The allowed terms for equivalent electrons, $n \mathbf{p}^{2}$

Application of the method described in the lecture for a pair of equivalent electrons.

For the electron configuration $n \mathrm{p}^{2} l_{1}=l_{2}=1$ and $s_{1}=$ $s_{2}=1 / 2$ for each electron, so $m_{l}=-1,0,+1$ and $m_{s}=$ $\pm 1 / 2$.

All possible combinations are listed in table 1. In the m_{s} column ' + ' refers to $m_{s}=+1 / 2$ and ' - ' refers to $m_{s}=$ $-1 / 2$.

The states not allowed by the Pauli Exclusion Principle because $\left(m_{l_{1}}, m_{s_{1}}\right)=\left(m_{l_{2}}, m_{s_{2}}\right)$ are eliminated and have an ' X ' in the 'Pauli?' column.

The pairs of states that are the same when the electron labels are exchanged such as those labelled with \& and A have one state of the pair eliminated to avoid doublecounting and have an ' X ' in the 'label?' column.
\& : $\left\{\left(m_{l_{1}}=1, m_{s_{1}}=+\right) ;\left(m_{l_{2}}=1, m_{s_{2}}=-\right)\right\}$ and $\left\{\left(m_{l_{1}}=1, m_{s_{1}}=-\right) ;\left(m_{l_{2}}=1, m_{s_{2}}=+\right)\right\}$
$\boldsymbol{\uparrow}:\left\{\left(m_{l_{1}}=1, m_{s_{1}}=-\right) ;\left(m_{l_{2}}=0, m_{s_{2}}=+\right)\right\}$ and $\left\{\left(m_{l_{1}}=0, m_{s_{1}}=+\right) ;\left(m_{l_{2}}=1, m_{s_{2}}=-\right)\right\}$

There are 15 states remaining which may be grouped according to their values of $M_{L}=m_{l_{1}}+m_{l_{2}}$ and $M_{S}=$ $m_{s_{1}}+m_{s_{2}}$.

The largest value of M_{L} is $M_{L}=2$, for which in this table $M_{S}=0$. There must, therefore be a group of $M_{L}=$ $+2,+1,0,-1,-2$ (all possible values of M_{L} for $L=2$) each with $M_{S}=0$, so that $S=0$.

Group these together and assign a term: $(2 S+1)=1$, $L=2 \Rightarrow D$.

The term is ${ }^{1} D$.
What's left? The largest M_{L} left is $M_{L}=1$ (i.e. $L=1$), so there must be a group of $M_{L}=+1,0,-1$ all with the same M_{S}. Actually there are three - one with $M_{S}=+1$, one with $M_{S}=0$ and one with $M_{S}=-1$. This means that not only is $L=1$ but also $S=1$.

Groups these together and assign a term: $(2 S+1)=3$, $L=1 \Rightarrow P$.

The term is ${ }^{3} P$
What's left? Only one state with $M_{L}=M_{S}=0$, and so $L=S=0$.

Assign a term to this: $(2 S+1)=1, L=0 \Rightarrow S$.
The term is ${ }^{1} S$
The allowed terms are therefore ${ }^{1} S,{ }^{3} P,{ }^{1} D$.
The grouping of the allowed configurations is shown in table 2

$m_{l_{1}}$	$m_{s_{1}}$	$m_{l_{2}}$	$m_{s_{2}}$	Pauli?	label?
1	+	1	+	X	
1	+	1	-		\mathbf{Q}
1	+	0	+		
1	+	0	-		
1	+	-1	+		
1	+	-1	-		
1	-	1	+		$\mathrm{X} \boldsymbol{母}$
1	-	1	-	X	
1	-	0	+		\boldsymbol{Q}
1	-	0	-		
1	-	-1	+		
1	-	-1	-		
0	+	1	+		X
0	+	1	-		X
0	+	0	+	X	
0	+	0	-		
0	+	-1	+		
0	+	-1	-		
0	-	1	+		X
0	-	1	-		X
0	-	0	+		X
0	-	0	-	X	
0	-	-1	+		
0	-	-1	-		
-1	+	1	+		X
-1	+	1	-		X
-1	+	0	+		X
-1	+	0	-		X
-1	+	-1	+	X	
-1	+	-1	-		
-1	-	1	+		X
-1	-	1	-		X
-1	-	0	+		X
-1	-	0	-		X
-1	-	-1	+		X
-1	-	-1	-	X	

Table 1: Table of the possible combinations of $m_{l_{1}}, m_{s_{1}}, m_{l_{2}}, m_{s_{2}}$

$m_{l_{1}}$	$m_{s_{1}}$	$m_{l_{2}}$	$m_{s_{2}}$	$M_{L}=m_{l_{1}}+m_{l_{2}}$	$M_{S}=m_{s_{1}}+m_{s_{2}}$
1	$+1 / 2$	1	$-1 / 2$	2	0
1	$-1 / 2$	0	$+1 / 2$	1	0
0	$+1 / 2$	0	$-1 / 2$	0	0
0	$-1 / 2$	-1	$+1 / 2$	-1	0
-1	$+1 / 2$	-1	$-1 / 2$	-2	0
1	$+1 / 2$	0	$+1 / 2$	1	1
1	$+1 / 2$	-1	$+1 / 2$	0	1
0	$+1 / 2$	-1	$+1 / 2$	-1	1
1	$+1 / 2$	0	$-1 / 2$	1	0
1	$-1 / 2$	-1	$+1 / 2$	0	0
0	$+1 / 2$	-1	$-1 / 2$	-1	0
1	$-1 / 2$	0	$-1 / 2$	1	-1
1	$-1 / 2$	-1	$-1 / 2$	0	-1
0	$-1 / 2$	-1	$-1 / 2$	-1	-1
1	$+1 / 2$	-1	$-1 / 2$	0	0

Table 2: Grouping of the allowed combinations of $m_{l_{1}}, m_{s_{1}}, m_{l_{2}}, m_{s_{2}}$

