
1. Eigenvalues and Eigenvectors

To facilitate the study of eigenvalues and eigenvectors in depth, we need to
consider complex matrices and vectors. Let

Cn =


z1...
zn

∣∣∣∣∣∣ z1, . . . , zn ∈ C


be the complex vector space of n × 1 complex matrices, in which vector addition
and scalar multiplication are defined entry-wise.

Example 1.1. Let z,w ∈ C3 and α ∈ C, with

z =

1 + i
2i
3

 , w =

−2 + 3i
1

2 + i

 , α = (1 + 2i) .

Then

z + w =

(1 + i) + (−2 + 3i)
2i+ 1

3 + (2 + i)

 =

−1 + 4i
1 + 2i
5 + i


αz =

(1 + 2i)(1 + i)
(1 + 2i)(2i)
(1 + 2i) · 3

 =

1 + 2i+ i+ 2i2

2i+ (2i)2

3 + 6i

 =

−1 + 3i
−4 + 2i
3 + 6i


More generally, we denote by Cm×n the complex vector space of m×n complex

matrices, with the usual matrix addition and scalar multiplication. Needless to
say, a real matrix A is also a complex matrix, in other words, we have

Rm×n ⊂ Cm×n.

Definition 1.2. An eigenvector of an n×n complex matrix A ∈ Cn×n is a nonzero
vector x ∈ Cn such that

Ax = λx ,

for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nonzero
vector x satisfying Ax = λx, in which case we say that x is an eigenvector
corresponding to the eigenvalue λ.

Note 1. An eigenvector is always nonzero whereas an eigenvalue could
be 0.

Note 2. An eigenvector x could be real, i.e. x ∈ Rn.

In the above definition, we say that A has a real eigenvalue if λ ∈ R. Also, we
say that A has a real eigenvector v if v ∈ Rn, that is, all entries in v are real.

Note that a real square matrix A may have complex eigenvalue! Recall that a
real square matrix is called symmetric if AT = A. A remarkable fact in linear
algebra is that
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All eigenvalues of a real symmetric matrix are REAL with a real eigenvector.

One of our goals is to establish this important fact.
We shall now investigate how to determine all the eigenvalues and eigenvectors

of an n× n matrix A. We start by observing that the defining equation Ax = λx
can be written

(1) (A− λI)x = 0 .

Thus λ is an eigenvalue of A if and only if (1) has a non-zero solution. The set

{x : (A− λI)x = 0}

of solutions of (1) is N(A − λI), that is, the nullspace of A − λI. Thus, λ is an
eigenvalue of A if and only if

N(A− λI) 6= {0} ,

and any nonzero vector in N(A−λI) is an eigenvector belonging to λ. Moreover,
by the Invertible Matrix Theorem, (1) has a non-trivial solution if and only if the
matrix A− λI is singular, or equivalently

(2) det(A− λI) = 0 .

Notice now that if the determinant in (2) is expanded we obtain a polynomial of
degree n in the variable λ,

p(λ) = det(A− λI) ,

called the characteristic polynomial of A , and equation (2) is called the char-
acteristic equation of A. So, in other words, the roots of the characteristic
polynomial of A are exactly the eigenvalues of A. The following theorem sum-
marises our findings so far:

Theorem 1.3. Let A be an n×n matrix and λ a scalar. The following statements
are equivalent:

(a) λ is an eigenvalue of A;
(b) (A− λI)x = 0 has a non-trivial solution;
(c) N(A− λI) 6= {0};
(d) A− λI is singular;
(e) det(A− λI) = 0.

In view of the above theorem the following concept arises naturally:

Definition 1.4. If A is a square matrix and λ an eigenvalue of A, then N(A−λI)
is called the eigenspace corresponding to λ and is denoted by

E(λ) = N(A− λI) = {x : Ax = λx}.
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For a complex n × n matrix A, the eigenspace E(λ) is a subspace of Cn. If A
is a real n× n matrix which has a real eigenvalue λ with real eigenvector, we can
also consider the eigenspace

{x ∈ Rn : Ax = λx}
which is a subspace of Rn. We call it the eigenspace corresponding to λ in
Rn or simply, the real eigenspace corresponding to λ. If there is no confusion, we
will also denote it by E(λ).

