr0(m)
dm

=
1

4πr2
0(m)ρ0(m)

(10.30)

dP0(m)
dm

= − Gm

4πr4
0

(10.32)

dL0(m)
dm

= ε0ρ0(m)Tα
0 (m) (10.34)

dT0(m)
dm

= − 3(κ0ρ
a
0T

b
0 )L0

16π2r4
0acT 3

0 (m)
(10.36)

P0(m) =
ρ0(m)kT0(m)

µm(H)
(10.39)

These can be solved numerically using the boundary conditions

r0 = 0L0 = 0 at m = 0,

P0 = 0ρ0 = 0 at m = 1.

However, we can draw some useful conclusions analytically. First, it's implicit in our de�nition

of homologous models that there must exist a mass-luminosity relation for them; since

L∗ = Mx5
∗ L0(1)

it follows immediately that

L∗ ∝ Mx5
∗ (∝ M5.5

∗ )

which is not too bad compared to the actual main-sequence mass�luminosity relationship

(L ∝ M3−4, especially considering the crudity of the modelling.

Secondly, since

L∗ ∝ R2
∗T

4
eff R∗ = Mx1

∗ r0(1)

L∗ = Mx5
∗ L0(1),

it follows that

Mx5
∗ L0(1) ∝ M2x1

∗ r2
0(1)T 4

eff

or

M∗ ∝ T
4/(x5−2x1)

eff

∝ T
52/69
eff .
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This is a bit o� the mark for real stars, which show a slower increase in temperature with mass;

but combining this with the mass-luminosity relationship gives

L∗ ∝ T
4x5/(x5−2x1)

eff

∝ T
284/69
eff

which again is not too bad for the lower main sequence � indeed, the qualitative result that

there is a luminosity�temperature relationship is, in e�ect, a prediction that a main sequence

exists in the HR diagram.

10.12 Polytropes and the Lane-Emden Equation

Another approach to simple stellar-structure models is to assume a `polytropic' formalism. We

can again start with hydrostatic equilibrium and mass continuity,

dP (r)
dr

=
−Gm(r)ρ(r)

r2
(10.1)

dm
dr

= 4πr2ρ(r). (10.3)

Di�erentiating eqtn. (10.1) gives us

d
dr

(
r2

ρ

dP
dr

)
= −G

dm(r)
dr

whence, from eqtn. (10.3),

1
r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ (10.41)

This is, essentially, already the `Lane-Emden equation' (named for the American astronomer

Jonathan Lane and the Swiss Jacob Emden).

It appears that we can't solve hydrostatic equilibrium without knowing something about the

pressure, i.e., the temperature, which in turn suggests needing to know about energy generation

processes, opacities, and other complexities. Surprisingly, however, we can solve for

temperature T without these details, under some not-too-restrictive assumptions about the

equation of state. Speci�cally, we adopt a polytropic law of adiabatic expansion,

P = Kργ = Kρ
1/n+1 (10.42)

where K is a constant, γ is the ratio of speci�c heats,4 and in this context n is the adopted

polytropic index.

4This relation need not necessarily be taken to be an equation of state � it simply expresses an assumption

regarding the evolution of pressure with radius, in terms of the evolution of density with radius. The Lane-Emden

equation has applicability outside stellar structures.
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Introducing eqtn. (10.42) into (10.41) gives

K

r2

d
dr

(
r2

ρ

dργ

dr

)
= −4πGρ. (10.43)

We now apply the so-called Emden transformation,

ξ =
r

α
,

θ =
T

Tc
(10.44)

(where α is a constant and Tc is the core temperature), to eqtn. (10.42), giving

ρ

ρc
=
(

P

Pc

)1/γ

=
(

ρT

ρcTc

)1/γ

; i.e.,(
ρ

ρc

)1−1/γ

=
(

T

Tc

)1/γ

= θ1/γ , or

ρ = ρcθ
1/γ−1

(where we have also used P = nkT,∝ ρT ), whence eqtn. (10.43) becomes

K

(αξ)2
d

d(αξ)

(αξ)2

ρcθn

d
(
{ρcθ

n}(n+1)/n
)

d(αξ)

 = −4πGρcθ
n.

Since

d
dξ

(θn+1) = (n + 1)θndθ
dξ

we have

(n + 1)Kρ
1/n−1
c

4πGα2

1
ξ2

d
dξ

(
ξ2dθ
dξ

)
= −θn.

Finally, letting the constant α (which is freely selectable, provided its dimensionality � length �

is preserved) be

α ≡

[
(n + 1)Kρ

1/n−1
c

4πG

]1/2

,

we obtain the Lane-Emden equation, relating (scaled) radius to (scaled) temperature:

1
ξ2

d
dξ

(
ξ2dθ
dξ

)
= −θn,

or, equivalently,

1
ξ2

(
2ξ
dθ
dξ

+ ξ2d
2θ

dξ2

)
+ θn =

d2θ

dξ2
+

2
ξ

dθ
dξ

+ θn = 0.
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We can solve this equation with the boundary conditions

θ = 1,

dθ
dξ

= 0

at ξ = 0 (recalling that ξ and θ are linear functions of r and T ).

Numerical solutions are fairly straightforward to compute; analytical solutions are possible for

polytropic indexes n = 0, 1 and 5 (i.e., ratios of speci�c heats γ = ∞, 2, and 1.2); these are,
respectively,

θ(ξ) = 1− ξ2/6 ζ =
√

6,

= sin ξ/ξ = π, and

=
(
1 + ξ2/3

)−1/2 = ∞

A polytrope with index n = 0 has a uniform density, while a polytrope with index n = 5 has an

in�nite radius. A polytrope with index n = ∞ corresponds to a so-called `isothermal sphere', a

self-gravitating, isothermal gas sphere, used to analyse collisionless systems of stars (in

particular, globular clusters). In general, the larger the polytropic index, the more centrally

condensed the density distribution.

We've done a lot of algebra; what about the physical interpretation of all this?

What about stars? Neutron stars are well modeled by polytropes with index about in the range

n = 0.5�1.

A polytrope with index n = 3/2 provides a reasonable model for degenerate stellar cores (like

those of red giants), white dwarfs, brown dwarfs, gas giants, and even rocky planets.

Main-sequence stars like our Sun are usually modelled by a polytrope with index n = 3,
corresponding to the Eddington standard model of stellar structure.
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Section 11

LTE

Basic treatments of stellar atmospheres adopt, as a starting point, the assumptions of Local

Thermodynamic Equilibrium (LTE), and hydrostatic equilibrium. The former deals with the

microscopic properties of the atoms, and we will discuss it here; the latter addresses the

large-scale conditions (and applies throughout a normal star), and is discussed in Section 10.1.

11.1 Local Thermodynamic Equilibrium

Fairly obviously, in Local Thermodynamic Equilibrium (LTE) it is assumed that all

thermodynamic properties in a small volume have the thermodynamic equilibrium values at the

local values of temperature and pressure.

Speci�cally, this applies to quantities such as the occupation numbers of atoms, the opacity,

emissivity, etc. The LTE assumption is equivalent to stating that

1. the electron and ion velocity distributions are Maxwellian,

dn(v)
dv

= n

(
m

2πkTk

)3/2

exp
{
−mv2

2kTk

}
for number density n of particles of mass m at kinetic temperature Tk;

2. the photon source function is given by the Planck function at the local temperature (i.e.,

Sν = Bν , and jν = kνBν).

3. the excitation equilibrium is given by the Boltzmann equation

nj

ni
=

gj

gi
exp

{
−(Ej − Ei)

kT

}
(11.1)
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4. the ionization equilibrium is given by the Saha equation

nen2,1

n1,i
=

2g2,1

g1,i
exp

{
−χ1,i

kT

}
(2πmekT )3/2

h3
(11.2)

where 1, i, 2, 1 denote levels i, 1 in ionization stages 1, 2.

One might augment this list with the perfect-gas equation of state, P = nkT , but since this

applies under many circumstances where LTE doesn't hold, it's not usually mentioned in this

context.

If a process is purely collisional, conditions are, naturally, determined on a purely local basis

locally, and LTE applies. We have already encountered one such situation where LTE is a good

approximation: free-free emission results from a purely collisional process, justifying our

adoption of Sν = Bν (Section 6).

If radiation plays a role, then provided the photon and particle mean free paths are short

compared to the length scales over which conditions change signi�cantly (i.e., if the opacity is

high), then we can again expect LTE to be a reasonable assumption; this is a good

approximation in stellar interiors.

In stellar atmospheres the LTE approximation may be a poor one, as photon mean free paths

are typically larger than those of particles. Thus one region can be a�ected by the radiation

�eld in another part of the atmosphere (e.g., a deeper, hotter region). As a rule of thumb,

therefore, LTE is a poor approximation if the radiation �eld is important in establishing the

ionization and excitation equilibria (as in hot stars, for example). It's more likely to be

acceptable when particle densities are high and the radiation �eld is relatively weak; for stars,

this means higher gravities (i.e., main-sequence stars rather than supergiants) and cooler

e�ective temperatures. When LTE breaks down, we have a `non-LTE' (nLTE) situation, and

level populations must be calculated assuming statistical equilibrium (section 2.3.2).

