
1. Linear transformations

Linear transformations are the bread and butter of Linear Algebra. You have
already encountered them in Geometry I. Roughly speaking a linear transformation
is a mapping between two vector spaces that preserves the linear structure of the
underlying spaces. To be precise:

Definition 1.1. Let V and W be two vector spaces. A mapping L : V → W is
called a linear transformation or a linear mapping, or simply, a linear map, if it
satisfies the following two conditions:

(i) L(v + w) = L(v) + L(w) for all v and w in V ;
(ii) L(αv) = αL(v) for all v in V and all scalars α.

Example 1.2. Let L : R2 → R2 be defined by

L(x) = 2x .

Then L is linear since, if x and y are arbitrary vectors in R2 and α is an arbitrary
real number, then

(i) L(x + y) = 2(x + y) = 2x + 2y = L(x) + L(y);
(ii) L(αx) = 2(αx) = α(2x) = αL(x).

Example 1.3. Let L : R2 → R2 be defined by

L(x) = x1e1 , where x =

(
x1
x2

)
.

Then L is linear. In order to see this suppose that x and y are arbitrary vectors
in R2 with

x =

(
x1
x2

)
, y =

(
y1
y2

)
.

Notice that, if α is an arbitrary real number, then

x + y =

(
x1 + y1
x2 + y2

)
and αx =

(
αx1
αx2

)
.

Thus

(i) L(x + y) = (x1 + y1)e1 = x1e1 + y1e1 = L(x) + L(y);
(ii) L(αx) = (αx1)e1 = α(x1e1) = αL(x).

Hence L is linear, as claimed.

In order to shorten statements of theorems and examples let us introduce the
following convention:

If x is a vector in Rn, we shall henceforth denote its i-th entry by xi, and
similarly for vectors in Rn denoted by other bold symbols. So, for example, if
y = (1, 4, 2, 7)T ∈ R4, then y3 = 2.

1



2

Example 1.4. Let L : R2 → R2 be given by

L(x) =

(
−x2
x1

)
.

L is linear, since, if x,y ∈ R2 and α ∈ R, then

(i) L(x + y) =

(
−(x2 + y2)
x1 + y2

)
=

(
−x2
x1

)
+

(
−y2
y1

)
= L(x) + L(y);

(ii) L(αx) =

(
−αx2
αx1

)
= α

(
−x2
x1

)
= αL(x).

Example 1.5. The mapping M : R2 → R1 defined by

M(x) =
√
x21 + x22

is not linear. Indeed, M((1, 0)T ) =
√

12 = 1 while M(−(1, 0)T ) = M((−1, 0)T ) =√
(−1)2 = 1. Thus

M(−(1, 0)T ) = 1 6= −1 = −M((1, 0)T ) .

Any m× n matrix A induces a linear transformation LA : Rn → Rm given by

LA(x) = Ax for each x ∈ Rn .

The transformation LA is linear, since, if x,y ∈ Rn and α ∈ R, then

(i) LA(x + y) = A(x + y) = Ax + Ay = LA(x) + LA(y);
(ii) LA(αx) = A(αx) = αAx = αLA(x).

In other words, every m× n matrix gives rise to a linear transformation from Rn

to Rm. We shall see shortly that, conversely, every linear transformation from Rn

to Rm arises from an m× n matrix.

Theorem 1.6. If V and W are vector spaces and L : V → W is a linear trans-
formation, then

(a) L(0) = 0;
(b) L(−v) = −L(v) for any v ∈ V ;
(c) L(

∑n
i=1 αivi) =

∑n
i=1 αiL(vi) for any vi ∈ V and any scalars αi where

i = 1, . . . , n.

Proof.

(a) L(0) = L(00) = 0L(0) = 0;
(b) L(−v) = L((−1)v) = (−1)L(v) = −L(v);
(c) follows by repeated application of the defining properties (i) and (ii) of

linear transformations.

�

Let’s look at some examples, which should convince you that linear transforma-
tions arise naturally in other areas of Mathematics.
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Example 1.7. Let L : C[a, b]→ R1 be defined by

L(f) =

∫ b

a

f(t) dt .