Example 1.5. Let

A =

2 −3 1
1 −2 1
1 −3 2

 .

Find the eigenvalues and corresponding real eigenspaces.

Solution. A slightly tedious calculation using repeated cofactor expansions shows
that the characteristic polynomial of A is

det(A− λI) =

∣∣∣∣∣∣
2− λ −3 1

1 −2− λ 1
1 −3 2− λ

∣∣∣∣∣∣ = −λ(λ− 1)2 ,

so A has real eigenvalues λ1 = 0 and λ2 = 1.
To find the real eigenspace corresponding to λ1 we find the nullspace of A−λ1I =

A using Gaussian elimination:

A =

2 −3 1
1 −2 1
1 −3 2

 ∼ · · · ∼
1 0 −1

0 1 −1
0 0 0

 ,

so setting x3 = α we find x2 = 0 − (−1)x3 = α and x1 = 0 − (−1)x3 = α. Thus,
every vector in N(A) is of the formαα

α

 = α

1
1
1

 ,

so the real eigenspace corresponding to the eigenvalue 0 is

E(0) =

α

1
1
1

∣∣∣∣∣∣ α ∈ R

 .

To find the eigenspace corresponding to λ2 we find the nullspace of A − λ2I =
A− I, again using Gaussian elimination:

A− I =

2− 1 −3 1
1 −2− 1 1
1 −3 2− 1

 =

1 −3 1
1 −3 1
1 −3 1

 ∼
1 −3 1

0 0 0
0 0 0

 ,
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so setting x2 = α and x3 = β we find x1 = 3x2 − x3 = 3α− β. Thus every vector
in N(A− I) is of the form3α− β

α
β

 = α

3
1
0

+ β

−1
0
1

 ,

and so the eigenspace corresponding to the eigenvalue 1 is

E(1) =

α

3
1
0

+ β

−1
0
1

∣∣∣∣∣∣ α, β ∈ R

 .

�

Example 1.6. Find the eigenvalues of the matrix

A =

1 2 3
0 4 5
0 0 6

 .

Solution. Using the fact that the determinant of a triangular matrix is the product
of the diagonal entries we find

det(A− λI) =

∣∣∣∣∣∣
1− λ 2 3

0 4− λ 5
0 0 6− λ

∣∣∣∣∣∣ = (1− λ)(4− λ)(6− λ) ,

so the eigenvalues of A are 1, 4, and 6. �

The above example and its method of solution are easily generalised:

Theorem 1.7. The eigenvalues of a triangular matrix are precisely the diagonal
entries of the matrix.

The next theorem gives an important sufficient (but not necessary) condition
for two matrices to have the same eigenvalues. It also serves as the foundation for
many numerical procedures to approximate eigenvalues of matrices, some of which
you will encounter if you take the module MTH5110, Introduction to Numerical
Computing.

Theorem 1.8. Let A and B be two n × n matrices and suppose that A and B
are similar, that is, there is an invertible matrix S ∈ Rn×n such that B = S−1AS.
Then A and B have the same characteristic polynomial, and, consequently, have
the same eigenvalues.

Proof. If B = S−1AS, then

B − λI = S−1AS − λI = S−1AS − λS−1S = S−1(AS − λS) = S−1(A− λI)S .

Thus, using the multiplicativity of determinants,

det(B − λI) = det(S−1) det(A− λI) det(S) = det(A− λI) ,

because det(S−1) det(S) = det(S−1S) = det(I) = 1. �
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Let V be a real or complex vector space and let L : V → V be a linear map.
A scalar λ is called an eigenvalue of L if there is a nonzero vector v ∈ V such

that L(v) = λv, in which case v is called an eigenvector corresponding to the
eigenvalue λ.

A vector v ∈ V is called an eigenvector of L if v 6= 0 and there is a scalar λ
such that L(v) = λv.

Given A ∈ Rn×n and the linear map LA : Rn → Rn defined by

LA(x) = Ax,

we have LA(x) = λx if and only if Ax = λx. Therefore LA and A have the same
eigenvalues and eigenvectors.

Likewise, given a complex n×n matrix, we can define a linear map LA : Cn → Cn

by
LA(x) = Ax (x ∈ Cn).

In this case, both A and LA have the same eigenvalues in C and eigenvectors in
Cn.