11.2 The Saha Equation

The Boltzmann Equation gives the relative populations of two bound levels i and j, in some

initial (or `parent') ionization stage `1':

n1,j

n1,i
=

g1,j

g1,i
exp

{
−(E1,j − E1,i)

kT

}
(11.1)

where E1,i & E1,j are the level energies (measured from the ground state, E1,1 = 0), and g1,i &

g1,j are their statistical weights (2J + 1, where J is the total angular-momentum quantum

number).
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To generalize the Boltzmann eqtn. to deal with collisional ionization to the next higher (or

`daughter') ionization stage `2', we identify the upper level j with a continuum state; n1,j , the

number of parent ions in excitation state j, then equates with n2,1(v), the number of ionized
atoms where the detached electron has velocity v.

(Note that ionization stages `1' and `2' always represent any two consecutive stages � for

example, H0 and H+, or C2+ and C3+.)

The total statistical weight of the ionized system is given by the combined statistical weights1 of

the newly created ion and the electron, i.e., g2ge(v); while the relevant energy is the sum of the

ionization energy and the kinetic energy of the free electron. Thus we have

n2,1(v)

n1,i
=
g2ge(v)

g1,i
exp

(
−(χ1,i + 1

2
mev

2)

kT

)
(11.3)

where χ1,i = E∞ − E1,i is the ionization potential for level i in the parent species.

An aside: The statistical weight of a free electron. The statistical weight of a free electron

is just the probability of �nding it in a speci�c cell of `phase space'. Since the state of a free

particle is speci�ed by three spatial coördinates x, y, z and three momentum coördinates

p(x), p(y), p(z), the number of quantum states (for which the statistical weights are each 1) in an

element of phase space,

dxdy dz · dp(x)dp(y)dp(z) = dN

is given by

ge(v) =
2dN

h3
=

2

h3
dxdy dz · dp(x)dp(y)dp(z)

where h is Planck's constant and the factor 2 arises because the electron has two possible spin

states. The statistical weight per unit volume is thus

2

h3
dp(x)dp(y)dp(z)

for a single electron. However, there may be other free electrons, from other ions, which occupy

some of the available states in the element of phase space dN . If the number density of electrons is

ne then the e�ective volume available to a collisionally ejected electron is reduced by a factor 1/ne.

Thus the statistical weight available to a single free electron is

ge(v) =
2dp(x)dp(y)dp(z)

neh3
.

Furthermore, if the velocity �eld is isotropic, the `momentum volume' can be replaced simply by

its counterpart in spherical coördinates,

dp(x)dp(y)dp(z) = 4πp2 dp

Using these results we can write eqtn. (11.3) as

nen2,1(v)

n1,i
=

2gi

h3g1,i
exp

(
−

`
χ1,i + 1

2
mev

2
´

kT

)
4πp2 dp

1The statistical weight is a form of probability, and the probability of `A and B', P (A+B), is the product

P (A)P (B).
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but the momentum p = mev; i.e.,
1
2
mev

2 = p2/(2me), whence

nen2,1(v)

n1,i
=

2g2
h3g1,i

exp
n−χ1,i

kT

o
exp


−p2

2mekT

ff
4πp2 dp.

Since we're interested in the ionization balance (not the velocity distribution of the ionized

electrons), we integrate over velocity to obtain the total number of daughter ions:

nen2,1

n1,i
=

2g2
h3g1,i

exp
n−χ1,i

kT

o
4π

∞Z
0

p2 exp


−p2

2mekT

ff
dp.

We can then use result of a standard integral,

∞Z
0

x2 exp
`
−a2x2´

dx =
√
π/

`
4a3´

to obtain

nen2,1

n1,i
=

2g2

g1,i
exp

{
−χ1,i

kT

}
(2πmekT )3/2

h3
(11.2)

This is one common form of the Saha Equation (often expressed in terms of the ground state of

the parent ion, n1,1).

11.3 Partition functions

The version of the Saha equation given in eqtn. (11.2) relates populations in single states of

excitation for each ion. Generally, we are more interested in the ratios of number densities of

di�erent ions summed over all states of excitation � i.e., the overall ionization balance. We

determine this by de�ning the partition function as

U =
∑

n

gn exp (−En/kT )

(an easily evaluated function of T ), whence

nen2

n1
=

2U2

U1

(2πmekT )3/2

h3
exp

{
−χ1

kT

}
(11.4)

where we use χ1, the ground-state ionization potential of the parent atom, as it is to this that

the partition function is referred (i.e., E1,1 ≡ 0).

Since the electron pressure is Pe = nekT we can also express the Saha equation in the form

n2

n1
=

2U2

U1

(2πme)
3/2

h3

(kT )5/2

Pe
exp

{
−χ1

kT

}
(11.5)
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11.3.1 An illustration: hydrogen

The Balmer lines of hydrogen, widely observed as absorption lines in stellar spectra, arise

through photoexcitation from the n = 2 level of neutral hydrogen. To populate the n = 2 level,

we might suppose that we need temperatures such that kT ' E1,2 = 10.2eV; i.e., T ' 105K.

However, the Hα line strength peaks in A0 stars, which are much cooler than this (T ∼ 104K).

Why? Because we need to consider ionization as well as excitation. We therefore need to

combine the Saha and Boltzmann equations to obtain the density of atoms in a given state of

excitation, for a given state of ionization.

We express the Boltzmann equation, eqtn. (11.1), in terms of the partition function U :

n1,2

n1
=

g1,2

U1
exp

(
−E1,2

kT

)
where n1 is the number density of H0 atoms in all excitation states and E1,2 is the excitation

energy of the n = 2 level (10.2 eV); that is,

n1,2 =
g1,2

U1
exp

(
−E1,2

kT

)
n1.

However, the total number of hydrogen nuclei is n(H) = n1 + n2 = n1(1 + n2/n1); that is,
n1 = n(H)(1 + n2/n1)−1. Using this, and n2/n1 from eqtn. (11.4), we �nd

n1,2 =
g1,2

U1
exp

(
−E1,2

kT

)(
1 +

[
2U2

n1U1

(2πmekT )3/2

h3
exp

{
−χ1

kT

}])−1

n(H)

=
g1,2

U1
exp

(
−E1,2

kT

)(
1 +

[
2U2

n1U1

(2πme)
3/2

h3

(kT )5/2

Pe
exp

{
−χ1

kT

}])−1

n(H)

We can now see why the Balmer lines peak around 104K: while higher temperatures give larger

populations n1,2/n(H0), they give smaller populations n(H0)/n(H). The overall result is that
n1,2/n(H) peaks around 10kK.

The Saha equation also gives an explanation of why supergiant stars are cooler than

main-sequence stars of the same spectral type. Spectral characteristics are de�ned by ratios of

lines strengths; e.g., O-star subtypes are de�ned by the ratio (He ii λ4542)/(He i λ4471), which

in turn traces the ratio He+/He0. Of course, higher temperatures increase the latter ratio.

However, a supergiant star has a lower surface gravity (and atmospheric pressure) than a

main-sequence star. From eqtn. (11.5) we see that a lower pressure at the same temperature

gives rise to a larger ratio n2/n1, so for two stars of the same temperature, the supergiant has

an earlier spectral type (or, equivalently, at the same spectral type the supergiant is cooler).
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Section 12

Stellar Timescales

12.1 Dynamical timescale

12.1.1 `Hydrostatic equilibrium' approach

If we look at the Sun in detail, we see that there is vigorous convection in the envelope. With

gas moving around, is the assumption of hydrostatic equilibrium justi�ed? To address this

question, we need to know how quickly displacements are restored; if this happens quickly

(compared to the displacement timescales), then hydrostatic equilibrium remains a reasonable

approximation even under dynamical conditions.

We have written an appropriate equation of motion,

ρ a = ρ g +
dP
dr

(10.2)

where g is the acceleration due to gravity and

a =
d2r

dt2

is the nett acceleration. As the limiting case we can `take away' gas-pressure support (i.e., set

dP/dr = 0), so our equation of motion for collapse under gravity is just

d2r

dt2
= −Gm(r)

r2
.

Integrating (and taking r from the surface inwards),

r =
Gm(r)

r2

t2

2
=

1
2
gt2 (for initial velocity v0 = 0). (12.1)
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Identifying the time t in eqtn. (12.1) with a dynamical timescale, we have

tdyn =

√
2r3

Gm(r)
. (12.2)

Departures from hydrostatic equilibrium are restored on this timescale (by gravity in the case

of expansion, or pressure in the case of contraction). In the case of the Sun,

tdyn =

√
2R3

�
GM�

' 37 min.

If you removed gas-pressure support from the Sun, this is how long it would take a particle at

the surface to free-fall to the centre. Since the geological record shows that the Sun hasn't

changed substantially for at least 109 yr, it is clear that any departures from hydrostatic

equilibrium must be extremely small on a global scale.

We might expect departures from spherical symmetry to be restored on a dynamical timescale (in

the absence of signi�cant centrifugal forces), and by indeed comparing eqtns. (10.6) and (12.2) we

see that spherical symmetry is appropriate if

ω �
√

2

tdyn

12.1.2 `Virial' approach

The `hydrostatic equilibrium' approach establishes a collapse timescale for a particle to fall

from the surface to the centre. As an alternative, we can consider a timescale for gas pressure

to �ll a void � a pressure-support timescale. Noting that a pressure wave propagates at the

sound speed, this dynamical timescale can be equated to a sound-crossing time for transmitting

a signal from the centre to the surface.

The sound speed is given by

c2
S = γ

(
kT

µm(H)

)
(12.3)

(where γ = Cp/Cv, the ratio of speci�c heats at constant pressure and constant volume).

