WEEK 3

The Clapeyron Equation

At equilibrium the chemical potential between two phases A and B are equal.

$$\mu^{A} = \mu^{B}$$
$$\Rightarrow d\mu^{A} = d\mu^{I}$$

Using this and the definition of Chemical Potential ($\mu = -S_m dt + V_m dT$) we can derive the Clapeyron Equation

$$\frac{dp}{dT} = \frac{\Delta S_m}{\Delta V_m}$$

which since $\Delta G = DH - T\Delta S = 0$ at equilibrium can also be expressed as

$$\frac{dp}{dT} = \frac{\Delta H_m}{T\Delta V_m}$$

Using the Clapeyron to justify the general shape of a *p*-*V* phase diagram

Estimate the slope of the solid/liquid co-existance line.

Difficult to measure $\Delta_{\text{fus}}S_{\text{m}}$, but $\Delta_{\text{fus}}H_{\text{m}}$ is known for almost everything. For our estimation purposes, take the average $\Delta_{\text{fus}}H_{\text{m}}$ or several common compounds, average them and then use the equilibrium condition to convert them into $\Delta_{\text{fus}}S_{\text{m}}$ This gives an average $\Delta_{\text{fus}}S_{\text{m}}$ of 22 J K⁻¹ mol⁻¹.

Typically the change in volume on melting is tiny. Again, average over several common compounds is $\Delta_{\text{fus}}V_{\text{m}} = 2 \times 10^{-6} \text{ m}^{-3}$.

Thus gives an average slope of $dp/dT = 5.5 \times 10^6$ Pa K⁻¹. = 55 bar K⁻¹. (*i.e.*, very steep).

Estimate the slope of the liquid/gas co-existance line.

Similarly, it is difficult to measure $\Delta_{vap}S_m$, but $\Delta_{vap}H_m$ is known for almost everything. Averaging $\Delta_{vap}H_m$ and converting into $\Delta_{fus}S_m$ as above gives $\Delta_{vao}S_m$ of 95 J K⁻¹ mol⁻¹.

Molar volume of a gas near room temperature is about $20 \text{ L} = 2 \text{ x } 10^{-2} \text{ m}^3$. The molar volume of a typical liquid is *ca*. 20 mL. Thus to a good approximation $\Delta_{\text{vap}}V_{\text{m}} = 20 \text{ L}$.

Thus gives an average slope of dp/dT = 5000 Pa K⁻¹ = 5 x 10⁻² bar K⁻¹. (*i.e.*, rather shallow).

Estimate the slope of the solid/gas co-existance line.

Entropy is a state function. Therefore, the path from solid to gas is irrelevant, which means that $\Delta_{sub}S_m = \Delta_{fus}S_m + \Delta_{vap}S_m$. This is approximately 1.2 times greater than $\Delta_{vap}S_m$. Since, to a very good approximation, $\Delta_{vap}V_m = \Delta_{sub}V_m$, the slope of dp/dT for the solid/gas line will be approximately 1.2 times greater than the liquid/gas line.

Qualitative *p*-*V* phase diagram based on the above.

With the Clapeyron we can map the phase diagram for any compound.

Increasing the melting and boiling points by increasing the pressure

If we invert the slope for the solid/liquid line we get dT/dp = 0.02 K bar⁻¹. This implies that to increase the melting point of a solid by 1 K we must increase the pressure by about 50 bar.

Similarly, if we invert the slope of the liquid/gas line dT/dp = 20 K bar⁻¹, which implies if we double the pressure from 1 to 2 bar, we increase the boiling point by 20 K. Given that at normal temperatures the rate of a chemical reaction doubles for every 10 K increase in temperature, this explains how pressure cookers dramatically decrease cooking times without there being dangerously high pressures.

<u>Using the Clapeyron to Calculate Vapour Pressures as a Function of</u> <u>Temperature</u>

Solid/Liquid line:

$$\int_{p_i}^{p_f} dp = \int_{T_i}^{T_f} \frac{\Delta_{fus} S_m}{\Delta_{fus} V_m} dt = \frac{\Delta_{fus} H_m}{\Delta_{fus} V_m} \int_{T_i}^{T_f} \frac{1}{T} dt$$

Thus,

$$p_f - p_i = \frac{\Delta_{fus} H_m}{\Delta_{fis} V_m} \ln \frac{T_f}{T_i} = \frac{\Delta_{fus} H_m}{\Delta_{fus} V_m} \ln \frac{T_i + \Delta T}{T_i} \approx \frac{\Delta_{fus} H_m}{\Delta_{fis} V_m} \frac{\Delta T}{T_i}$$

(assuming that over the relatively small temperature range of interest the ΔH and ΔV are approximately constant and that $\ln(1 + x) = x$ for small x).

Liquid/Gas line:

Now, if we also assume (reasonably) that the gas is ideal and that $\Delta V = V^{\text{gas}}$, the Clapeyron becomes:

$$\frac{dp}{dT} = \frac{\Delta_{vap}S_m}{\Delta_{vap}V_m} \approx \frac{\Delta_{vap}H_m}{TV^{gas}} = \frac{P\Delta_{vap}H_m}{RT^2}$$

Thus,

$$\frac{dP}{P} = \frac{\Delta_{vap}H_m}{R} \frac{dT}{T^2} \Longrightarrow \int_{p_i}^{p_f} \frac{1}{P} dp = \frac{\Delta_{vap}H_m}{R} \int_{T_i}^{T_f} \frac{1}{T^2} dT$$

Therefore,

$$\ln \frac{p_f}{p_i} = -\frac{\Delta_{vap}H_m}{R} \left(\frac{1}{T_f} - \frac{1}{T_i}\right)$$

From this equation the enthalpy of vaporisation can be determined by measuring the vapour pressure as a function of temperature.

Discussion Problem:

Benzene normally boils at 353.24 K. The vapour pressure of liquid benzene at 20.0 $^{\circ}$ C is 1.00 x 10⁴ Pa. The vapour pressure of solid benzene at -44.3 $^{\circ}$ C is 88.0 Pa. Benzene's enthalpy of fusion is 9.95 kJ mol⁻¹.

Calculate: $\Delta_{vap}H_m$, $\Delta_{vap}S_m$, and the triple point temperature and pressure.