2. Diagonalisation

We recall:

Definition 2.1. Let A and B be two n× n matrices. The matrix B is said to be
similar to A if there is an invertible S ∈ Rn×n such that

B = S−1AS .

Notice that if B is similar to A, then A is similar to B, because if R = S−1,
then

A = SBS−1 = R−1BR .

Thus we may simply say that A and B are similar matrices.

Definition 2.2. An n × n matrix A is said to be diagonalisable if it is similar
to a diagonal matrix, that is, if there is an invertible matrix P ∈ Rn×n such that

P−1AP = D ,

where D is a diagonal matrix. In this case we say that P diagonalises A.

Note that if A is a matrix which is diagonalised by P , that is, P−1AP = D with
D diagonal, then

A = PDP−1 ,

A2 = PDP−1PDP−1 = PD2P−1 ,

A3 = AA2 = PDP−1PD2P−1 = PD3P−1 ,

and in general
Ak = PDkP−1 ,

for any k ≥ 1. Thus powers of A are easily computed, as claimed.
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Theorem 2.3 (Diagonalisation Theorem). An n×n matrix A is diagonalisable if
and only if A has n linearly independent eigenvectors.

Proof. ⇐: Let A have n linearly independent eigenvectors v1, · · · ,vn with cor-
responding eigenvalues λ1, · · · , λn. Let P be the n × n matrix with columns
v1, . . . ,vn. Since v1, · · · ,vn are linearly independent, P is invertible.

Let D be the diagonal matrix with diagonal entries λ1, . . . , λn. Then

(3) AP = A
(
v1 · · · vn

)
=
(
Av1 · · · Avn

)
=
(
λv1 · · · λnvn

)

=
(
v1 · · · vn

)
λ1

λ2
. . .

λn

 = PD

which gives A = P−1DP , that is, A is diagonalisable.
⇒. We reverse the above proof. Suppose that A is diagonalisable with P−1AP =

D, where the invertible matrix P has columns v1, . . . ,vn, and D is a diagonal
matrix with diagonals λ1, · · · , λn. Then AP = PD gives

(4)
(
Av1 · · · Avn

)
=
(
λ1v1 · · · λnAvn

)
.

Thus

(5) Av1 = λ1v1 , Av2 = λ2v2 , . . . , Avn = λnvn .

Since P is invertible its columns v1, . . . ,vn must be linearly independent. More-
over, none of its columns can be zero, so (5) implies that λ1, . . . , λn are eigenvalues
of A with corresponding eigenvectors v1, . . . ,vn. �

Example 2.4. Diagonalise the following matrix, if possible:

A =

−7 3 −3
−9 5 −3
9 −3 5

 .

Solution. A slightly tedious calculation shows that the characteristic polynomial
is given by

p(λ) = det(A− λI) =

∣∣∣∣∣∣
−7− λ 3 −3
−9 5− λ −3
9 −3 5− λ

∣∣∣∣∣∣ = −λ3 + 3λ2 − 4 .

The cubic p above can be factored by spotting that −1 is a root. Polynomial
division then yields

p(λ) = −(λ+ 1)(λ2 − 4λ+ 4) = −(λ+ 1)(λ− 2)2 ,

so the distinct eigenvalues of A are 2 and −1.
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The usual method now produces a basis for each of the two eigenspaces and it
turns out that

N(A− 2I) = Span (v1,v2), where v1 =

1
3
0

 , v2 =

−1
0
3

 ,

N(A+ I) = Span (v3), where v3 =

−1
−1
1

 .

You may now want to confirm, using your favourite method, that the three
vectors v1,v2,v3 are linearly independent. In fact, this is not really necessary:
the union of basis vectors for eigenspaces always produces linearly independent
vectors.

Thus, A is diagonalisable, since it has 3 linearly independent eigenvectors. In
order to find the diagonalising matrix P we recall that defining

P =
(
v1 v2 v3

)
=

1 −1 −1
3 0 −1
0 3 1


does the trick, that is, P−1AP = D, where D is the diagonal matrix whose entries
are the eigenvalues of A and where the order of the eigenvalues matches the order
chosen for the eigenvectors in P , that is,

D =

2 0 0
0 2 0
0 0 −1

 .