From the virial theorem,

2U + Ω = 0 (10.11)

with

U =
∫

V

3
2
kTn(r) dV =

∫
V

3
2
kT

ρ(r)
µm(H)

dV (10.8)
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and

Ω = −
∫ M

0

Gm(r)
r

dm = −
∫

V

Gm(r)
r

ρ(r) dV (10.10)

so that

3kT

µm(H)
=

Gm(r)
r

; (12.4)

that is, from eqtn. (12.3),

3
γ

c2
S =

Gm(r)
r

(12.5)

For a monatomic gas we have γ = 5/3, giving, from eqtns. (12.3) and (12.4),

c2
S =

5
9

Gm(r)
r

so that the (centre-to-surface) sound crossing time is

t =
r

cS
=

√
9/5r3

Gm(r)
(12.6)

(which is within ∼10% of eqtn. (12.2)).

12.2 Kelvin-Helmholtz and Thermal Timescales

Before nuclear fusion was understood, the conversion of potential to radiant energy, through

gravitational contraction, was considered as a possible source of the Sun's luminosity.1 The

time over which the Sun's luminosity can be powered by this mechanism is the

Kelvin-Helmholtz timescale.

The available gravitational potential energy is

Ω =
∫ M

0

−Gm(r)
r

dm (10.10)

but

m(r) =
4
3
πr3ρ so dm = 4πr2ρ dr

1Recall from Section 10.4 that half the gravitational potential energy lost in contraction is radiated away, with

the remainder going into heating the star.
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and

Ω =
∫ R

0
−G

16π2

3
r4ρ2(r) dr

' −16
15

π2Gρ2R5 (12.7)

(assuming ρ(r) = ρ(R)).

The Kelvin-Helmholtz timescale for the Sun is therefore

tKH =
|Ω(�)|
L�

. (12.8)

which for ρ = 1.4× 103 kg m−3, Ω = 2.2× 1041 J is tKH ' 107 yr.2

The Kelvin-Helmholtz timescale is often identi�ed with the thermal timescale, but the latter is

more properly de�ned as

tth =
U(�)
L�

, (12.9)

which (from the virial theorem) is ∼ 1/2tKH. In practice, the factor 2 di�erence is of little

importance for these order-of-magnitude timescales.

12.3 Nuclear timescale

We now know that the source of the Sun's energy is nuclear fusion, and we can calculate a

corresponding nuclear timescale,

tN =
fMc2

L
(12.10)

where f is just the fraction of the rest mass available to the relevant nuclear process. In the

case of hydrogen burning this fractional `mass defect' is 0.007, so we might expect

tN =
0.007M�c2

L�
(' 1011 yr for the Sun).

However, in practice, only the core of the Sun � about ∼10% of its mass � takes part in

hydrogen burning, so its nuclear timescale for hydrogen burning is ∼ 1010 yr. Other

evolutionary stages have their respective (shorter) timescales.

2At the time that this estimate was made, the fossil record already indicated a much older Earth (∼ 109 yr).

Kelvin noted this discrepancy, but instead of rejecting contraction as the source of the Sun's energy, he instead

chose to reject the fossil record as an indicator of age.
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12.4 Di�usion timescale for radiative transport

Deep inside stars the radiation �eld is very close to black body. For a black-body distribution

the average photon energy is

E = U/n ' 4× 10−23T [J photon−1]. (1.28)

The core temperature of the Sun is Tc ' 11/2× 107 K (cf. eqtn. 10.17), whence E = 3.5 keV �

i.e., photon energies are in the X-ray regime.

Light escaping the surface of the Sun (Teff ' 5770K) has a mean photon energy ∼ 3× 103

smaller, in the optical.

The source of this degradation in the mean energy is the coupling between radiation and

matter. Photons obviously don't �ow directly out from the core, but rather they di�use

through the star, travelling a distance of order the local mean free path, `, before being

absorbed and re-emitted in some other direction (a `random walk'). The mean free path

depends on the opacity of the gas:

` = 1/kν = 1/(κνρ) (2.4)

where kν is the volume opacity (units of area per unit volume, or m−1) and κν is the mass

opacity (units of m2 kg−1).

After nsc scatterings the radial distance travelled is, on average,
√

nsc` (it's a statistical,

random-walk process). Thus to travel a distance R� we require

nsc =
(
R�
`

)2

. (12.11)

Solar-structure models give an average mean free path ` ' 1 mm (incidentally, justifying the

LTE approximation in stellar interiors); with R� ' 7× 108 m,

nsc ' 5× 1023

The total distance travelled by a (�ctitious!) photon travelling from the centre to the surface is

nsc × ` ' 5× 1020 m (∼ 1012R�!), and the time to di�use to the surface is

(nsc × `)/c ' 5× 104 yr.

[More detailed calculations give 17× 104 yr; why? Naturally, there are regions within the Sun

that have greater or lesser opacity than the average value, with the largest opacities in the

central ∼0.4R� and in the region immediately below the photosphere. Because of the `square

root' nature of the di�usion, a region with twice the opacity takes four times longer to pass

through, while a region with half the opacity takes only 1.414 times shorter; so any

non-uniformity in the opacity inevitably leads to a longer total di�usion time.]
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Section 13

Nuclear reactions in stars

13.1 Introduction

In general, nuclear processes in stars involve �ssion of a nucleus, or (more usually in `normal'

evolutionary phases), the fusion of two nuclei. Through all these processes, key physical

quantities are conserved:

• the baryon number (the number of protons, neutrons, and their antiparticles);

• the lepton number (electrons, neutrinos, related light particles, and their antiparticles);

• charge; and

• total mass�energy.

Consider two types of nuclei, A and B, number densities n(A), n(B). The rate at which a

particular (nuclear) reaction occurs between particles moving with relative velocity v is

r(v) = n(A) n(B) v σ(v) (13.1)

(per unit volume per unit time) where σ(v) is the cross-section for the reaction. Of course, we

need to integrate over velocity to get the total reaction rate:

r = n(A) n(B)
∫

v σ(v) f(v) dv

≡ n(A) n(B) 〈σ(v) v〉 [ m−3 s−1] (13.2)

where f(v) is the (Maxwellian) velocity distribution, and the angle brackets denote a weighted

average (i.e., the integral in the �rst part of eqtn. 13.2).
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Since the reaction destroys A (and B), we have

∂n(A)
∂t

= −n(A) n(B) 〈σ(v) v〉 ; (13.3)

and the number density of species A falls with time as

n(A, t) = n0(A) exp {−n(B) 〈σ(v) v〉 t} (13.4)

which de�nes a characteristic (e-folding) timescale

τ =
1

n(B) 〈σ(v) v〉
. (13.5)

Finally, the total energy generated through this reaction, per unit mass per unit time, is

ε =
Qr

ρ

=
n(A) n(B)

ρ
Q 〈σ(v) v〉 [J kg−1 s−1] (13.6)

where Q is the energy produced per reaction and ρ is the mass density.

13.2 Tunnelling

Charged nuclei experience Coulomb repulsion at intermediate separations, and nuclear

attraction at small separations. In stellar cores the high temperatures give rise to high

velocities, and increased probability of overcoming the Coulomb barrier. For nuclear charge Z

(the atomic number), the energy needed to overcome the Coulomb barrier is

EC '
Z1Z2e

2

r0
(13.7)

( ' 2× 10−13 J, ' 1 MeV, for Z1 = Z2 = 1) (13.8)

where r0 ' 10−15m is the radius at which nuclear attraction overcomes Coulomb repulsion for

proton pairs.

In the solar core, Tc ∼ 1.5× 107K; that is, E(= 3/2kT ) ' keV, or ∼ 10−3EC. This energy is

only su�cient to bring protons to within ∼ 103r0 of each other; this is much too small to be

e�ective, so reactions only occur through a process of �quantum tunneling� (barrier

penetration). In this temperature regime the rate of nuclear energy generation is well

approximated by a power-law dependence on temperature,

ε ' ε0ρTα (13.9)
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Figure 13.1: Upper section: a schematic plot of the potential between two charged nucleons as a function of

separation. At `large' separations (& 10−15 m), the repulsive Coulomb force is given by eqtn. (13.8); classically,

particles cannot come closer than the point r1 at which the relative kinetic energy corresponds to the repulsive

potential. Quantum-mechanical tunneling allows the nucleons to approach closer, to separation r2, at which point

the strong nuclear force dominates.

The lower panel expresses this tunnelling schematically. The (square of the) amplitude of the wave function is a

measure of the probability of a particle being in a particular location; the amplitude of the wave function decreases

exponentially between r1 and r2, but does not fall to zero. (See Aside 13.1 for further details.)

where α ' 4.5 for proton-proton reactions in the Sun [Section 13.4; ε0 ∝ n2(H)], and α ' 18 for

CN processing [Section 13.5; ε0 ∝ n(H)n(C,N)].

[Note that eqtn. (13.9) characterizes the rate of energy generation per unit mass (or, if you like,

per nucleon). Although density appears here as a simple linear multiplier, reference to

eqtn. 13.6 reminds us that, like nearly all `collisional' processes, the energy generation rate per

unit volume � or the probability of a given nucleus undergoing fusion � depends on density

squared.]
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Figure 13.2: The main energy-dependent factors determining two-body reaction rates are the numbers of

reagents as a function of energy (the Maxwellian velocity distribution) and the tunnelling probability of pene-

tration. The product of these two terms gives the energy distribution of particles participating in fusion. These

factors are illustrated here, on arbitrary vertical scales, for the fusion of two protons in the solar core (Gamow

energy EG = 290kT for T = 2× 107 K; E0 = 4.2kT , 1/e width ∆ = 4.8kT ). See Aside 13.1.

