The allowed terms for equivalent electrons, $n\mathbf{p}^2$

Application of the method described in the lecture for a pair of equivalent electrons.

For the electron configuration $np^2 l_1 = l_2 = 1$ and $s_1 = s_2 = 1/2$ for each electron, so $m_l = -1, 0, +1$ and $m_s = \pm 1/2$.

All possible combinations are listed in table 1. In the m_s column '+' refers to $m_s = +1/2$ and '-' refers to $m_s = -1/2$.

The states not allowed by the Pauli Exclusion Principle because $(m_{l_1}, m_{s_1}) = (m_{l_2}, m_{s_2})$ are eliminated and have an 'X' in the 'Pauli?' column.

The pairs of states that are the same when the electron labels are exchanged such as those labelled with \clubsuit and \blacklozenge have one state of the pair eliminated to avoid double-counting and have an 'X' in the 'label?' column.

$$\clubsuit: \{(m_{l_1} = 1, m_{s_1} = +); (m_{l_2} = 1, m_{s_2} = -)\}$$
 and $\{(m_{l_1} = 1, m_{s_1} = -); (m_{l_2} = 1, m_{s_2} = +)\}$

$$\label{eq:main_spin} \begin{array}{l} \bigstar : \ \{(m_{l_1} = 1, m_{s_1} = -); (m_{l_2} = 0, m_{s_2} = +)\} \ \text{and} \\ \{(m_{l_1} = 0, m_{s_1} = +); (m_{l_2} = 1, m_{s_2} = -)\} \end{array}$$

There are 15 states remaining which may be grouped according to their values of $M_L = m_{l_1} + m_{l_2}$ and $M_S = m_{s_1} + m_{s_2}$. The largest value of M_L is $M_L = 2$, for which in this table $M_S = 0$. There must, therefore be a group of $M_L = +2, +1, 0, -1, -2$ (all possible values of M_L for L = 2) each with $M_S = 0$, so that S = 0.

Group these together and assign a term: (2S + 1) = 1, $L = 2 \Rightarrow D$.

The term is ${}^{1}D$.

What's left? The largest M_L left is $M_L = 1$ (i.e. L = 1), so there must be a group of $M_L = +1, 0, -1$ all with the same M_S . Actually there are three - one with $M_S = +1$, one with $M_S = 0$ and one with $M_S = -1$. This means that not only is L = 1 but also S = 1.

Groups these together and assign a term: (2S + 1) = 3, $L = 1 \Rightarrow P$.

The term is ${}^{3}P$

What's left? Only one state with $M_L = M_S = 0$, and so L = S = 0.

Assign a term to this: $(2S + 1) = 1, L = 0 \Rightarrow S.$

The term is ${}^{1}S$

The allowed terms are therefore ${}^{1}S, {}^{3}P, {}^{1}D$.

The grouping of the allowed configurations is shown in table 2

m_{l_1}	m_{s_1}	m_{l_2}	m_{s_2}	Pauli?	label?
1	+	1	+	Х	
1	+	1	_		"
1	+	0	+		
1	+	0	_		
1	+	-1	+		
1	+	-1	_		
1	_	1	+		Х 🖡
1	_	1	—	Х	
1	_	0	+		
1	_	0	_		
1	_	-1	+		
1	_	-1	—		
0	+	1	+		Х
0	+	1	—		Х 🏟
0	+	0	+	Х	
0	+	0	—		
0	+	-1	+		
0	+	-1	—		
0	_	1	+		Х
0	_	1	_		X
0	_	0	+		X
0	_	0	—	Х	
0	_	-1	+		
0	_	-1	_		
-1	+	1	+		Х
-1	+	1	—		X
-1	+	0	+		X
-1	+	0	_		X
-1	+	-1	+	Х	
-1	+	-1	—		
-1	-	1	+		Х
-1	_	1	_		X
-1	_	0	+		X
-1	_	0	_		X
-1	_	-1	+		X
-1	_	-1	_	Х	

Table 1: Table of the possible combinations of $m_{l_1}, m_{s_1}, m_{l_2}, m_{s_2}$

m_{l_1}	m_{s_1}	m_{l_2}	m_{s_2}	$M_L = m_{l_1} + m_{l_2}$	$M_S = m_{s_1} + m_{s_2}$
1	+1/2	1	-1/2	2	0
1	-1/2	0	+1/2	1	0
0	+1/2	0	-1/2	0	0
0	-1/2	-1	+1/2	-1	0
-1	+1/2	-1	-1/2	-2	0
1	+1/2	0	+1/2	1	1
1	+1/2	-1	+1/2	0	1
0	+1/2	-1	+1/2	-1	1
1	+1/2	0	-1/2	1	0
1	-1/2	-1	+1/2	0	0
0	+1/2	-1	-1/2	-1	0
1	-1/2	0	-1/2	1	-1
1	-1/2	-1	-1/2	0	-1
0	-1/2	-1	-1/2	-1	-1
1	+1/2	-1	-1/2	0	0

Table 2: Grouping of the allowed combinations of $m_{l_1}, m_{s_1}, m_{l_2}, m_{s_2}$