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0.1 (Linear) span of vectors

Definition 0.1.1. Let v1, . . . ,vn be vectors in a vector space V . A linear
combination of v1, . . . ,vn is a vector v of the form

v = α1v1 + · · ·+ αnvn

where α1, . . . , αn are scalars. The set of all linear combinations of v1, . . . ,vn

is called the span of v1, . . . ,vn and is denoted by Span (v1, . . . ,vn), that is,

Span (v1, . . . ,vn) = {α1v1 + · · ·+ αnvn | α1, . . . , αn ∈ R } .

Example 0.1.2. Let e1, e2, e3 ∈ R3 be given by

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Determine Span (e1, e2) and Span (e1, e2, e3).

Solution. Since

α1e1 + α2e2 =

α1

α2

0

 , while α1e1 + α2e2 + α3e3 =

α1

α2

α3

 ,

we see that

Span (e1, e2) =


x1

x2

x3

 ∈ R3

∣∣∣∣∣∣ x3 = 0

 , while Span (e1, e2, e3) = R3 .

Theorem 0.1.3. Let v1, . . . ,vn be vectors in a vector space V . Then Span (v1, . . . ,vn)
is a subspace of V .

Definition 0.1.4. Let V be a vector space, and let v1, . . . ,vn ∈ V . We say
that the set {v1, . . . ,vn} is a spanning set for V if

Span (v1, . . . ,vn) = V .

If {v1, . . . ,vn} is a spanning set for V , we shall also say that {v1, . . . ,vn}
spans V , that v1, . . . ,vn span V or that V is spanned by v1, . . . ,vn.
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Notice that the above definition can be rephrased as follows. A set
{v1, . . . ,vn} is a spanning set for V , if and only if every vector in V can
be written as a linear combination of v1, . . . ,vn.

Example 0.1.5. Show that {p1,p2,p3} is a spanning set for P2, where

p1(x) = 2 + 3x+ x2 , p2(x) = 4− x , p3(x) = −1 .

Solution. Let p be an arbitrary polynomial in P2, say, p(x) = a + bx + cx2.
We need to show that it is possible to find weights α1, α2 and α3 such that

α1p1 + α2p2 + α3p3 = p ,

that is
α1(2 + 3x+ x2) + α2(4− x)− α3 = a+ bx+ cx2 .

Comparing coefficients we find that the weights have to satisfy the system

2α1 + 4α2 − α3 = a
3α1 − α2 = b
α1 = c

The coefficient matrix is nonsingular, so the system must have a unique
solution for all choices of a, b, c. In fact, using back substitution yields α1 = c,
α2 = 3c−b, α3 = 14c−4b−a. Thus {p1,p2,p3} is a spanning set for P2.

Example 0.1.6. Find a spanning set for N(A), where

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

Proof. We have already calculated N(A) for this matrix in Example ??, and
found that

N(A) =

α


2
1
0
0
0

+ β


1
0
−2
1
0

+ γ


−3
0
2
0
1


∣∣∣∣∣∣∣∣∣∣
α, β, γ ∈ R

 .

Thus,
{

(2, 1, 0, 0, 0)T , (1, 0,−2, 1, 0)T , (−3, 0, 2, 0, 1)T
}

is a spanning set for
N(A).
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0.2 Linear independence

Definition 0.2.1. Let v1, . . . ,vn be vectors in a vector space V . They are
said to be linearly dependent if there exist scalars c1, . . . , cn, not all zero,
such that

c1v1 + · · ·+ cnvn = 0 .

Definition 0.2.2. The set {v1, . . . ,vn} of vectors in a vector space V is said
to be linearly independent if they are not linearly dependent, that is, if

c1v1 + · · ·+ cnvn = 0 ⇒ c1, . . . , cn = 0.

Example 0.2.3. The vectors

(
2
1

)
,

(
1
1

)
∈ R2 are linearly independent. In

order to see this, suppose that

c1

(
2
1

)
+ c2

(
1
1

)
=

(
0
0

)
.

Then c1 and c2 must satisfy the 2× 2 system

2c1 + c2 = 0
c1 + c2 = 0

However, as is easily seen, the only solution of this system is c1 = c2 = 0.
Thus, the two vectors are indeed linearly independent as claimed.

Example 0.2.4. Let p1,p2 ∈ P1 be given by

p1(t) = 2 + t , p2(t) = 1 + t .