Aside 13.1: The Gamow Peak

As illustrated in Fig. 13.1, `tunnelling' can occur to allow fusion to occur at particle energies which classical

mechanics would indicate to be too low to overcome the Coulomb barrier. For higher temperatures (and larger

kinetic energies), particles will come closer together (r1 approaches r2), the decay of the wave function is

reduced, and so the amplitude of the wave function in the region r < r2 becomes larger � that is, the tunnelling

probability increases as the kinetic energy of the incoming nucleus increases.

Obtaining the probability of barrier penetration, pp, for given energy, is a standard problem in wave mechanics.

We simply quote the result that the probability of penetration varies exponentially with the ratio of kinetic

energy to barrier size,

pp ∝ exp

(
−

„
EG

E

«1/2
)

(A-13.1)

with the `Gamow energy' EG (unnamed and written as b2 in some sources) given by

EG = 2mRc
2 (παZ1Z2)

2 (= 493 keV for proton-proton fusion), (A-13.2)

where α is the �ne structure constant,

α =
e2

4πε0~c
' 1

137
. (A-13.3)

and mR is the `reduced mass',

mR =
m1m2

m1 +m2
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for particles of mass m1, m2 (' A1m(H), A2m(H)) of charge Z1, Z2. (Using the reduced mass means that

velocities and kinetic energies are measured with reference to the centre of mass of the particles involved.)

The fusion cross-section σ(v) (eqtn 13.1) is evidently dependent on this penetration probability. We also expect

it to depend on the e�ective size, or `target area', of the particles; this geometrical factor is proportional to πλ2,

where λ is the de Broglie wavelength, λ2 ∝ 1/E. The intrinsic properties of the nuclei must also be involved;

these will be constant, or slowly varying functions of energy, in most circumstances (although resonances may

occur). We therefore write the total reaction cross-section in the form

σ(E) =
S(E)

E
exp

(
−

„
EG

E

«1/2
)

(A-13.4)

where S(E) encapsulates the nuclear physics of the actual fusion process.

At any given temperature, the number of particles in a Maxwellian velocity distribution falls o� exponentially

with increasing energy (eqtn. 8.15); that is, the probability of encountering a particle with energy E at kinetic

temperature T is

f(E)dE =
2√
π

E

kT
exp


− E

kT

ff
dE

(kTE)1/2
(A-13.5)

These two competing factors � the increasing probability of penetration with increasing energy (eqtn. A-13.1)

and the decreasing number of particles with increasing energy (eqtn. A-13.5) � mean that there is a limited

range of energies at which most reactions occur. This is illustrated in Fig. 13.2; the product of the two

exponential terms leads to the `Gamow peak', where the probability of fusion occuring is at a maximum.1

To explore this in greater detail, we write the reaction rate per particle pair, eqtn. 13.2, as

〈σ(v) v〉 =

Z ∞

0

σ(E)vf(E)dE

where σ(E), v are particle cross-sections and velocities at energy E; from eqtns. (A-13.4) and (A-13.5), and

using E = 1
2
mRv

2,

〈σ(v) v〉 =

Z ∞

0

S(E)

E
exp

(
−

„
EG

E

«1/2
) r

2E

mR

2√
π

E

kT
exp


− E

kT

ff
dE

(kTE)1/2
(A-13.6)

=

„
8

πmR

«1/2
1

(kT )3/2

Z ∞

0

S(E) exp

(
− E

kT
−

„
EG

E

«1/2
)

dE (A-13.7)

at some �xed temperature T . Eqtn. (A-13.7) is the integral over the Gamow peak; the larger the area, the

greater the reaction rate.

The Gamow peak is appropriately named in that it is indeed quite strongly peaked; it is therefore a reasonable

approximation to take the S(E) term as locally constant. In that case, the integrand peaks at energy E0, when

d

dE

(
E
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„
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=
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„
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= 0;

i.e.,
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„
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√
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2

«2/3

. (A-13.8)

=
h√

2(παkc)2mR (Z1Z2T )2
i1/3

1Clearly, the area under the Gamow peak determines the total reaction rate.
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E0, the location of the Gamow peak, is the most e�ective energy for thermonuclear reactions; it greatly exceeds

kT , the typical thermal energy, but falls well below the Gamow energy of the Coulomb barrier.

There is no simple analytical solution for the width of the peak, but one common (and reasonable) approach is

to approximate the exponential term in the integral (eqtn. A-13.7) with a gaussian centred on E0.

Conventionally, in this context `the' width is not characterized by the gaussian `σ' parameter, but rather by ∆,

the full width at 1/e of the peak value (so ∆ ≡ 2
√

2σ); thus we need to solve for

exp

(
− E

kT
−

„
EG

E

«1/2
)
' C exp

(
−

„
E − E0

∆/2

«2
)
. (A-13.9)

Requiring the two sides to be equal at E = E0 we immediately �nd

C = exp


−E0

kT
−

„
EG

E0

«ff
,

= exp


−3E0

kT

ff
(from eqtn. A-13.8)

while requiring the curvatures (second derivatives) on either side of eqtn. A-13.9 to be equal gives, after some

algebra,

∆ =

r
16

3
E0kT .

The total reaction rate depends on the integrated area under the Gamow peak; again using a gaussian

approximation to the peak, and constant S(E) across the peak, then from eqtn. (A-13.7), we have

〈σ(v) v〉 =

„
8

πmR

«1/2
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(where, in order to perform the integration analytically, the limits have been extended from 0/+∞ to

−∞/+∞; the error thus introduced is negligible provided that E0 > ∆/2). Bowers & Deeming give a

mathematical development from this point which leads to a demonstration that ε ' ε0ρT
α (eqtn. 13.9).

Furthermore, substituting eqtn. (A-13.8) into eqtn. (A-13.7) we obtain

〈σ v〉 ∝ exp[−(EG/kT )1/3].
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13.3 The mass defect and nuclear binding energy

The mass of any nucleus is less than the sum of the separate masses of its protons and

neutrons. The binding energy of a particular isotope is the energy corresponding to the

`missing' mass (or mass defect), and is the energy produced in forming that isotope from its

raw ingredients; equivalently, it is the amount of energy needed to break it up into protons and

neutrons.2 The binding energy peaks in the iron group, with 62Ni the most tightly-bound

nucleus, followed by 58Fe and 56Fe;3 this is the basic reason why iron and nickel are very

common metals in planetary cores, since they are produced as end products in supernovae.

For atomic masses A & 60, energy release is through �ssion (generally involving much less

energy).

For a nucleus with Z protons, N(= A− Z) neutrons, and mass m(Z,N) the binding energy is

therefore

Q(Z,N) = [Zmp + Nmn − m(Z,N)] c2 (13.10)

2The binding energy explains why the masses of the proton and neutron are both larger than the `atomic mass

unit', or amu; the amu is de�ned to be 1/12 the mass of 12C, but each nucleon in that isotope has given up almost

1% of its mass in binding energy.
3Many sources cite 56Fe as the most tightly bound nucleus; see M.P. Fewell, Am.J.Phys., 63, 653, 1995 for a

discussion which lays the blame for this misconception squarely at the door of astrophysicists!
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(where mp, mn are the proton, neutron masses), and the binding energy per baryon is

Q(Z,N)/(Z + N).

Converting `MeV per baryon' to `J kg−1', we �nd that burning protons into helium yields

H→ He: 6.3× 1014 J kg−1

but

H→ Fe: 7.6× 1014 J kg−1;

that is, burning H to He alone releases 83% of the total nuclear energy available per nucleon.

Physical processes

To do �

Nuclear models (liquid-drop, shell)

Line of stability (neutron, proton drip lines)

13.4 Hydrogen burning � I: the proton�proton (PP) chain

13.4.1 PP�I

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
6.92 MeV ×2

(3a) 3He +3 He → 4He + p + p 12.86 MeV 2.4× 105 yr

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

Reaction (1) is very slow because it involves the weak interaction,4 which is required to operate

during the short period when protons are close together.
4i.e., involves β decay; in this case β+ decay, p+ → n0 + e+ + νe

(cp. β− decay, n0 → p+ + e− + νe).
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Reactions (2) and (3a) involve the strong interaction and in consequence are much faster.

[Note that reaction (3a) is preferred to

3He + p → 4He + e+ + νe,

even though protons vastly outnumber 3He particles, because this again involves the weak interaction (the νe is

the giveaway).]

Reaction (1) occurs twice for each 4He production, each time generating an electron neutrino

with energy 0.26 MeV. These leave the Sun without further interaction, so the energy available

for heating is 26.2 MeV (26.72− 2× 0.26 MeV).

13.4.2 PP�II, PP�III

There are two principal secondary channels in the proton-proton chain, each catalysed by a

pre-existing α particle (4He nucleus):

PP�II (follows steps 1 & 2, which yield 6.92 MeV):

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
(3b) 3He + 4He → 7Be 1.59 MeV 9.2× 105 yr

(4b) 7Be + e− → 7Li + νe 0.86 MeV 0.39 yr

(5b) 7Li + p → 4He + 4He 17.35 MeV 570s
26.72 MeV

†Includes 1.02 MeV from e+ + e− → 2γ

In this case, neutrino losses average 0.80 MeV.