L is linear since, if f ,g ∈ C[a, b] and α ∈ R, then

(i) L(f + g) =

∫ b

a

(f(t) + g(t)) dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt = L(f) + L(g);

(ii) L(αf) =

∫ b

a

(αf(t)) dt = α

∫ b

a

f(t) dt = αL(f).

In other words, integration is a linear transformation.

Example 1.8. Let C1(a, b) be the real vector space of real continuously differ-
entiable functions on the open interval (a, b) in R. Let D : C1(a, b) → C(a, b)
be defined to be the transformation that sends an f ∈ C1(a, b) to its derivative
f ′ ∈ C(a, b), that is,

D(f) = f ′ .

Then D is linear since, if f ,g ∈ C1(a, b) and α ∈ R, then

(i) D(f + g) = (f + g)′ = f ′ + g′ = D(f) +D(g);
(ii) D(αf) = (αf)′ = αf ′ = αD(f).

In other words, differentiation is a linear transformation.

Example 1.9. Let V be a vector space and let Id : V → V denote the identity
map on V , that is,

Id(v) = v for all v ∈ V .

The transformation Id is linear, since, if v,w ∈ V and α is a scalar, then

(i) Id(v + w) = v + w = Id(v) + Id(w);
(ii) Id(αv) = αv = αId(v).

2. Image and Kernel

Definition 2.1. Let V and W be vector spaces, and let L : V → W be a linear
transformation. The kernel of L, denoted by ker(L), is the subset of V given by

ker(L) = {v ∈ V | L(v) = 0 } .

Example 2.2. If A ∈ Rm×n and LA is the corresponding linear transformation
from Rn to Rm, then

ker(LA) = N(A) ,

that is, the kernel of LA is the nullspace of A.

The previous example shows that the kernel of a linear transformation is the
natural generalisation of the nullspace of a matrix.
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Definition 2.3. Let V and W be vector spaces. Let L : V → W be a linear
transformation and let H be a subspace of V . The image of H (under L), denoted
by L(H), is the subset of W given by

L(H) = {w ∈ W | w = L(v) for some v ∈ H } .
The image L(V ) of the entire vector space V under L is called the range of L.

Example 2.4. If A ∈ Rm×n and LA is the corresponding linear transformation
from Rn to Rm, then

LA(Rn) = col(A) ,

that is, the range of LA is the column space of A.

The previous example shows that the range of a linear transformation is the
natural generalisation of the column space of a matrix.

We saw previously that the nullspace and the column space of an m × n ma-
trix are subspaces of Rn and Rm respectively. The same is true for the abstract
analogues introduced above.

Theorem 2.5. Let V and W and be vector spaces. If L : V → W is a linear
transformation and H is a subspace of V , then

(a) ker(L) is a subspace of V ;
(b) L(H) is a subspace of W .

Proof.

(a) First observe that ker(L) is not empty since 0 ∈ ker(L) by Theorem 1.6.
Suppose now that v1,v2 ∈ ker(L). Then

L(v1 + v2) = L(v1) + L(v2) = 0 + 0 = 0 ,

so v1 + v2 ∈ ker(L). Moreover, if v ∈ ker(L) and α is a scalar, then

L(αv) = αL(v) = α0 = 0 ,

so αv ∈ ker(L). Thus, as ker(L) is closed under addition and scalar mul-
tiplication, it is a subspace of V as claimed.

(b) First observe that L(H) is not empty since 0 ∈ L(H) by Theorem 1.6.
Suppose now that w1,w2 ∈ L(H). Then there are v1,v2 ∈ H such that
L(v1) = w1 and L(v2) = w2 and so

w1 + w2 = L(v1) + L(v2) = L(v1 + v2) .

But v1 + v2 ∈ H, because H is a subspace, so w1 + w2 ∈ L(H). Moreover,
if w ∈ L(H) and α is a scalar, then there is v ∈ H such that L(v) = w
and so

αw = αL(v) = L(αv) .

But αv ∈ H, because H is a subspace, so αw ∈ L(H). Thus, as L(H) is
closed under addition and scalar multiplication, it is a subspace of W as
claimed.
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�

Example 2.6. Let D : P3 → P3 be the differentiation transformation given by

D(p) = p′ .

