As for H_{2}^{+}we can build the low-lying states of H_{2} from atomic orbitals of 1s hydrogen. The antisymmetric $\psi=\psi_{-}$, will give us a triplet state:

$$
\begin{equation*}
\psi^{\mathrm{T}} \simeq \frac{1}{\sqrt{2}}\left[\Phi_{1 \mathrm{~s}}\left(\underline{r}_{A 1}\right) \Phi_{1 \mathrm{~s}}\left(\underline{r}_{B 2}\right)-\Phi_{1 \mathrm{~s}}\left(\underline{r}_{A 2}\right) \Phi_{1 \mathrm{~s}}\left(\underline{r}_{B 1}\right)\right] \chi^{T} \tag{19}
\end{equation*}
$$

and the symmetric $\psi=\psi_{+}$, will give us a singlet state:

$$
\begin{equation*}
\psi^{\mathrm{S}} \simeq \frac{1}{\sqrt{2}}\left[\Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right)+\Phi_{1 s}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{B 1}\right)\right] \chi^{S} \tag{20}
\end{equation*}
$$

As before, to obtain the energy associated to these 2 states we work out expectation value of Hamiltonian, normalized for either singlet or triplet states:

$$
\begin{aligned}
E_{ \pm}(R) & =\frac{\int \psi^{* S, T} \hat{H}_{e l} \psi^{S, T} d \tau}{\int \psi^{* S, T} \psi^{S, T} d \tau} \\
E_{+} & \rightarrow \psi^{\mathrm{S}} \\
E_{-} & \rightarrow \psi^{\mathrm{T}}
\end{aligned}
$$

Optional: Working through these integrals, like we did for H_{2}^{+}, gives the denominator, $\int \psi^{* S, T} \psi^{S, T} d \tau=$

$$
\begin{align*}
& \frac{1}{2} \int\left(\Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) \pm \Phi_{1 s}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{B 1}\right)\right)^{*} \\
\times & \left(\Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) \pm \Phi_{1 s}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{B 1}\right)\right) d r_{1} d r_{2} \\
= & \frac{1}{2} \int \Phi_{1 s}^{*}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{A 1}\right) d r_{1} \int \Phi_{1 s}^{*}\left(\underline{r}_{B 2}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) d r_{2} \\
+ & \frac{1}{2} \int \Phi_{1 s}^{*}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{A 2}\right) d r_{2} \int \Phi_{1 s}^{*}\left(\underline{r}_{B 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) d r_{1} \\
\pm & \frac{1}{2} \int \Phi_{1 s}^{*}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 1}\right) d r_{1} \int \Phi_{1 s}^{*}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) d r_{2} \\
\pm & \frac{1}{2} \int \Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}^{*}\left(\underline{r}_{B 1}\right) d r_{1} \int \Phi_{1 s}\left(\underline{r}_{A 2}\right) \Phi_{1 s}^{*}\left(\underline{r}_{B 2}\right) d r_{2} \tag{21}
\end{align*}
$$

which, remembering that the $\Phi_{1 s}\left(\underline{r}_{N, i}\right)$ (for $N=A, B$ and $i=1,2$) are normalised, and defining the overlap integral:

$$
\begin{equation*}
I=\int \Phi_{1 s}^{*}\left(\underline{r}_{N, i}\right) \Phi_{1 s}\left(\underline{r}_{M, i}\right) d r_{i} \tag{22}
\end{equation*}
$$

we see that:

$$
\begin{equation*}
\int \psi^{* S, T} \psi^{S, T} d \tau=1 \pm I^{2} \tag{23}
\end{equation*}
$$

remembering that the ' + ' corresponds to the spin singlet, and the '-' to the spin triplet.

For the numerator we need to evaluate four parts. First:

$$
\begin{equation*}
\int \Phi_{1 s}^{*}\left(\underline{r}_{A 1}\right) \Phi_{1 s}^{*}\left(\underline{r}_{B 2}\right) \hat{H}_{e l} \Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) \tag{24}
\end{equation*}
$$

Breaking up $\hat{H}_{e l}$ we can identify the $-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{A 1}}$ and $-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{B 2}}$ as being the hydrogen atom Hamiltonians, and so both will integrate to $E_{1 s}$.