PP�III (follows steps 1, 2, and 3b):

Step Process Energy Solar

Release Timescale

(1) p + p → 2D + e+ + νe 1.44 MeV † 7.9× 109 yr

(2) 2D + p → 3He 5.49 MeV 1.4s
(3b) 3He +4 He → 7Be 1.59 MeV 9.2× 105 yr

(4c) 7Be + p → 8B 0.14 MeV 66 yr

(5c) 8B → 8Be∗ + e+ + νe 16.04 MeV † 1 s

(6c) 8Be∗ → 4He +4 He 3.30 MeV 10−16 s

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ
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Neutrino losses here are 7.2 MeV on average, predominantly through step (5c).5

In the Sun, ∼91% of reactions go through (3a); ∼9% end at (5b); and ∼0.1% end at (6c).

13.5 Hydrogen burning � II: the CNO cycle

Because the �rst reaction in the PP chain is so slow (7.9× 109 yr), under certain circumstances

it is possible for reactions involving (much less abundant) heavier nuclei, acting as catalysts, to

proceed faster than PP. The larger charges (and masses) of these heavier particles imply that

higher temperatures are required. Of these processes, the CNO, or CNO-I, cycle6 is the most

important:

Step Process Energy Solar

Release Timescale

(1) 12
6 C +p → 13

7 N 1.94 MeV 1.3× 107 yr

(2) 13
7 N → 13

6 C + e+ + νe 2.22 MeV † 7 m

(3) 13
6 C +p → 14

7 N 7.55 MeV 2.7× 106 yr

(4) 14
7 N +p → 15

8 O 7.29 MeV 3.2× 108 yr

(5) 15
8 O → 15

7 N + e+ + νe 2.76 MeV † 82 s

(6a) 15
7 N +p → 12

6 C +4He 4.96 MeV 1.1× 105 yr

26.72 MeV
†Includes 1.02 MeV from e+ + e− → 2γ

As in PP, we have created one 4He from four protons, with release of some 26.7 MeV in the

process; the neutrinos carry o� 1.71 MeV for every α particle created, so 25 MeV is available to

heat the gas. Although steps (2) and (5) both involve the weak interaction, they proceed faster

than reaction (1) of the PP chain, since the nucleons involved are already bound to each other

(which allows more time for the weak interaction to occur).

5It is the high-energy neutrinos from this reaction that were famously search for by experimentalist Raymond

Davis and his partner theoretician John Bahcall; the failure to detect them in th expected numbers became known

as the `Solar Neutrino Problem'. The `problem' is now resolved through better understanding of neutrino physics

� the electron neutrinos (the only type of neutrino detectable in tyhe 1960s, '70s, and '80s) `oscillate' to other

neutrino �avours.
6Sometimes called the `carbon cycle', although this risks confusion with cycling of carbon between the Earth's

atmosphere, biosphere, hydrosphere, which also goes by that name. The CNO-I and CNO-II cycles together

constitute the `CNO bi-cycle' Where do the CNO nuclei come from? The answer is that they were created in

previous generations of stars, in processes shortly to be described.
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The cycle starts and �nishes with 12C, which acts as a catalyst.7 However, during CNO

cycling, the overall abundances nonetheless change � why is this?

Step (4), 14N + p, is more than 10× slower than the next-slowest reaction (step (1), 12C + p).

It therefore acts as a `bottleneck', with a build-up of 14N at the expense of 12C until the

reaction rates8 of steps (1) and (4) are equal (these depending on the number densities of

reagents; eqtn. (13.2)). The equilibrium condition that reaction rates are equal determines the

abundances, which can be compared to `solar' abundances:

CN cycle Solar

n(12C)/n(13C) 4 89

n(14N)/n(15N) 2800 250 [15N reduced by step (6a)]

n(14N +15 N)/n(12C +13 C) 21 0.3 [14N increased by step (3)]

at T ∼ 1.3× 107K (the solar-core temperature; the timescale required to establish equilibrium

is set by the slowest reaction, and so is ∼ 108 yr at this temperature). These anomalous

abundance patterns are a clear signature of CN processing if the products are brought to the

stellar surface.

We can similarly evaluate equilibrium abundances for PP processing; for T ' 1.3× 107 K,

n(2D)/n(1H) = 3× 10−17

n(3He)/n(1H) = 10−4

( = 10−2 at 8× 106K)

13.5.1 CNO-II

There are a number of subsidiary reactions to the main CNO cycle, particularly involving

oxygen. The CNO-II bi-cycle accounts for about 1 in 2500 4He productions in the Sun:

(6b) 15N + p → 16O 12.13 MeV

(7b) 16O + p → 17F 0.60 MeV

(8b) 17F → 17O + e+ + νe 2.76 MeV

(9b) 17O + p → 14N +4 He 1.19 MeV

26.72 MeV

which returns to step (4) in CNO-I
7Note that given ordering is arbitrary � the cycle can be considered as beginning at any point [e.g., starting

at step (4), ending at (3)].
8Recall that reaction rates depend on both timescales and reagent abundances � cf. eqtn13.1
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Figure 13.3: Energy generation rates: CNO vs. PP processing

CNO-III, IV

The `OF cycle' (which with CNO-I and CNO-II makes up the `CNO tri-cycle') occurs in massive

stars, and can be divided into CNO-III and CNO-IV; each branch starts from a 17O produced in

CNO-II:

(9c) 17O + p → 18F + γ+ 5.61 MeV

(10c) 18F → 18O + e+ + νe + γ 1.66 MeV

(11c) 18O + p → 15N +4 He

which returns to step (6b) in CNO-II; or, proceeding to CNO-IV:

(11d) 18O + p → 19F + γ 7.99 MeV

(12d) 19F + p → 16O +4 He 8.11 MeV

which returns to step (7b) in CNO-II

The only possible breakout from a closed cycle at temperatures relevant for quiescent hydrogen

burning would be an alternative to step (12d),

(12e) 19F + p → 20Ne + γ

but the rate is negligibly small, ensuring that the CNO cycles are completely closed.
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We have seen that

ε ' ε0ρTα (13.9)

where α ' 4.5 for proton-proton reactions in the Sun and α ' 18 for CN processing. Because

core temperature scales with mass (Section 10.6.3), PP dominates for lower-mass stars, while

CN cycling dominates for higher-mass stars. The Sun lies just below the crossover point

(�g. 13.5.1), and although the PP chain dominates, the CN cycle is not negligible.

13.6 Helium burning

13.6.1 3α burning

Hydrogen burning dominates the stellar lifetime (the main-sequence phase), but the core

pressure,

P =
ρkT

µm(H)
,

reduces as the mean molecular weight µ changes from 0.5 (for fully-ionized pure hydrogen) to

4/3 (for fully-ionized pure helium). As a consequence the core contracts, and heats. If the star

is more massive than about 0.5M� the resulting core temperature and pressure are high enough

to ignite helium burning (∼ 108K, 108 kg m−3; lower-mass stars don't have enough

gravitational potential energy); the reactions have a nett e�ect of

3×4 He → 12C

However, the process is hindered by the absence of stable mass-5 (4He + p) and mass-8

(4He +4 He) nuclei; in particular, the 8Be is unstable, and decays back to a pair of alpha

particles in only about 10−16s. Nonetheless, in equilibrium a small population of 8Be particles

exists (at a level of 1 for every ∼ 109 α particles) and these can interact with 4He under

stellar-core conditions. Exceptionally, because the lifetimes are so short, the production of 12C

is, essentially, a 3-body process, with an energy-generation rate:

ε3α ' ε0ρ
2T 30

(where ε0 ∝ n(4He) and the density-squared dependence is because of the three-body nature of

the reaction).

(1) 4He +4 He ↔ 8Be −0.095 MeV

(2) 4He +8 Be ↔ 12C∗,
12C∗ → 12C + (2γ or e+ + e−) 7.37 MeV
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The �rst stage is endothermic; 8Be is more massive than two 4He nuclei, so the relative binding

energy is negative.

Reaction (2) is favoured by the existence of a resonance at 287 keV, which results in a 12C

nucleus excited 7.65 MeV above the ground state.9 The lifetime of this excited state is very

small (about 5× 10−17 s!), and normally decays straight back to 4He +8 Be, but 1 in ∼2400
decays is to a ground-state 12C nucleus, with the emission of two photons. These decays are

irreversible, and so a population of 12C nuclei slowly builds up.

13.6.2 Further helium-burning stages

Once carbon has been created, still heavier nuclei can be built up:

12C +4 He → 16O 7.16 MeV
16O +4 He → 20Ne 4.73 MeV

These processes therefore generate C, O, and Ne. 12C and 16O are the most abundant nuclei at

the end of He burning (and the most cosmically abundant elements after H and He, with about

1 C or O for every 103 hydrogens, or every 100 heliums) The situation is more complicated for
14N, which is enhanced during CNO processing10 but which is is destroyed during He burning

by the reactions

14N +4 He → 18O + e+ + νe
18O +4 He → 22Ne 4.73 MeV

13.7 Advanced burning

13.7.1 Carbon burning

After exhaustion of 4He, the core of a high-mass star contracts further, and at T ∼ 108�109K

carbon burning can take place:

12C +12 C →


23Na + p 2.2 MeV
20Ne +4 He 4.6 MeV
23Mg + n −2.6 MeV
24Mg + γ 13.9 MeV

9Hoyle (1954) deduced that such a resonance in a previously unknown excited state of carbon must exist to

allow an α particle to combine with an 8Be with su�cient probability for the triple-alpha process to proceed.
10All the initial 12C and 16O ends up as 14N.
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with a temperature dependence of

εC ' ε0ρT 32

13.7.2 Neon burning

Neon burning takes place after carbon burning if the core temperature reaches ∼ 109K, but at

these temperatures photodisintegration also occurs:

γ +20 Ne → 16O +4 He

These `new' alpha particles can then react with undissociated neons:

20Ne +4 He → 24Mg + γ

13.7.3 Oxygen burning

After neon burning the core consists mainly of 16O and 24Mg. Oxygen burning occurs at

∼ 2× 109K:

16O +16 O →



32S + γ 16.5 MeV
31P + p 7.6 MeV
31S + n 1.4 MeV
28Si +4 He 9.6 MeV
24Mg + 2 4He −0.4 MeV

with silicon being the most important product.