Then p1 and p2 are linearly independent. In order to see this, suppose that

c1p1 + c2p2 = 0 .

Then, for all t
c1(2 + t) + c2(1 + t) = 0 ,

so, for all t
(2c1 + c2) + (c1 + c2)t = 0 .
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Notice that the polynomial on the left-hand side of the above equation will
be the zero polynomial if and only if its coefficients vanish, so c1 and c2 must
satisfy the 2× 2 system

2c1 + c2 = 0
c1 + c2 = 0

However, as in the previous example, the only solution of this system is
c1 = c2 = 0. Thus p1 and p2 are indeed linearly independent as claimed.

Example 0.2.5 (Geometric interpretation of linear independence in
R2 and R3).

(a) If x and y are linearly dependent in R2 then

c1x + c2y = 0 ,

where c1 and c2 are not both 0. If, say c1 6= 0, then

x = −c2
c1

y .

Thus one of the vectors must be a scalar multiple of the other, or, put
differently, the two vectors must be collinear.

Conversely, if two vectors in R2 are not collinear, they are linearly
independent.

(b) Just as in R2, two vectors in R3 are linearly dependent if and only if they
are collinear. Suppose now that x and y are two linearly independent
vectors in R3. Since they are not collinear, they will span a plane
(through the origin). If z is another vector lying in this plane, then
0 can be written as a linear combination of x and y, hence x,y, z are
linearly dependent. Conversely, if z does not lie in the plane spanned
by x and y, then x,y, z are linearly independent.

In other words, three vectors in R3 are linearly independent if and only
if they are not coplanar.

Theorem 0.2.6. Let x1, . . . ,xn be n vectors in Rn and let A ∈ Rn×n be
the matrix whose j-th column is xj. Then the vectors x1, . . . ,xn are linearly
dependent if and only if A is singular.
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Proof. The equation
c1x1 + · · ·+ cnxn = 0

can be written as

Ac = 0 , where c =

c1...
cn

 .

This system has a non-trivial solution c 6= 0 if and only A is singular.

Corollary 0.2.7. In the above theorem, the vectors x1, . . . ,xn are linearly
independent if and only if A is invertible, which is equivalent to the fact that
A can be reduced to row echelon form with exactly n leading columns.

Example 0.2.8. Determine whether the following three vectors in R3 are
linearly independent: −1

3
1

 ,

5
2
5

 ,

4
5
6

 .

Solution. Since∣∣∣∣∣∣
−1 5 4
3 2 5
1 5 6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−1 3 1
5 2 5
4 5 6

∣∣∣∣∣∣
R1 +R2

=

∣∣∣∣∣∣
4 5 6
5 2 5
4 5 6

∣∣∣∣∣∣
R1 −R3

=

∣∣∣∣∣∣
0 0 0
5 2 5
4 5 6

∣∣∣∣∣∣ = 0 ,

the vectors are linearly dependent.

Theorem 0.2.9. Let v1, . . . ,vn be vectors in a vector space V . A vector
v ∈ Span (v1, . . . ,vn) can be written uniquely as a linear combination of
v1, . . . ,vn if and only if v1, . . . ,vn are linearly independent.

Proof. If v ∈ Span (v1, . . . ,vn) then v can be written

v = α1v1 + · · ·+ αnvn , (1)

for some scalars α1, . . . , αn. Suppose that v can also be written in the form

v = β1v1 + · · ·+ βnvn , (2)

for some scalars β1, . . . , βn. We start by showing that if v1, . . . ,vn are linearly
independent, then αi = βi for every i = 1, . . . , n (that is, the representation
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(1) is unique). To see this, suppose that v1, . . . ,vn are linearly independent.
Then subtracting (2) from (1) gives

(α1 − β1)v1 + · · ·+ (αn − βn)vn = 0 , (3)

which forces αi = βi for every i = 1, . . . , n as desired.
Conversely, if the representation (1) is not unique, then there must be a

representation of the form (2) where αi 6= βi for some i between 1 and n.
But then (3) means that there exists a non-trivial linear dependence between
v1, . . . ,vn, so these vectors are linearly dependent.

0.3 Basis and dimension

The concept of a basis and the related notion of dimension are among the
key ideas in the theory vector of spaces, of immense practical and theoretical
importance.

