Part 2

The Relative Stability of Phases

A phase is a form of matter that is uniform in chemical composition and physical state.
A transition temperature is the temperature at which two phases co-exist at equilibrium.
A phase diagram shows the regions or pressure and temperature at which various phases are thermodynamically stable.

A phase boundary is a line separating the areas of a phase diagram showing the values of p and T at which two phases co-exist in equilibrium.

The vapour pressure is the pressure of a vapour that is in equilibrium with a condensed phase.
The boiling temperature is the temperate which the vapour pressure of a liquid equals the ambient atmospheric pressure.

The boiling point is the boiling temperature under an atmospheric pressure of one standard atmosphere $=101325 \mathrm{~Pa}$.

The normal boiling point is the boiling temperature under an atmospheric pressure of exactly 1 bar $=$ 100000 Pa .

The melting temperature is the temperate which the solid and liquid co-exist in equilibrium under ambient atmospheric pressure.

The melting point is the melting temperate under an atmospheric pressure of one standard atmosphere $=101325 \mathrm{~Pa}$.

The normal boiling point is the melting temperate under an atmospheric pressure of exactly 1 bar $=$ 100000 Pa .

The critical temperature is the temperature at which a liquid surface disappears and above which a liquid does not exist no matter the pressure. The critical pressure is the pressure at the critical temperature.

A supercritical fluid is a dense fluid phase above the critical temperature.
The triple point is a point on a phase diagram at which all three phases co-exist in equilibrium.
The chemical potential μ of a substance is its molar Gibbs energy.
The chemical potential varies with temperature as: $(\partial \mu / \partial T)_{p}=-S_{\mathrm{m}}$.
The chemical potential varies with pressure as: $(\partial \mu / \partial p)_{T}=V_{\mathrm{m}}$.
The vapour pressure in the presence of an applied external pressure is $p=p^{*} e^{V_{m} \Delta P / R T}$

The temperature dependence of the vapour pressure is given by the Clapeyron Equation: $\mathrm{d} p / \mathrm{d} T=\Delta S / \Delta V$.

The temperature dependence of the variation of the vapour pressure of a condensed phase is given by the Claussius-Clapeyron Equation: $\mathrm{d} \ln p / \mathrm{d} T=\Delta H / R T^{2}$