Find ker(D) and D(P3).

Solution. The derivative of a polynomial p ∈ P3 is the zero polynomial if and only
if p is a constant. Thus

ker(D) = P0 .

Since differentiation lowers the degree of a polynomial by 1, we see that D(P3) is
a subspace of P2. However, any polynomial in P2 has an antiderivative in P3, so
every polynomial in P2 will be the image of a polynomial in P3 under D. Thus

D(P3) = P2 .

�

Example 2.7. Let L : C1(1, 1)→ C(−1, 1) be the linear transformation given by

L(f) = f + f ′ .

Find the kernel and range of L.

Solution. To determine the kernel of L we need to find all f ∈ C1(−1, 1) such that

(1) f + f ′ = 0 .

This is a first order homogeneous differential equation with integrating factor et.
Thus, a function f satisfies (1) if and only if

d

dt
(etf(t)) = 0 ,

so

etf(t) = α ,

for some α ∈ R, and hence

f(t) = αe−t .

Thus

ker(L) = Span (h) ,

where h(t) = e−t.
To determine the range of L, notice that L clearly sends continuously differen-

tiable functions to continuous functions. The question is whether every continuous
function arises as an image of some f ∈ C1(−1, 1) under L. The answer is yes! To
see this, fix g ∈ C(−1, 1). We need to show that there is an f ∈ C1(−1, 1) such
that L(f) = g, that is,

(2) f ′ + f = g .
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This is a first order linear inhomogeneous differential equation for f . Using the
integrating factor et we find that (2) is equivalent to

d

dt
(etf(t)) = etg(t) .

But the right hand side of the equation above has an antiderivative, say H, that
is,

d

dt
H(t) = etg(t)

so

etf(t) = H(t) + α ,

for some α ∈ R, hence

f(t) = e−tH(t) + αe−t .

Notice that the f just found is clearly continuously differentiable.
�

3. Matrix representations of linear transformations

Let B = {v1, . . . ,vn} be a basis of a vector space V . Each vector v ∈ V can be
written uniquely as a linear combination of vectors in B:

v = α1v1 + · · ·+ αnvn

where α1, . . . , αn are scalars. We call (α1, . . . , αn) the coordinate row vector of v
with respect to B. The coordinate column vector of v w.r.t. B is denoted by

[v]B =

α1
...
αn

 = (α1, . . . , αn)T .

Theorem 3.1. Let L : Rn → Rm be a linear map. Then there is an m×n matrix
A ∈ Rm×n such that L = LA, that is,

L(x) = LA(x) = Ax for each x ∈ Rn.

Proof. Let BRn = {e1, . . . , en} be the standard basis of Rn. For j = 1, . . . , n, we
have

L(ej) =

aij...
anj

 ∈ Rm.

Let A ∈ Rm×n be the matrix whose j-th column is L(ei):

A = (L(e1) · · ·L(en)).

Then it can be easily verified that L(x) = Ax for all x ∈ Rn. �
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Let BRm be the standard basis of Rm. In the above theorem, the coordinate
column vector [L(ej)]BRm of L(ej) with respect to the standard basis BRm is itself:aij...

anj

 .

The above matrix A is call a representing matrix of L and, as seen below, it is the
matrix representing L with respect to the standard bases BRn and BRm .

Example 3.2. Let L : R3 → R2 be given by

L(x) =

(
x1 − x2
x2 + 2x3

)
.

The transformation L is easily seen to be linear. Now

L(e1) =

(
1 − 0
0 + 2 · 0

)
=

(
1
0

)
L(e2) =

(
0 − 1
1 + 2 · 0

)
=

(
−1
1

)
L(e3) =

(
0 − 0
0 + 2 · 1

)
=

(
0
2

)
so if we set

A =

(
1 −1 0
0 1 2

)
,

then indeed

Ax =

(
1 −1 0
0 1 2

)x1x2
x3

 =

(
x1 − x2
x2 + 2x3

)
= L(x) .

We now extend the matrix representation of a linear map L : Rn → Rm in the
above theorem to any linear map L between finite dimensional vector spaces.