It is good practice to check that P and D really do the job they are supposed to
do:

AP =

−7 3 −3
−9 5 −3
9 −3 5

1 −1 −1
3 0 −1
0 3 1

 =

2 −2 1
6 0 1
0 6 −1

 ,

PD =

1 −1 −1
3 0 −1
0 3 1

2 0 0
0 2 0
0 0 −1

 =

2 −2 1
6 0 1
0 6 −1

 ,

so AP = PD, and hence P−1AP = D as required. �

Example 2.5. Diagonalise the following matrix, if possible:

A =

−6 3 −2
−7 5 −1
8 −3 4

 .
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Solution. The characteristic polynomial of A turns out to be exactly the same as
in the previous example:

det(A− λI) = −λ3 + 3λ2 − 4 = −(λ+ 1)(λ− 2)2 .

Thus the eigenvalues of A are 2 and −1. However, in this case it turns out that
both eigenspaces are 1-dimensional:

N(A− 2I) = Span (v1) where v1 =

 1
2
−1

 ,

N(A+ I) = Span (v2) where v1 =

−1
−1
1

 .

Since A has only 2 linearly independent eigenvectors, the Diagonalisation Theorem
implies that A is not diagonalisable. �

Put differently, the Diagonalisation Theorem states that a matrix A ∈ Rn×n is
diagonalisable if and only if A has enough eigenvectors to form a basis of Rn.

Theorem 2.6. If v1, . . . ,vr are eigenvectors that correspond to distinct eigen-
values λ1, . . . , λr of an n × n matrix A, then the vectors v1, . . . ,vr are linearly
independent.

Proof. By contradiction. Suppose to the contrary that the vectors v1, . . . ,vr are
linearly dependent. We may then assume (after reordering the v’s and the λ’s if
necessary), that there is an index p < r such that vp+1 is a linear combination of
the preceding linearly independent vectors. Thus there exist scalars c1, . . . , cp such
that

(6) c1v1 + · · ·+ cpvp = vp+1 .

Multiplying both sides of the above equation by A and using the fact that Avk =
λkvk for each k, we obtain

(7) c1λ1v1 + · · ·+ cpλpvp = λp+1vp+1 .

Multiplying both sides of (6) by λp+1 and subtracting the result from (7), we see
that

(8) c1(λ1 − λp+1)v1 + · · ·+ cp(λp − λp+1)vp = 0 .

Since the vectors v1, . . . ,vp are linearly independent, the coefficients in (8) must
all be zero. But none of the factors λk − λp+1 is zero, because the eigenvalues are
distinct, so we must have c1 = . . . = cp = 0. But then (6) implies that vp+1 = 0,
which is impossible, because vp+1 is an eigenvector. Thus our assumption that
the vectors v1, . . . ,vr are linearly dependent must be false, that is, the vectors
v1, . . . ,vr are linearly independent. �

A useful special case of the Diagonalisation Theorem is the following:
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Theorem 2.7. An n× n matrix with n distinct eigenvalues is diagonalisable.

Proof. Let v1, . . . ,vn be eigenvectors corresponding to the n distinct eigenvalues
of A. Then the n vectors v1, . . . ,vn are linearly independent by Theorem 2.6.
Hence A is diagonalisable by the Diagonalisation Theorem. �

Remark 2.8. Note that the above condition for diagonalisability is sufficient but
not necessary : an n×n matrix which does not have n distinct eigenvalues may or
may not be diagonalisable (see Examples 2.4 and 2.5).

Example 2.9. The matrix

A =

1 −1 5
0 2 6
0 0 3


is diagonalisable, since it has three distinct eigenvalues 1, 2, and 3.

3. Spectral Theorem

We are going to establish one of the great theorems in linear algebra, namely,
the Spectral Theorem, which says that every real symmetric matrix can be diag-
onalised by an orthogonal matrix. Strangely, to prove this result concerning real
matrices, we take a route through complex matrices and vectors.

[Spectral Theorem for Symmetric Matrices]

Let A ∈ Rn×n be symmetric. Then there is an orthogonal matrix Q ∈ Rn×n such
that

QTAQ = D,

where D ∈ Rn×n is diagonal.
In other words, every real symmetric matrix can be diagonalised by an orthogonal

matrix.

Definition 3.1. A real square matrix A is called orthogonal if AAT = I, in which
case, we also have ATA = I.