13.7.4 Silicon burning

At ∼ 3× 109K, silicon burning can occur; the Si is slowly photodisintegrated, releasing protons,

neutrons, and alpha particles (a process sometimes called `silicon melting' as opposed to `silicon

burning'). Of particular interest is the reaction

γ +28 Si → 24Mg +4 He

These alpha particles then combine with undissociated nuclei to build more massive nuclei; for

example, by way of illustration,

28Si +4 He ↔ 32S + γ

32S +4 He ↔ 36Ar + γ

36Ar +4 He ↔ 40Ca + γ

· · ·
52Fe +4 He ↔ 56Ni + γ

(→ 56Fe)
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The overall timescale is set by the slowest step, which is the initial photodisintegration of Si.

Because the binding energy per nucleon peaks around mass A = 56 (the `iron-peak' elements

Cr, Mn, Fe, Co, Ni) energy is absorbed to form heavier nuclei. Elements beyond the iron peak

are therefore not formed during silicon burning.

13.8 Pre-main-sequence burning

Although not as important as energy-generating sources, some reactions involving light nuclei

can occur at ∼ 106K � i.e., lower temperatures than those discussed so far:

2D + p → 3He + γ 5.4× 105K (step 2 of PP-I)

6Li + p → 3He +4 He 2.0× 106K
7Li + p → 4He +4 He 2.4× 106K

9Be +2 D → 4He +4 He +3 He 3.2× 106K
10B +2 D → 4He +4 He +4 He 4.7× 106K

These reactions generally destroy light elements such as lithium (produced, e.g., primordially)

at relatively low temperatures.

Note that the �rst step, burning of pre-existing deuterium, de�nes brown dwarfs � objects with

cores too cool to produce deuterium by proton-proton reactions.

13.9 Synthesis of heavy elements

13.9.1 Neutron capture: r and s processes

Carbon burning, oxygen burning etc. can generate heavy elements in the cores of very massive

stars, but only as far as the iron peak. However, a quite di�erent set of reactions can occur at

lower temperatures (∼ 108 K, comparable to that need for 3α burning).

Since neutrons are electrically neutral, they see no Coulomb barrier, and can be absorbed into

nuclei even at quite low energies (in fact, heavy nuclei have relatively large neutron-capture

cross-sections). Neutron absorption produces a heavier isotope (increases A but not Z); a

change in element may then result if the nucleus is unstable to β decay (n→ p + e− + νe).
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Following the pioneering work of Burbidge, Burbidge, Fowler & Hoyle (Rev. Mod. Phys., 29,

547, 1955), it is conventional to distinguish between r and s processes, depending on whether

neutron capture is rapid or slow compared to the β-decay timescale. If it is rapid, then more

and more massive isotopes accumulate; if it is slow, then decay to a higher-Z element takes

place. Suppose we start o� with a neutron capture to produce some new isotope:

(Z,A− 1) + n→ (Z,A).

Then if neutron capture happens slowly compared to decay for this new isotope, β decay

precedes any further neutron capture, and a new element is formed:

(Z,A) → (Z + 1, A) + e− + νe.

However, if neutron capture is rapid then a further isotope is produced,

(Z,A) + n→ (Z,A + 1),

which will in turn β-decay,

(Z,A + 1) → (Z + 1, A + 1) + e− + νe,

or assimilate a further neutron.

The timescales involved for the r and s processes are largely set by the relevant nuclear

timescales.11 The s process occurs during non-catastrophic evolutionary phases (principally the

AGB phase); we know this from the observation that technetium occurs in S-type stars

(moderately carbon rich M stars). Even the longest-lived technetium isotope, 99Tc, has a

11Just to have some sense of the numbers, the s process typically operates on timescales of ∼ 104 yr at neutron

densities of ∼ 1011 m−3; corresponding numbers for the r process are a few seconds at ∼ 1025 m−3.
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half-life only of order 104 yr, and so it must be produced within stars during normal

evolutionary processes.

Where do the free neutrons come from? For the s process, the CNO cycle establishes an

appreciable abundance of 13C (step 2 in the sequence set out in Section 13.5), which can react

with 4He:

13C +4 He → 16O + n (−0.91 MeV)

This is the main source of neutrons in AGB stars; at higher temperatures,

22Ne +4 He → 25Mg + n (−0.48 MeV).

is signi�cant.

Neutron-capture cross-sections are exceptionally small for certain nuclear neutron numbers.

Because it's harder for the corresponding isotopes to increase in mass through neutron capture,

they build up in abundance. We see this e�ect as peaks in the element-abundance distribution

for elements such as 88
38Sr,

138
56 Ba, and 208

82 Pb.

Elements beyond bismuth (Z = 83) cannot be produced through the s process, the terminating

cycle being

209Bi + n→210 Bi
210Bi→210 Po(+e− + νe)
210Po→206 Pb +4 He

206Pb + 3n→209 Pb
209Pb→209 Bi(+e− + νe)

(involving Z = 84 polonium and Z = 82 lead in addition to bismuth).

Many, but not all, elements at lower atomic masses can be produced by both r and s processes;

s-only products include 87
38Sr and

187
76 Os.

The r process requires very high neutron �uxes, so that neutron capture rates exceed or

compete with β-decay rates. These conditions can only occur during catastrophic,

short-timescale phases � supernova explosions. Although some isotopes can be produced by

both processes, in general there are signi�cant di�erences between their products.
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Figure 13.4: Isotopes of gold�bismuth. The top row lists the number of neutrons in the isotope, while the

atomic number (number of protons) is given by the element name. Unstable isotopes decay by conversion of a

proton to a neutron (electron capture, ε), conversion of a neutron to a proton (β decay), or emission of a helium

nucleus (α decay, Bi211 only). Numbers give natural percentage abundances of stable isotopes (blanks are for

isotopes that do not occur in nature).

The dashed line shows the s-process path from the only stable isotope of gold (Au197) to the only stable isotope

of bismuth (Bi209). Hg204 is an example of an isotope that can be made only by the r process.

13.9.2 The p process (for reference only)

In their seminal paper, Burbidge, Burbidge, Fowler & Hoyle (B2FH) identi�ed the need for a

process to create certain relatively proton-rich nuclei, heavier than iron, that cannot be

produced by either of the r or s processes (e.g., 190Pt, 168Yb).

They originally envisaged a proton-capture process, but we now believe that these proton-rich

nuclei are not produced by addition of protons, but by removal of neutrons by

photodisintegration (i.e., impact by high-energy photons).12 This occurs through neutron

photodisintegration (ejection of a neutron) or α photodisintegration (emission of an α particle).

These processes require high temperatures (i.e., high-energy photons), and is believed to occur

during core collapse of supernovae.

13.10 Summary

Hydrogen and helium were produced primordially. After these, CNO are the most abundant

elements, with CO produced through helium burning,13 with nitrogen generated in CNO

processing.

Stars more massive than ∼ 8M� go on to produce elements such as neon, sodium, and

magnesium, with stars more massive than ∼ 11M� proceding to silicon burning, thereby

generating nuclei all the way up to the iron peak.

12Luckily, `photodisintegration' �ts the description `p process' as well as `proton capture' does! There is a

proton-capture mechanism, now called the rp process, but it is generally less important than the p process.
13The balance between C and O is determined by the balance between the rate of production of C and the rate

of destruction (in O formation). If the ratio favoured O only a little more, then we wouldn't be here.
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Subsequent processing primarily involves neutron capture (although other processes, such as

spallation and proton capture, have a small role).

The timescales for various burning stages are progressively shorter, as energy production rates

increase to compensate increasing energy losses (e.g., by increasing neutrino losses). Only

massive stars have enough gravitational potential energy to power the most advanced burning

stages, so we review the timescales for a 25-M� star:

Burning stage Timescale Tc/109K ρc (kg m−3) Products

H 7× 106 yr 0.06 5× 104 He; N (CNO process)

He 5× 105 yr 0.1 7× 105 C, O

C 6× 102 yr 0.6 2× 108 Ne, Na, Mg, etc.

Ne 1× 100 yr 1 4× 109 O, Na, Mg, etc.

O 5× 10−1 yr 2 1× 1010 Si, S, P, etc.

Si 1 d 3 3× 1010 Mn, Cr, Fe, Co, Ni etc.
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Section 14

Supernovae

14.1 Observational characteristics

Supernovae (SNe) are classi�ed principally on the basis of their spectral morphology at

maximum light:

Hydrogen present? No: Type I

Silicon? Yes: Ia

No: Helium? Yes: Ib

No: Ic

Yes: Type II (II-L, II-P, IIn, Peculiar)

[Our discussion of nucleosynthesis should now inform this empirical classi�cation: e.g.,

abundant silicon can only result from exposure of material that has undergone advanced

burning stages.]