Theorem 3.3 (Matrix Representation Theorem). Let BV = {v1, . . . ,vn} and
BW = {w1, . . . ,wm} be bases of vector spaces V and W respectively, and let
L : V → W be a linear map. Then there is an m× n matrix A such that

[L(v)]BW
= A[v]BV

for each v ∈ V .

Proof. The construction of the matrixA is the same as before. For each j = 1, . . . n,
apply the map L to the basis vector vj and get the coordinate column vector
[L(vj)]BW

with respect to the basis BW :

[L(vj)]BW
=

a1j
...
amj

 .
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Form the matrix A with these column vectors:

A = ([L(v1)]BW
· · · [L(vn)]BW

).

Then we have
[L(v)]BW

= A[v]BV
.

�

Definition 3.4. Given vector spaces V and W with corresponding bases BV and
BW , and a linear transformation L : V → W , we call the matrix A constructed in
the theorem above the matrix representation of L with respect to BV and
BW , and denote it by [L,Bv, BW ]. Thus, for any v ∈ V we have

[L(v)]BW
= [L,BV , BW ][v]BV

.

Example 3.5. Let L : R3 → R2 be defined by

L(x) = x1b1 + (x2 + x3)b2 ,

where

b1 =

(
1
0

)
, b2 =

(
1
1

)
.

Find the matrix representation of L with respect to the standard basis E =
{e1, e2, e3} and the basis B = {b1,b2}.

Solution. Since
L(e1) = 1b1 + 0b2

L(e2) = 0b1 + 1b2

L(e3) = 0b1 + 1b2

we see that

[L(e1)]B =

(
1
0

)
, [L(e2)]B =

(
0
1

)
, [L(e3)]B =

(
0
1

)
,

so

[L, E ,B] =

(
1 0 0
0 1 1

)
.

�

Example 3.6. Consider the linear transformation D : P2 → P1 given by

(D(p))(t) = p′(t) .

Define
p1(t) = 1, p2(t) = t, p3(t) = t2,

and let P2 = {p1,p2,p3} and P1 = {p1,p2} be bases for P2 and P1 respectively.
Since

(D(p1))(t) = p′1(t) = 0

(D(p2))(t) = p′2(t) = 1

(D(p3))(t) = p′3(t) = 2t
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we have

D(p1) = 0p1 + 0p2

D(p2) = 1p1 + 0p2

D(p3) = 0p1 + 2p2

so

[D,P2,P1] =

(
0 1 0
0 0 2

)
.

Suppose now that p ∈ P2 is given by

p(t) = a+ bt+ ct2 .

We want to find D(p). Of course we could do this working directly from the
definition of D, but we can also use the Matrix Representation Theorem: since

p = ap1 + bp2 + cp3 ,

we have, by the Matrix Representation Theorem,

[D(p)]P1 = [D,P2,P1][p]P2 =

(
0 1 0
0 0 2

)ab
c

 =

(
b
2c

)
,

so

D(p) = bp1 + 2cp2 ,

that is,

p′(t) = b+ 2ct ,

as expected.

Example 3.7. Let A ∈ Rm×n and let LA be the corresponding linear transforma-
tion from Rn to Rm. Since LA(ej) is just the j-th column of A, we see that the
matrix representation of LA with respect to the standard bases of Rn and Rm is
just A itself.

4. Composition of linear transformations

Suppose that U , V and W are vector spaces and that we are given two linear
transformations

T : U → V ,

S : V → W .

We can then form a new transformation S ◦ T : U → W by defining

(S ◦ T )(u) = S(T (u)) for each u ∈ U.
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The transformation S ◦ T is called the composite of S and T . Observe that S ◦ T
is linear as well. In order to see this, let u1,u2 ∈ U and α1, α2 be scalars. Then

(S ◦ T )(α1u1 + α2u2) = S(T (α1u1 + α2u2))

= S(α1T (u1) + α2T (u2))

= α1S(T (u1)) + α2S(T (u2))

= α1(S ◦ T )(u1) + α2(S ◦ T )(u2) .