Definition 0.3.1. A set {v1, . . . ,vn} of vectors forms a basis for a vector
space V if

(i) v1, . . . ,vn are linearly independent;

(ii) Span (v1, . . . ,vn) = V .

In other words, a basis for a vector space is a ‘minimal’ spanning set, in
the sense that it contains no superfluous vectors: every vector in V can be
written as a linear combination of the basis vectors (because of property (ii)),
and there is no redundancy in the sense that no basis vector can be expressed
as a linear combination of the other basis vectors (by property (i)).

Example 0.3.2. Let

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Then {e1, e2, e3} is a basis for R3, called the standard basis.
Indeed, as is easily seen, every vector in R3 can be written as a linear

combination of e1, e2, e3 and, moreover, the vectors e1, e2, e3 are linearly
independent.
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Example 0.3.3. 
1

0
0

 ,

1
1
0

 ,

1
1
1


is a basis for R3.

First, note that the vectors are linearly independent since the matrix1 1 1
0 1 1
0 0 1


is in echelon form with 3 leading columns. Moreover, the vectors span R3

since, if (a, b, c)T is an arbitrary vector in R3, thenab
c

 = (a− b)

1
0
0

+ (b− c)

1
1
0

+ c

1
1
1

 .

The previous two examples show that a vector space may have more than
one basis.

Example 0.3.4. Let

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

Then {E11, E12, E21, E22} is a basis for R2×2, because the four vectors span
R2×2 (as was shown in Coursework 5, Exercise 7(b)) and they are linearly
independent. To see this, suppose that

c1E11 + c2E12 + c3E21 + c4E22 = O2×2 .

Then (
c1 c2
c3 c4

)
=

(
0 0
0 0

)
,

so c1 = c2 = c3 = c4 = 0.

Most of the vector spaces we have encountered so far have particularly
simple bases, termed ‘standard bases’:
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Example 0.3.5 (Standard bases for Rn, Rm×n and Pn).

Rn: The n columns of In form the standard basis of Rn, usually denoted
by {e1, e2, . . . , en}.

Rm×n: A canonical basis can be constructed as follows. For i = 1, . . . ,m
and j = 1, . . . , n let Eij ∈ Rm×n be the matrix whose (i, j)-entry is 1, and all
other entries are 0. Then {Eij | i = 1, . . . ,m , j = 1, . . . , n } is the standard
basis for Rm×n.

Pn: The standard basis is the collection {p0, . . . ,pn} of all monomials of
degree less than n, that is,

pk(t) = tk , for k = 0, . . . , n.

If this is not clear to you, you should check that it really is a basis!

Theorem 0.3.6. Let v1, . . . ,vn be vectors in a vector space V . If Span (v1, . . . ,vn) =
V , then any collection of m vectors in V where m > n is linearly dependent.

Proof. Let u1, . . . ,um bem vectors in V wherem > n. Then, since v1, . . . ,vn

span V , we can write

ui = αi1v1 + · · ·+ αinvn for i = 1, . . . ,m .

Thus, a linear combination of the vectors u1, . . . ,um can be written as

c1u1 + · · ·+ cmum =
m∑

i=1

ciui

=
m∑

i=1

ci

(
n∑

j=1

αijvj

)

=
n∑

j=1

(
m∑

i=1

αijci

)
vj .

Now consider the system of n equations for the m unknowns c1, . . . , cm
m∑

i=1

αijci = 0 for j = 1, . . . , n.

This is a homogeneous system with more unknowns than equations, so by
Theorem ?? it must have a non-trivial solution (ĉ1, . . . , ĉm)T . But then

ĉ1u1 + · · ·+ ĉmum =
n∑

j=1

0vj = 0 ,
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so u1, . . . ,um are linearly dependent.

Corollary 0.3.7. If a vector space V has a basis of n vectors, then every
basis of V must have exactly n vectors.

Proof. Suppose that {v1, . . . ,vn} and {u1, . . . ,um} are both bases for V . We
shall show thatm = n. In order to see this, notice that, since Span (v1, . . . ,vn) =
V and u1, . . . ,um are linearly independent it follows by the previous theo-
rem that m ≤ n. By the same reasoning, since Span (u1, . . . ,um) = V and
v1, . . . ,vn are linearly independent, we must have n ≤ m. So, all in all, we
have n = m, that is, the two bases have the same number of elements.