Type II is subclassi�ed according to light-curve morphology; II-L shows a Linear decrease in

magnitude with time, while II-P supernovae show a P lateau. While type II SNe generally show

broad lines (corresponding to ejection velocities of thousands of km s−1), some show relatively

narrow lines (few hundred km s−1); these are classi�ed IIn.

Note that the classi�cation originated in low-resolution photographic spectra, and in the light

of modern data is seen to be fairly rough; some spectra are intermediate between these types,

and some supernovae may appear as di�erent types at di�erent times. As we shall see, the

most important physical di�erence is between Type Ia SNe and `the rest' (that is, between

`thermonuclear' & `core-collapse supernovae') � and we will begin with `the rest'.
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14.2 Types Ib, Ic, II

These subtypes collectively constitute the `core collapse supernovae'. They occur almost

exclusively in the arms of spiral galaxies � strong circumstantial evidence that they are the end

points of evolution of short-lived massive stars.

14.2.1 The death of a massive star

Although the composition of the outer layers of a star may in�uence the spectral appearance of

its supernova explosion, the key physical processes take place in the stellar core.

As sequential burning processes exhaust their respective fuels in the core, it contracts,

generating internal energy. In `normal' evolutionary stages, this leads to the activation of the

next fusion process; thermal energy increases and further contraction is opposed.

However, in the �nal evolutionary stages, the opposite happens; energy is extracted, pressure

support is further removed, and gravitational contraction becomes gravitational collapse. There

are two signi�cant energy-extraction processes relevant to late-stage stellar evolution:

photodisintegration, and inverse beta decay.

(i) The contracting core eventually reaches temperatures su�cient to photodisintegrate iron

nuclei (the helium-iron phase transition; T ∼ 109K):

γ +56 Fe ↔ 134He + 4n
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The disintegration requires the same energy as released in building the iron from helium

in the �rst place,

Q = [13m(4He) + 4m(n)−m(56Fe)]c2 = 124.4 MeV

or 2× 1014 J kg−1. About 3/4 of the iron is dissociated in this way if the core reaches

ρ ' 1012 kg m−3, T ' 1010K.

Endothermic photodissociation of 4He can also occur at somewhat higher temperatures:

γ +4 He ↔ 2n + 2p

(5× 1014 J kg−1).

(ii) Electron capture by inverse β decay may also occur; schematically,

p + e− → n + νe

although in practice the protons are bound in nuclei:

N(A,Z) + e− → N(A,Z − 1) + n + νe

e.g.,

56Fe + e− →56 Mn + neut + νe

This neutronization occurs at high densities (ρ ' 1012�1013 kg m−3), and produces a

copious neutrino �ux (as well as a coious neutron �ux, which feeds r-processing).

Neutrinos are also generated by pair production,

γ + γ ↔ e− + e+ ↔ νe + νe

Remarkably, it is the neutrinos that carry o� ∼90% of the energy released � the radiant and

kinetic energies are minor perturbations.

The timescale associated with these processes is the dynamical free-fall timescale,

tdyn =

√
2r3

Gm(r)
'
√

(Gρ−1) (12.2)

which is very short for such high densities � of order 1 ms. The velocities are correspondingly

large (up to a quarter the speed of light!). The collapse is therefore indeed catastrophic, and is

almost unimpeded until halted by neutron degeneracy; the core brie�y achieves a density 2�3×
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that of nuclear matter before rebounding to leave a neutron star. The rebound sends a shock

wave through the overlying layers of the star, which is infalling on a much longer timescale; the

shock reverses the infall resulting in an outwards explosion, which we see as the supernova.

The remnant is normally a neutron star, but just as there is a limit to mass of white dwarfs

(supported by electron degeneracy pressure), ∼1.4M�, so there is a limit to the mass of

neutron stars (supported by neutron degeneracy pressure), ∼3M�. If the remnant mass exceeds

this limit, a black hole results.1

14.2.2 Light-curves

Type II SN are thought to arise from red supergiants (as has now been directly observed in

several instances). The spectra of these SNe near maximum show roughly normal abundances

(in particular, hydrogen is present), with velocities of ∼ ±5000 km s−1, because we're seeing

matewial from the near-normal outer layers of the progenitor.

The extended outer structure retains much of the heat deposited by the shock, and the initial

light-curve in this case is dominated by release of this energy over several weeks.

Evidently, though, Types Ib and Ic, with their H-poor spectra, have lost most of their outer

hydrogen envelopes, most probably as a result of strong stellar winds (or through binary

interaction).2 Type I SN (of all types) therefore originate in more compact structures, and

their light-curves require an alternative source of heating � radioactive decay. The light-curve

decay timescale in SN 1987A corresponds closely to the timescales for radioactive decay of 56Co

to 56Fe (half-life 77d).3

Maximum absolute visual magnitudes of core-collapse supernovae are typically −17 to −18,
with light-curves that are rather diverse, as a result of the di�erences in the structure of the

body surrounding the collapsed core.

1Degenerate matter has su�cient density that the dominant contribution to the pressure results from the Pauli

exclusion principle, arising because the constituent particles (fermions) are forbidden from occupying identical

quantum states. Any attempt to force them close enough together that they are not clearly separated by position

must place them in di�erent energy levels. Therefore, reducing the volume requires forcing many of the particles

into higher-energy quantum states. This requires additional compression force, and so is felt as a resisting pressure.

The relevant fermions result in electron or neutron degeneracy pressure.
2Short gamma-ray bursts are generally believed to be associated with the collapse of Wolf-Rayet stars.
3The 56Co is in turn produced from the faster (6.1-d) decay of 56Ni. The late-time fading of 1987A, more than

∼3 yr after maximum, appears to correspond to decay of 57Co.
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14.3 Type Ia SNe

14.3.1 Observational characteristics

The light-curves can reach M(V ) ' −19 (∼ 1010L�) at maximum, the most luminous of the

normal supernovae. They typically show a rather rapid initial decline (for ∼30d after

maximimum), followed by an exponential decay (i.e., linear in magnitude),

L = L0 exp {−t/τ(Ia)}

with τ(Ia) ' 77d (the 56Co decay timescale).

Velocities of up to 20,000 km s−1 are seen in the absorption- and emission-line spectra, with

lines due to elements such as magnesium, silicon, sulfur, and calcium near maximum light.

Type Ia SNe occur in both spiral and, uniquely, elliptical galaxies, Because elliptical galaxies

contain no massive stars, Ia SNe can't be core-collapse objects (see Section 14.2.1).

14.3.2 Interpretation

Type Ia SNe are believed to be the result of mass transfer onto a white dwarf (WD) in a binary

system (or possibly through WD�WD mergers). Eventually the WD is pushed over the

Chandrasekhar mass limit (1.4M�), electron degeneracy is overcome, and the object starts to
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collapse; the conversion of gravitational energy to thermal energy drives the temperature to

values where carbon burning can occur. The temperature increases, carbon burning accelerates

� and a thermonuclear runaway occurs, throughout the star (generating the silicon observed in

the spectrum).

Since these processes occur under essentially the same conditions irrespective of evolutionary

history, all type Ia SNe are expected to be closely similar � a crucial aspect of their use as

`standard candles' in cosmological applications, where they are the only objects su�ciently

luminous, and su�ciently `standard', to be useful at large distances.

This standardization is observed to be the case in practice, although there are some systematic

di�erences from object to object; e.g., some are a bit brighter than others, and the brighter

events have slightly slower fades from maximum. This evidently relates to the details of the SN

event � i.e., how the thermonuclear runaway progresses.

Two distinct routes have been identi�ed for fusion processes to propagate. One is subsonic

burning, or `de�agration'; the other is supersonic `detonation'. Current models suggest that

carbon burning starts as a subsonic de�agration and moves to supersonic detonation; slightly

di�erent timescales for this process yield slightly di�erent observational characteristics. The

energy of the explosion is enough to disrupt completely the original object.

14.4 Pair-instability supernovae (for reference only)

If extremely massive stars exist (& 130M�) core temperatures may become so great, before the

fusion cascade is complete, that high-energy photons (γ rays) in the core annihilate, creating

matter-antimatter pairs (mostly e−/e+).

Once pair production starts to become the dominant mechanism for γ-ray capture, these

photons' mean free path starts to decrease; this leads to an increase in core temperature,

further increasing the photon energy, in turn further decreasing the mean free path. This leads

to a runaway instability, removing photons; and as the pressure support provided by the

radiation is removed, outer layers fall inward, resulting in what is predicted to be an

exceptionally bright supernova explosion.

In such a pair instability supernova (PISN), the creation and annilation of positron/electron

pairs causes the core to be so unstable that it cannot gravitationally collapse further;

everything is ejected, leaving no remnant.