Choosing α1 = α2 = 1 in the above equality gives

(S ◦ T )(u1 + u2) = (S ◦ T )(u1) + (S ◦ T )(u2) ,

while choosing α1 = 1 and α2 = 0 gives

(S ◦ T )(α1u1) = α1(S ◦ T )(u1) ,

so S ◦ T is linear, as claimed.

Example 4.1. Suppose that A ∈ Rm×n and B ∈ Rn×r. Let LA : Rn → Rm and
LB : Rr → Rn be the corresponding linear transformations. Then LA ◦LB : Rr →
Rm is the linear transformation given by

(LA ◦ LB)(x) = LA(LB(x)) = LA(Bx) = ABx ,

so

LA ◦ LB = LAB .

In other words, the composite of LA and LB is the linear transformation arising
from the product AB.

5. Change of basis

In this section, we shall consider the problem of how the matrix representation
of a given linear transformation changes when the bases of the underlying vector
spaces are changed.

Question.
Let V be a finite dimensional vector space with bases B = {v1, . . . ,vn} and

B′ = {v′1, . . . ,v′n}.
Given v ∈ V and its B-coordinate vector [v]B, how is the B′-coordinate vector

[v]B′ of v related to [v]B?
The answer is as follows. We have

v1 = c11v
′
1 + c12v

′
2 + · · ·+ c1nv

′
n

· · · · ·
vn = cn1v

′
1 + cn2v

′
2 + · · ·+ cnnv

′
n.

Let MB′
B be the matrix formed by the coordinate vectors [v1]B′ , · · · , [vn]B′ :
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MB′

B = ([v1]B′ · · · [vn]B′) =


c11 · · · cn1
c12 · · · cn2
...

...
c1n · · · cnn


which is called the change-of-basis matrix or transistion matrix from B to B′. We
note that v1

...
vn

 =

c11 · · · cn1
...

...
cn1 · · · cnn

v′1
...

v′n

 = (MB′

B )T

v′1
...

v′n

 .

For any vector v ∈ V , we have

[v]B′ = MB′

B [v]B.

Note that the matrix MB′
B is invertible with inverse MB

B′ and also

[v]B = MB
B′ [v]B′ .

Theorem 5.1. Let V be a vector space with bases BV and B′V . Let W be a
vector space with bases BW and B′W . Let L : V → W be a linear map with two
matrix representations [L,BV , BW ] and [L,B′V , B

′
W ]. Then they are related by the

change-of-basis matrices as follows:

[L,B′V , B
′
W ] = M

B′
W

BW
[L,BV , BW ]MBV

B′
V
.

In particular, if W = V , we have

[L,B′V , B
′
V ] = M

B′
V

BV
[L,BV , BV ]MBV

B′
V

= (MBV

B′
V

)−1[L,BV , BV ]MBV

B′
V
.

.

Definition 5.2. Let A and B be two n× n matrices. The matrix B is said to be
similar to A if there is an n× n invertible matrix S such that

B = S−1AS .

Notice that if B is similar to A, then A is similar to B, because if R = S−1,
then

A = SBS−1 = R−1BR .

Thus we may simply say that A and B are similar matrices.
Letting A = [L,B′V , B

′
V ] and B = [L,BV , BV ] in Theorem 5.1, the content

of the theorem can now be rephrased as follows: if A and B are two matrix
representations of the same linear transformation L : V → V on a vector space V ,
then A and B are similar.
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6. Inner product and orthogonality in Rn

We now return to the concrete vector space Rn and introduce two new concepts,
namely, the notion of an inner product and orthogonality. The latter extends our
intuitive notion of perpendicularity in R2 and R3 to Rn. We regard a 1× 1 matrix
as a scalar.

Definition 6.1. Let x and y be two vectors in Rn. The scalar xTy is called the
standard inner product, or scalar product, or dot product, of x and y and is denoted
by 〈x,y〉 or x·y. Thus, if

x =


x1
x2
...
xn

 , y =


y1
y2
...
yn

 ,

then

〈x,y〉 = x·y = xTy =
(
x1 x2 · · · xn

)
y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn .

Example 6.2. If

x =

 2
−3
1

 and y =

4
5
6

 ,

then

〈x,y〉 = xTy =
(
2 −3 1

)4
5
6

 = 2 · 4 + (−3) · 5 + 1 · 6 = 8− 15 + 6 = −1 .

Having had a second look at the example above it should be clear why x·y = y·x.
In fact, this is true in general. The following further properties of the dot product
follow easily from properties of the transpose operation:

Theorem 6.3. Let x, y and z be vectors in Rn, and let α be a scalar. Then

(a) 〈x,y〉 = 〈y,x〉;
(b) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉;
(c) 〈αx,y〉 = α〈x,y〉 = 〈x, αy〉;
(d) 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0.

We call the vector space Rn, equipped with the standard inner product 〈·, ·〉,
the n-dimensional Euclidean space.

Definition 6.4. If x = (x1, . . . , xn)T ∈ Rn, the length or norm of x is the
nonnegative scalar ‖x‖ defined by

‖x‖ =
√
〈x,x〉 =

√
x21 + · · ·+ x2n .
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A vector whose length is 1 is called a unit vector .

Example 6.5. If x = (a, b)T ∈ R2, then

‖x‖ =
√
a2 + b2 .

The above example should convince you that in R2 and R3 the definition of the
length of a vector x coincides with the standard notion of the length of the line
segment from the origin to x.

Note that if x ∈ Rn and α ∈ R then

‖αx‖ = |α| ‖x‖ ,
because ‖αx‖2 = (αx)·(αx) = α2(x·x) = α2‖x‖2. Thus, if x 6= 0, we can always
find a unit vector y in the same direction as x by setting

y =
1

‖x‖
x .

The process of creating a unit vector y from x is called normalising x.

Definition 6.6. For x and y in Rn, the Euclidean distance between x and y,
written dist(x,y), is the length of x− y, that is,

dist(x,y) = ‖x− y‖ .

Definition 6.7. Two vectors x and y in Rn are orthogonal (to each other) if
〈x,y〉 = 0.

Note that the zero vector is orthogonal to every other vector in Rn.

Theorem 6.8 (Pythagorean Theorem). Two vectors x and y in Rn are orthogonal
if and only if

‖x + y‖2 = ‖x‖2 + ‖y‖2 .

Proof. We have

‖x + y‖2 = 〈x + y, x + y〉
= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= ‖x‖2 + 2〈x,y〉+ ‖y‖2.

Hence ‖x + y‖2 = ‖x‖2 + ‖y‖2 if and only if 〈x,y〉 = 0. �

Let u and v be two vectors in R2 forming an angle θ ≤ π. By the cosine law,
we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

which gives
〈u,v〉 = ‖u‖‖v‖ cos θ.

Definition 6.9. A set of vectors {u1, . . . ,ur} in Rn is said to be an orthogonal
set if each pair of distinct vectors is orthogonal, that is, if

〈ui,uj〉 = 0 whenever i 6= j .
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Example 6.10. If

u1 =

3
1
1

 , u2 =

−1
2
1

 , u3 =

−1
−4
7

 ,

then {u1,u2,u3} is an orthogonal set since

u1·u2 = 3 · (−1) + 1 · 2 + 1 · 1 = 0

u1·u3 = 3 · (−1) + 1 · (−4) + 1 · 7 = 0

u2·u3 = (−1) · (−1) + 2 · (−4) + 1 · 7 = 0

Theorem 6.11. If {u1, . . . ,ur} is an orthogonal set of nonzero vectors, then the
vectors u1, . . . ,ur are linearly independent.

Proof. Suppose that

c1u1 + c2u2 + · · ·+ crur = 0 .

Then

0 = 0·u1

= (c1u1 + c2u2 + · · ·+ crur)·u1

= c1(u1·u1) + c2(u2 · u1) + · · ·+ cr(ur·u1)

= c1(u1·u1) ,

since u1 is orthogonal to u2, . . . ,ur. But since u1 is nonzero, u1·u1 is nonzero, so
c1 = 0. Similarly, c2, . . . , cr must be zero, and the assertion follows. �

Definition 6.12. An orthogonal basis for a subspace H of Rn is a basis of H that
is also an orthogonal set.