To achieve our goal, we need to recall the following basic fact.

Theorem 3.2 (Fundamental Theorem of Algebra). If p is a complex polynomial
of degree n ≥ 1, that is,

p(z) = cnz
n + · · ·+ c1z + c0 ,

where c0, c1, . . . , cn ∈ C, then p has at least one (possibly complex) root.

Corollary 3.3. Every matrix A ∈ Cn×n has at least one (possibly complex) eigen-
value and a corresponding eigenvector z ∈ Cn.

Proof. Since λ is an eigenvalue of A if and only if det(A − λI) = 0 and since
p(λ) = det(A − λI) is a polynomial with complex coefficients of degree n, the
assertion follows from the Fundamental Theorem of Algebra. �
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Lemma 3.4. Let A ∈ Rn×n be symmetric. Then, for any vectors x,y ∈ Rn,

〈Ax,y〉 = 〈x, Ay〉 .

Proof. Recall that 〈z,w〉 = z·w = zTw for z,w ∈ Rn. Since AT = A, we have

〈Ax,y〉 = (Ax)·y = (Ax)Ty = xTATy = xTAy = x·(Ay) = 〈x, Ay〉 .
�

The following lemma contains the key result that will allow us to prove the
Spectral Theorem.

Lemma 3.5. Every symmetric matrix A ∈ Rn×n has at least one real eigenvalue
with corresponding real eigenvector v ∈ Rn.

Proof. By Corollary 3.3 we know that A has at least one complex eigenvalue λ
with corresponding eigenvector z ∈ Cn, that is

(9) Az = λz .

Write

λ = a+ ib where a, b ∈ R(10)

z = v + iw where v,w ∈ Rn

Thus, using (9) we have

Av + iAw = A(v + iw) = Az = λz = (a+ ib)(v + iw) = (av− bw) + i(aw + bv) ,

which, by comparing real and imaginary parts, yields

Av = av − bw ,(11)

Aw = aw + bv .

Now, by Lemma 3.4, we have

(av − bw)·w = (Av)·w = v·(Aw) = v·(aw + bv) ,

so
a(v·w)− b‖w‖2 = a(v·w) + b‖v‖2

and hence
b(‖v‖2 + ‖w‖2) = 0 .

But z = v + iw is an eigenvector, so the vectors v and w cannot both be the zero
vector. Therefore ‖v‖2 + ‖w‖2 > 0, and hence

b = 0 .

Thus, using (10) and (11), we see that λ = a ∈ R and Av = av = λv, that is, A
has a real eigenvalue with corresponding real eigenvector. �

Lemma 3.6. Let x and y be eigenvectors in Rn corresponding to two distinct
eigenvalues λ and µ of a symmetric matrix A ∈ Rn×n. Then x and y are orthogonal
in Rn, that is, 〈x,y〉 = 0.
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Proof. We have λ〈x,y〉 = 〈λx,y〉 = 〈Ax,y〉 = 〈x, Ay〉 = 〈x, µy〉 = µ〈x,y〉. Since
λ 6= µ, we must have 〈x,y〉 = 0. �

Theorem 3.7 (Spectral Theorem for Symmetric Matrices). Let A ∈ Rn×n be
symmetric. Then there is an orthogonal matrix Q ∈ Rn×n such that

QTAQ = D,

where D ∈ Rn×n is diagonal.
In other words, every real symmetric matrix can be diagonalised by an orthogonal

matrix.

Proof. Let LA : Rn → Rn be the linear map induced by A:

LA(x) = Ax.

Recall that A = [LA, E , E ] is just the matrix representing LA w.r.t. the standard
basis E of Rn. Let λ1, . . . , λk be all the distinct eigenvalues of A (as well as LA). By
Lemma 3.6, the corresponding real eigenspaces E(λ1), . . . , E(λk) must be mutually
orthogonal and in particular, E(λi) ∩ E(λj) = ∅.

Form the direct sum

H = E(λ1)⊕ · · · ⊕ E(λk)

which is a subspace of Rn. We claim that

Rn = E(λ1)⊕ · · · ⊕ E(λk).