Stars which are rotating fast enough, or which do not have low metallicities, probably do not

collapse in pair-instability supernovae due to other e�ects (e.g., the mass of high-metallicity

stars is constrained by the Eddington limit).
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No pair-production supernova has been identi�ed with certainty, but the brightest supernova

on record, SN 2006gy (in NGC 1260), is the best candidate. Studies indicate that perhaps

∼ 40M� of 56Ni were released � almost the entire mass of the star's core regions. 56Ni decays to
56Co with a half-life of 6.1 d; in turn the cobalt decays with a half-life of 77 days.
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Appendix A

SI units

A.1 Base units

Astronomers have been rather bad at using the SI system; they prefer their own `custom' units

(M�, pc, etc.), or adopt cgs units (centimetre, gram, second) in preference to mks units (metre,

kilogram, second) from which the SI system derives. Nevertheless, students, in particular,

really should strive to use SI, which (among other advantages) greatly simpli�es treatments of

electricity.1

The irreducible base units of the SI system [and their cgs counterparts, where di�erent] are:

Quantity SI Unit cgs equivalent

length metre m [centimetre cm = 10−2 m]

mass kilogram kg [gram g = 10−3 kg]

time second s

electric current ampere A [Biot bi = 10−1 A]

amount of substance mole mol

luminous intensity candela cd

thermodynamic

temp.

kelvin K [degree Celsius ◦C = K− 273.15]

1In SI, electric current is de�ned in terms of the directly measurable magnetic force it exerts, and charge is

then de�ned as current multiplied with time.

In cgs `electrostatic units', the unit of charge (or statcoulomb), is de�ned by the quantity of charge which gives a

force constant of 1 in Coulomb's law. That is, for two point charges, each with charge 1 statcoulomb, separated

by 1 centimetre, the electrostatic force between them is one dyne. This also has the e�ect of making electric

charge dimensionless (and not requiring a fundamental unit).

145



A.2 Derived units

`Derived quantities' can be de�ned in terms of the seven base quantities. There are 20 derived

quantities which are not dimensionless and which, for convenience, have named units; these are

tabulated overleaf.

The units of angle and solid angle are, formally, simply the number 1 (being ratios of

dimensionally identical quantities). Nonetheless, these two further derived quantities have

named units, as the lack of units could easily be confusing. They are:

• radian (rad): the unit of angle is the angle subtended at the centre of a circle by an arc of

the circumference equal in length to the radius of the circle (so there are 2π radians in a

circle).

• steradian (sr): the unit of solid angle is the solid angle subtended at the centre of a

sphere of radius r by a portion of the surface of the sphere having an area r2 (so there are

4π steradians on a sphere).

Many other derived quantities in more or less common use don't have special names for their

units; some are given in the tables which follow (in a few cases, these quantities do have named

units in the cgs system). A number of other convenient units are not directly derived from the

SI base units, but can nonetheless be expressed in terms of those units, and are recognized by

the guardians of the SI system. Important examples for astrophysics include:

• The minute (m=60 s), hour (h = 3600 s), and day (d = 86 400 s).

(The year is not an admitted unit, as it varies in length; for rough calculations it's usually

adequate to assume 1 yr ' 365.25 d.)

• the degree (◦ = 2π/360 rad), arcminute (′ = 2π/21 600 rad), and arcsecond

(′′ = 2π/1.296×106 rad)

• the atomic mass unit (amu = 1.66053886× 10−27 kg)

• the electron volt (eV = 1.60217646× 10−19 J)

• the ångström (Å = 10−10 m = 0.1 nm)

• the astronomical unit (AU = 1.49598× 1011 m) and

the parsec (pc = 3.08568025× 1016 m).
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Unnamed Derived SI units

Quantity Units

area m2 m2

volume m3 m3

speed, velocity m s−1 m s−1

acceleration m s−2 m s−2

jerk m s−3 m s−3

angular velocity rad s−1 s−1

momentum, impulse N s kg m s−1

angular momentum N m s kg m2 s−1

torque, moment of force N m kg m2 s−2

wavenumber m−1 m−1

mass density kg m−3 kg m−3

heat capacity, entropy J K−1 kg m2 s−2 K−1

speci�c heat capacity, speci�c entropy J K−1 kg−1 m2 s−2K−1

speci�c energy J kg−1 m2 s−2

energy density J m−3 kg m−1 s−2

surface tension N m−1 = J m−2 kg s−2

heat �ux density, irradiance W m−2 kg s−3

thermal conductivity W m−1 K−1 kg m s−3 K−1

di�usion coe�cient m2 s−1 m2 s−1

dynamic viscosity1 Pa s = N s m−2 kg m−1 s−1

kinematic viscosity2 m2 s−1 m2 s−1

electric charge density C m−3 m−3 A s

electric current density A m−2 A m−2

conductivity S m−1 kg−1 m−3 s3 A2

permittivity F m−1 kg−1 m−3 s4 A2

permeability H m−1 kg m s−2 A−2

electric �eld strength V m−1 kg m s−3 A−1

magnetic �eld strength3 A m−1 A m−1

luminance4 cd m−2 cd m−2

cgs named units:
1poise P = 0.1 Pa s
2stokes St = 10−4 m2 s−1

3oersted Oe = 1000
4π

A m−1

4stilb sb = 104 cd m−2
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A.3 Pre�xes

The SI system also speci�es that names of multiples and submultiples of units are formed by

means of the following pre�xes:

Multiplying Pre�x Symbol Multiplying Pre�x Symbol

Factor Factor

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deca da 10−24 yocto y

Multiple pre�xes may not be used, even for the kilogram (unique among SI base units in having

one of these pre�xes as part of its name), for which the pre�x names are used with the unit

name `gram', and the pre�x symbols are used with the unit symbol `g'; e.g, 10−6 kg = 1 mg

(not 1 µkg).

With this exception, any SI pre�x may be used with any SI unit (whether base or derived,

including the degree Celsius and its symbol ◦C). Note that use of `micron' for the µm persists

very widely (almost universally!) in astrophysics, although the approved SI name is the

micrometre.

According to SI rules, these pre�xes strictly represent powers of 10, and should not be used to
represent the powers of 2 commonly found in computing applications. Thus one kilobyte
(1 kbyte) is 1000 bytes � and not 210 bytes = 1024 bytes. In an attempt to resolve this
ambiguity, pre�xes for binary multiples have been recommended by the International
Electrotechnical Commission for use in information technology (though they're achieving
acceptance only very slowly):

Factor Name Symbol Origin

210 kibi Ki `kilobinary', (210)1 kilo, (103)1

220 mebi Mi `megabinary', (210)2 mega, (103)2

230 gibi Gi `gigabinary', (210)3 giga, (103)3

240 tebi Ti `terabinary', (210)4 tera, (103)4

250 pebi Pi `petabinary', (210)5 peta, (103)5

260 exbi Ei `exabinary', (210)6 exa, (103)6
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A.4 Writing style

For those really interested in the details, here are some of the more important elements of recommended
writing style for SI units:

• Symbols are written in upright Roman type (`m' for metres, `l' for litres).

• Units are written without a capital (other than where the rules of punctuation require it), as are
their corresponding symbols, except for symbols derived from the name of a person; thus �the
symbol for the coulomb is `C' �. However, some American-speaking countries use `L' for `litre' (to
avoid potential confusion with numeric `1').

• Names of units take plurals according to the usual rules of grammar; e.g., 20 kilograms,
40 henries. `Hertz', `lux', and `siemens' have the same form in the singular and the plural.
Symbols of units are not pluralised (`20 kg', not `20 kgs'), thereby avoiding confusion with the
second (`s').

• A space should separates a number and its unit (`20 kg', not `20kg'). Exceptions are the symbols
for degrees, arcminutes, and arcseconds (◦, ′, ′′), which should be contiguous with the number
(e.g., 20◦ 15′).

• Symbols do not have an appended full stop (other than where the rules of punctuation require it;
speci�cally, at the end of a sentence).

• Commas should not be used to break up long runs of digits, though spaces may be used
(3.141 592 654, not 3.141,592,654).
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Appendix B

Constants

B.1 Physical constants

Speed of light c 2.99792458× 108 m s−1

Universal gravitational constant G 6.67300× 10−11 m3 kg−1 s−2 (= N m2 kg−2)
Planck's constant h 6.626068× 10−34 m2 kg s−1 (=J s)
Boltzmann's constant k 1.3806503× 10−23 m2 kg s−2 K−1 (=J K−1)
Stefan-Boltzmann constant σ 5.67040× 10−8 W m−2 K−4

Radiation constant a = 4σ/c 7.55× 10−16 J m−3 K−4

Atomic mass unit amu 1.66053886× 10−27 kg
Hydrogen mass m(H) 1.00794 amu
Proton mass mP 1.67262158× 10−27 kg
Electron mass me 9.10938188× 10−31 kg
Electron charge e 1.60217646× 10−19 C

πe2

mec 2.654× 10−6 m2 s−1

B.2 Astronomical constants

Astronomical unit AU 1.49598× 1011 m
Parsec pc 3.08568025× 1016 m

B.2.1 Solar parameters

The `solar constant' is the (very slightly variable) energy �ux from the Sun measured at the mean
distance of the Earth; numerically,

solar constant, C� = 1366 J m−2 s−1.
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The mean Earth�Sun distance is

d� ≡ 1 AU = 1.496× 1011 m

whence, since L� = 4πd2
�C�,

L� = 3.827× 1026 W

This allows us to de�ne the Sun's e�ective temperature, from L� = 4πR2
�σT 4

eff , using

R� = 6.960× 108 m;

Teff(�) = 5770 K.

The solar mass is

M� = 1.989× 1030 kg,

which follows from equating centrifugal and gravitational accelerations of the Earth in orbit,

M⊕v2
⊕

R⊕
=

GM�M⊕

d2
�

whence the mean density is

ρ =
M�

4/3πR3
�

= 1.4× 103 kg m−3

Finally, the mean number density is

n =
ρ

µm(H)
' 1.4× 1030 m−3

(using mean molecular weight µ ' 0.61).
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