Definition 6.13. A set {u1, . . . ,ur} of vectors in Rn is called an orthonormal
set if it is an orthogonal set of unit vectors. In other words, {u1, . . . ,ur} is an
orthonormal set if and only if

〈ui,uj〉 = δij for i, j = 1, . . . , r ,

where

δij =

{
1 if i = j

0 if i 6= j
.

An orthonormal basis of a subspace H ⊂ Rn is a basis {u1, . . . ,ur} of H which is
an orthonormal set.

Example 6.14. The standard basis {e1, . . . , en} of Rn is an orthonormal set (and
also an orthonormal basis for Rn). Moreover, any nonempty subset of {e1, . . . , en}
is an orthonormal set.

Here is a less trivial example:
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Example 6.15. If

u1 =

2/
√

6

1/
√

6

1/
√

6

 , u2 =

−1/
√

3

1/
√

3

1/
√

3

 , u3 =

 0

−1/
√

2

1/
√

2

 ,

then {u1,u2,u3} is an orthonormal set, since

u1·u2 = −2/
√

18 + 1/
√

18 + 1/
√

18 = 0

u1·u3 = 0/
√

12− 1/
√

12 + 1/
√

12 = 0

u2·u3 = 0/
√

6− 1/
√

6 + 1/
√

6 = 0

and

u1·u1 = 4/6 + 1/6 + 1/6 = 1

u2·u2 = 1/3 + 1/3 + 1/3 = 1

u3·u3 = 0/2 + 1/2 + 1/2 = 1

Moreover, since by Theorem 6.11 the vectors u1,u2,u3 are linearly independent
and dimR3 = 3, the set {u1,u2,u3} is a basis for R3. Thus {u1,u2,u3} is an
orthonormal basis for R3.

7. Orthogonal complements

Definition 7.1. Let Y be a subset of Rn. A vector x ∈ Rn is said to be orthogo-
nal to Y if x is orthogonal to every vector in Y . The set of all vectors in Rn that
are orthogonal to Y is called the orthogonal complement of Y and is denoted
by Y ⊥ (pronounced ‘Y perpendicular’ or ‘Y perp’ for short). Thus

Y ⊥ = {x ∈ Rn | x·y = 0 for all y ∈ Y } .

Example 7.2. Let W be a plane through the origin in R3 and let L be the line
through the origin and perpendicular to W . By construction, each vector in W is
orthogonal to every vector in L, and each vector in L is orthogonal to every vector
in W . Hence

L⊥ = W and W⊥ = L .

Theorem 7.3. (a) Let Y be a subset of Rn. Then Y ⊥ is a subspace of Rn.
(b) Let Y be a subspace of Rn. Then a vector x belongs to Y ⊥ if and only if x

is orthogonal to every vector in any spanning set of Y .

Theorem 7.4 (Fundamental Subspace Theorem). Let A ∈ Rm×n. Then:

(a) N(A) = col(AT )⊥ ⊂ Rm.
(b) N(AT ) = col(A)⊥ ⊂ Rn.

Proof. In this proof we shall identify the rows of A (which are strictly speaking
1× n matrices) with vectors in Rn.
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(a) Let x ∈ Rn. Then

x ∈ N(A)⇐⇒ Ax = 0

⇐⇒ x is orthogonal to every row of A

⇐⇒ x is orthogonal to every column of AT

⇐⇒ x ∈ col(AT )⊥ ,

so N(A) = col(AT )⊥.
(b) Apply (a) to AT .

�

8. Gram-Schmidt orthogonalisation process

Theorem 8.1 (Gram Schmidt process). Given a basis {x1, . . . ,xr} of a subspace
H of Rn, define

v1 = x1

v2 = x2 −
x2·v1

v1·v1

v1

v3 = x3 −
x3·v1

v1·v1

v1 −
x3·v2

v2·v2

v2

...

vr = xr −
xr·v1

v1·v1

v1 −
xr·v2

v2·v2

v2 − · · · −
xr·vr−1

vr−1·vr−1
vr−1

Then {v1, . . . ,vr} is an orthogonal basis for H.