Otherwise, the orthogonal complement H⊥ 6= {0}. Now we must have LA(H⊥) ⊂
H⊥. Indeed, for each v ∈ H⊥ and h = u1 + · · ·+ uk ∈ E(λ1)⊕ · · · ⊕ E(λk) = H,
we have

〈LA(v), h〉 = 〈LA(v),u1 + · · ·+ uk〉
= 〈v, LA(u1 + · · ·+ uk)〉
= 〈v, λ1u1 + · · ·+ λkuk〉
= λ1〈v,u1〉+ · · ·+ λk〈v,uk〉 = 0

which gives LA(v) ∈ H⊥. Hence we can restrict LA to a linear map on H⊥,
denoted by LA|H⊥ : H⊥ → H⊥. By Lemma 3.5, LA|H⊥ has an eigenvector z
in H⊥ 6= {0} with eigenvalue µ. Moreover, µ 6= λ1, . . . , λk because z is not in
the eigenspaces E(λ1), . . . , E(λk). This is impossible since λ1, . . . , λk are all the
distinct eigenvalues of A.

Now Rn = E(λ1) ⊕ · · · ⊕ E(λk) implies that we can find an orthonormal basis
B = {v1, . . . ,vn} of Rn which is the union of orthonormal bases of the eigenspaces
E(λ1), . . . , E(λk).

The matrix D = [LA, B,B] representing LA w.r.t. the basis B must be diagonal
with diagonal entries {λ1, . . . , λk} (cf. Coursework 9, Exercese 4). By the change-
of-basis theorem, we have

D = [LA, B,B] = MB
E [LA, E , E ]ME

B = MB
E AM

E
B
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where the transition matrix Q = ME
B is invertible and is given by

Q = ([v1]E · · · [vn]E).

It follows that the (i, j)-entry of QTQ is given by

(QTQ)ij = (i-th row of QT )(j-th column of Q) = (i-th column of Q)(j-th column of Q)

= 〈vi,vj〉 = δij

since {v1, . . . ,vn} is orthonormal. This proves that QTQ = I, that is, Q is or-
thogonal and also Q−1AQ = D. �

Let us record the following consequence of the Spectral Theorem, which is of
independent interest:

Corollary 3.8. The eigenvalues of a symmetric matrix A are real, and eigenvec-
tors corresponding to distinct eigenvalues are orthogonal.

Proof. Combine the Diagonalisation Theorem and the Spectral Theorem. �

Example 3.9. Consider the symmetric matrix

A =

 0 2 −1
2 3 −2
−1 −2 0

 .

Find an orthogonal matrix Q that diagonalises A.

Solution. The characteristic polynomial of A is

det(A− λI) = −λ3 + 3λ2 + 9λ+ 5 = (1 + λ)2(5− λ) ,

so the eigenvalues of A are −1 and 5. Computing N(A+I) in the usual way shows
that {x1,x1} is a basis for N(A+ I) where

x1 =

1
0
1

 , x2 =

−2
1
0

 .

Similarly, we find that the eigenspace N(A− 5I) corresponding to the eigenvalue
5 is 1-dimensional with basis

x3 =

−1
−2
1

 .

In order to construct the diagonalising orthogonal matrix for A it suffices to find
orthonormal bases for each of the eigenspaces, since eigenvectors corresponding to
distinct eigenvalues are orthogonal.
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To find an orthonormal basis for N(A+ I) we apply the Gram Schmidt process
to the basis {x1,x2} to produce the orthogonal set {v1,v2}:

v1 = x1 =

1
0
1

 ,

v2 = x2 −
x2·v1

v1·v1

v1 =

−1
1
1

 .

Now {v1,v2,x3} is an orthogonal basis of R3 consisting of eigenvectors of A, so
normalising them to produce

u1 =
1

‖v1‖
v1 =

1/
√

2
0

1/
√

2

 , u2 =
1

‖v2‖
v2 =

−1/
√

3

1/
√

3

1/
√

3

 , u3 =
1

‖x3‖
x3 =

−1/
√

6

−2/
√

6

1/
√

6

 ,

allows us to write down the orthogonal matrix

Q =
(
u1 u2 u3

)
=

1/
√

2 −1/
√

3 −1/
√

6

0 1/
√

3 −2/
√

6

1/
√

2 1/
√

3 1/
√

6


which diagonalises A, that is,

QTAQ =

−1 0 0
0 −1 0
0 0 5

 .

�


