Proof of equation (40) from Lecture 18

\underline{J} is the total angular momentum vector, and \underline{V} is a vector operator.
The commutation relations for the components of \underline{J} and \underline{V} are

$$
\begin{array}{rcc}
{\left[J_{x}, V_{x}\right]=0,} & {\left[J_{x}, V_{y}\right]=i \hbar V_{z},} & {\left[J_{x}, V_{z}\right]=-i \hbar V_{y}} \\
{\left[J_{y}, V_{x}\right]=-i \hbar V_{z},} & {\left[J_{y}, V_{y}\right]=0,} & {\left[J_{y}, V_{z}\right]=i \hbar V_{x}} \\
{\left[J_{z}, V_{x}\right]=-i \hbar V_{y},} & {\left[J_{z}, V_{y}\right]=-i \hbar V_{x},} & {\left[J_{z}, V_{z}\right]=0} \tag{3}
\end{array}
$$

Also, the commutation relations for the individualt components of \underline{J} are:

$$
\begin{equation*}
\left[J_{x}, J_{y}\right]=i \hbar J_{z}, \quad\left[J_{y}, J_{z}\right]=i \hbar J_{x} \quad\left[J_{z}, J_{x}\right]=i \hbar J_{y} \tag{4}
\end{equation*}
$$

Using these we can show that:

$$
\begin{equation*}
\underline{J} \times \underline{V}+\underline{V} \times \underline{J}=2 i \hbar \underline{V} \tag{5}
\end{equation*}
$$

and also that

$$
\begin{equation*}
\left[\underline{J}^{2},\left[\underline{J}^{2}, \underline{V}\right]\right]=2 \hbar^{2}\left(J^{2} \underline{V}+\underline{V} J^{2}\right)-4 \hbar^{2}(\underline{V} \cdot \underline{J}) \underline{J} \tag{6}
\end{equation*}
$$

Now the matrix element $\langle\psi|\left[\underline{J}^{2},\left[\underline{J}^{2}, \underline{V}\right]\right]|\psi\rangle$ of the left hand side of equation 6 for $|\psi\rangle=\left|l s j m_{j}\right\rangle$ is equal to zero, so we must have:

$$
\begin{equation*}
\left\langle l s j m_{j}\right|\left(J^{2} \underline{V}+\underline{V} J^{2}\right)\left|l s j m_{j}\right\rangle=2\left\langle l s j m_{j}\right|(\underline{V} \cdot \underline{J}) \underline{J}\left|l s j m_{j}\right\rangle \tag{7}
\end{equation*}
$$

and so:

$$
\begin{equation*}
j(j+1) \hbar^{2}\left\langle l s j m_{j}\right| \underline{V}\left|l s j m_{j}\right\rangle=\left\langle l s j m_{j}\right|(\underline{V} \cdot \underline{J}) \underline{J}\left|l s j m_{j}\right\rangle \tag{8}
\end{equation*}
$$

Now recall the energy shift from the lecture:

$$
\begin{equation*}
\Delta E_{S}=\int \psi^{*} \frac{\mu_{B}}{\hbar} B \underline{\hat{z}} \cdot \underline{S} \psi d \tau \tag{9}
\end{equation*}
$$

where we have put $\underline{B}=B \underline{z}$.
This energy is:

$$
\begin{equation*}
\Delta E_{S}=\frac{\mu_{B}}{\hbar} B\langle\psi| S_{z}|\psi\rangle \tag{10}
\end{equation*}
$$

So we can use equation 8 by setting $\underline{V}=\underline{S}$ and taking the z-component, which gives;

$$
\begin{align*}
\langle\psi| S_{z}|\psi\rangle & =\frac{1}{j(j+1) \hbar^{2}}\langle\psi|(\underline{S} \cdot \underline{J}) J_{z}|\psi\rangle \\
& =\frac{m_{j}}{j(j+1) \hbar}\langle\psi|(\underline{S} \cdot \underline{J})|\psi\rangle \tag{11}
\end{align*}
$$

We can now write $\underline{L}=\underline{J}-\underline{S}$, so that $L^{2}=J^{2}+S^{2}-2 \underline{S} \cdot \underline{J}$. And:

$$
\begin{align*}
\langle\psi| \underline{S} \cdot \underline{J}|\psi\rangle & =\frac{1}{2}\langle\psi| J^{2}+S^{2}-L^{2}|\psi\rangle \\
& =\frac{1}{2} \hbar^{2}(j(j+1)+s(s+1)-l(l+1)) \tag{12}
\end{align*}
$$

which by inserting into the above gives:

$$
\begin{equation*}
\langle\psi| S_{z}|\psi\rangle=m_{j} \hbar\left[\frac{j(j+1)+s(s+1)-l(l+1)}{2 j(j+1)}\right] \tag{13}
\end{equation*}
$$

And so the energy shift is:

$$
\begin{equation*}
\Delta E_{S}=m_{j} \mu_{B} B\left[\frac{j(j+1)+s(s+1)-l(l+1)}{2 j(j+1)}\right] \tag{14}
\end{equation*}
$$

as given in the lectures (equation 40).