We can also recognise

$$
\begin{equation*}
\frac{1}{R} \int\left|\Phi_{1 s}\left(\underline{r}_{A 1}\right)\right|^{2}\left|\Phi_{1 s}\left(\underline{r}_{B 2}\right)\right|^{2} d \tau=\frac{1}{R} \tag{25}
\end{equation*}
$$

the nuclear repulsion term that was present in the H_{2}^{+}solution.

The rest of the Hamiltonian gives rise to:

$$
\begin{equation*}
\int\left|\Phi_{1 s}\left(\underline{r}_{A 1}\right)\right|^{2}\left|\Phi_{1 s}\left(\underline{r}_{B 2}\right)\right|^{2} d\left(-\frac{1}{r_{B 1}}-\frac{1}{r_{A 2}}+\frac{1}{r_{12}}\right) d \tau=J(R) \tag{26}
\end{equation*}
$$

which we can identify as a Coulomb integral (not exactly the same as in the previous H_{2}^{+}solution)

And so we find the first part of the numerator is

$$
\begin{equation*}
2 E_{1 s}+\frac{1}{R}+J \tag{27}
\end{equation*}
$$

The second term to evaluate is:

$$
\begin{equation*}
\int \Phi_{1 s}^{*}\left(\underline{r}_{A 2}\right) \Phi_{1 s}^{*}\left(\underline{r}_{B 1}\right) \hat{H}_{e l} \Phi_{1 s}\left(\underline{r}_{A 2}\right) \Phi_{1 s}\left(\underline{r}_{B 1}\right) \tag{28}
\end{equation*}
$$

which, as only the electon number labels have changed clearly integrates to the same as the above.

The third term is a 'cross term':

$$
\begin{equation*}
\int \Phi_{1 s}^{*}\left(\underline{r}_{A 2}\right) \Phi_{1 s}^{*}\left(\underline{r}_{B 1}\right) \hat{H}_{e l} \Phi_{1 s}\left(\underline{r}_{A 1}\right) \Phi_{1 s}\left(\underline{r}_{B 2}\right) \tag{29}
\end{equation*}
$$

Adopting the same procedure as above, the first part we tackle is the hydrogen atom Hamiltonians $-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{A 1}}$ and $-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{B 2}}$ which will produce two terms equal to

$$
\begin{equation*}
\pm E_{1 s} I^{2} \tag{30}
\end{equation*}
$$

where I is the overlap as defined before which occurs because we now have to evaluate terms like $\int \Phi^{*}\left(\underline{r}_{B 1}\right) \Phi\left(\underline{r}_{A 1}\right) d r_{1}$. We can also identify the nuclear repulsion term:

$$
\begin{equation*}
\pm \frac{1}{R} I^{2} \tag{31}
\end{equation*}
$$

remembering the ' + ' and '-' are spin singlet and triplet respectively.

This leaves only the part:

$$
\begin{equation*}
\int \Phi^{*}\left(\underline{r}_{A 2}\right) \Phi^{*}\left(\underline{r}_{B 1}\right) \Phi\left(\underline{r}_{A 1}\right) \Phi\left(\underline{r}_{B 2}\right)\left(-\frac{1}{r_{B 1}}-\frac{1}{r_{A 2}}+\frac{1}{r_{12}}\right) d \tau \tag{32}
\end{equation*}
$$

which we will denote $K(R)$, the Exchange Integral.
So the contribution from this third term is

$$
\begin{equation*}
\pm\left(2 E_{1 s}+\frac{1}{R}\right) I^{2}+K \tag{33}
\end{equation*}
$$

The fourth term is the other cross-term, which again differs only by the electron labels being swapped, and so integrates to the same result.

Adding together all four terms (and remembering the factor of $\frac{1}{2}$ from the initial normalisation), we get:

$$
\begin{equation*}
\left\langle\psi^{S, T}\right| \hat{H}_{e l}\left|\psi^{S, T}\right\rangle=\left(2 E_{1 s}+\frac{1}{R}\right)\left(1+I^{2}\right)+J \pm K \tag{34}
\end{equation*}
$$

where the sign of K depends on the symmetry of the wavefunction.

Normalising we find an expression for the energy:

$$
\begin{equation*}
E_{ \pm}=2 E_{1 s}+\frac{1}{R}+\frac{J}{1 \pm I^{2}} \pm \frac{K}{1 \pm I^{2}} \tag{35}
\end{equation*}
$$