Proof. Consider vk for k = 1, . . . , r. We show they are orthogonal by induction
on k. Evidently 〈v1,v2〉 = 0. Suppose v1, . . . ,vk−1 are orthogonal. Then, for
j = 1, . . . , k − 1, we have

〈vk,vj〉 =

〈
xk −

k−1∑
i=1

〈xk,vi〉
〈vi,vi〉

vi, vj

〉

= 〈xk,vj〉 −
k−1∑
i=1

〈xk,vi〉
〈vi,vi〉

〈vi, vj〉

= 〈xk,vj〉 −
〈xk,vj〉
〈vj,vj〉

〈vj, vj〉 = 0.

Hence {v1, . . . ,vk−1,vk} is orthogonal. It follows that the set {v1, . . . ,vr} is or-
thogonal and is a basis for H since it must be a linearly independent set, as shown
before. �
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Example 8.2. Let H = Span (x1,x2,x3) where

x1 =


1
1
1
1

 , x2 =


0
1
1
2

 , x3 =


0
0
2
6

 .

Clearly {x1,x2,x3} is a basis of H. Construct an orthogonal basis of H.

Solution. We start by setting

v1 = x1 =


1
1
1
1

 .

The vector v2 is constructed by subtracting the orthogonal projection of x2 onto
Span (v1) from x2, that is,

v2 = x2 −
x2·v1

v1·v1

v1 = x2 −
4

4
v1 =


−1
0
0
1

 .

The vector v3 is constructed by subtracting the orthogonal projection of x3 onto
Span (v1,v2) from x3, that is,

v3 = x3 −
x3·v1

v1·v1

v1 −
x3·v2

v2·v2

v2 = x3 −
8

4
v1 −

6

2
v2 =


1
−2
0
1

 ,

producing the orthogonal basis {v1,v2,v3} for H. �

9. Orthogonal projections

Let H be a subspace of Rn and let y be a vector in Rn. By the Gram-Schmidt
process, we can fined an orthogonal basis {u1, . . . ,ur} for H. We define

(3) ŷ =
y·u1

u1·u1

u1 + · · ·+ y·ur

ur·ur

ur .

We call ŷ the orthogonal projection of y onto H , and is written

ŷ = projHy .

Theorem 9.1 (Orthogonal Decomposition Theorem). Let H be a subspace of Rn.
Then Rn = H ⊕H⊥. Hence dimH + dimH⊥ = n.
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Proof. It is easy to see that H ∩H⊥ = {0}. We need to show that Rn = H +H⊥.
Let y ∈ Rn and let ŷ be its projection onto H, given by (3). Since ŷ is a linear
combination of the vectors u1, . . . ,ur, we have ŷ ∈ H. Let z = y − ŷ. Then

z·u1 = (y − ŷ)·u1

= y·u1 −
(

u·u1

u1·u1

)
(u1·u1)− 0− · · · − 0

= y·u1 − y·u1

= 0 ,

so z is orthogonal to u1. Similarly, we see that z is orthogonal to uj for j = 2, . . . , r,
so z ∈ H⊥ by Theorem 7.3 (b). Therefore we have

y = ŷ + (y − ŷ) ∈ H +H⊥.

�

One of the reasons why orthogonal projections play an important role in Lin-
ear Algebra, and indeed in other branches of Mathematics, is made plain in the
following theorem:

Theorem 9.2 (Best Approximation Theorem). Let H be a subspace of Rn, y any
vector in Rn, and ŷ = projHy. Then ŷ is the closest point in H to y, in the sense
that

(4) ‖y − ŷ‖ < ‖y − v‖
for all v ∈ H distinct from ŷ.

Proof. Take v ∈ H distinct from ŷ. Then ŷ − v ∈ H. By the Orthogonal
Decomposition Theorem, y − ŷ is orthogonal to H, so y − ŷ is orthogonal to
ŷ − v.

Since
y − v = (y − ŷ) + (ŷ − v) ,

the Pythagorean Theorem (Theorem 6.8) gives

‖y − v‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2 .
But ‖ŷ − v‖2 > 0, since ŷ 6= v, so the desired inequality (4) holds. �

The theorem above is the reason why the orthogonal projection of y onto H is
often called the best approximation of y by elements in H.