In view of this corollary it now makes sense to talk about the number of
elements of a basis, and give it a special name:

Definition 0.3.8. Let V be a vector space. If V has a basis consisting of n
vectors, we say that V has dimension n, and write dimV = n.

The vector space {0} is said to have dimension 0. The vector space V is
said to be finite dimensional if there is a finite set of vectors spanning V ;
otherwise it is said to be infinite dimensional .

Example 0.3.9. By Example 0.3.5 the vector spaces Rn, Rm×n and Pn are
finite dimensional with dimensions

dim Rn = n , dim Rm×n = mn , dimPn = n+ 1 .

As an example of an infinite dimensional vector space, consider the vec-
tor space P of all polynomials with real coefficients. Note that any finite
collection of monomials is linearly independent, so P must be infinite di-
mensional. For the same reason, C[a, b] and C1[a, b] are infinite dimensional
vector spaces.

Theorem 0.3.10. If V is a vector space with dimV = n, then:

(a) any set consisting of n linearly independent vectors spans V ;

(b) any n vectors that span V are linearly independent.

Remark 0.3.11. The above theorem provides a convenient tool to check
whether a set of vectors forms a basis. The theorem tells us that n linearly
independent vectors in an n-dimensional vector space are automatically span-
ning, so these vectors are a basis for the vector space. This is often useful
in situations where linear independence is easier to check than the spanning
property.
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0.4 Row space and column space

Definition 0.4.1. Let A ∈ Rm×n.

• The subspace of R1×n spanned by the row vectors of A is called the
row space of A and is denoted by row(A).

• The subspace of Rm×1 spanned by the column vectors of A is called the
column space of A and is denoted by col(A).

Example 0.4.2. Let A =

(
1 0 0
0 1 0

)
.

• Since
α
(
1 0 0

)
+ β

(
0 1 0

)
=
(
α β 0

)
row(A) is a 2-dimensional subspace of R1×3.

• Since

α

(
1
0

)
+ β

(
0
1

)
+ γ

(
0
0

)
=

(
α
β

)
col(A) is a 2-dimensional subspace of R2×1.

Notice that the row space and column space of a matrix are generally
distinct objects. Indeed, one is a subspace of R1×n the other a subspace of
Rm×1. However, in the example above, both spaces have the same dimension
(namely 2). In fact, this is always the case.

Theorem 0.4.3. Let A ∈ Rm×n. Then

dim row(A) = dim col(A) .

Definition 0.4.4. The rank of a matrix, denoted by rankA, is the dimension
of the row space (which is the same as the dimension of the column space).

How does one calculate the rank of a matrix? The next result provides
the clue:

Theorem 0.4.5. Let A ∈ Rm×n. Then A is row equivalent to a matrix U in
echelon form, and the nonzero rows of U form a basis for row(A).
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Proof. Apply a sequence of elementary row operations on A to obtain a
matrix U in echelon form. So A is row equivalent to U with row(A) =
row(U).

Let R1, . . . , Rk be nonzero rows of U which clearly span row(U). They
form a basis if they are linearly independent. Suppose not, then there exist
scalars

(α1, . . . , αk) 6= (0, . . . , 0)

such that
α1R1 + · · ·+ αkRk = 0.

Let αj be the first nonzero scalar. Then

αjRj + αj+1Rj+1 + · · ·+ αkRk = 0.

But Rj+1, Rj+2 . . . , Rk all start with more zeros than Rj which implies αj = 0,
giving a contradiction.

Hence R1, . . . , Rk are linearly independent and form a basis.

To find a basis for the row space and the rank of a matrix A:

• bring matrix to row echelon form U ;

• the nonzero rows of U will form a basis for row(A);

• the number of nonzero rows of U equals rankA.

Example 0.4.6. Let

A =

1 −3 2
1 −2 1
2 −5 3

 .

Then 1 −3 2
1 −2 1
2 −5 3

 ∼
1 −3 2

0 1 −1
0 1 −1

 ∼
1 −3 2

0 1 −1
0 0 0

 .

Thus {(
1 −3 2

)
,
(
0 1 −1

)}
is a basis for row(A), and rankA = 2.
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To find a basis for the column space of a matrix A:

• bring A to row echelon form and identify the leading variables;

• the columns of A containing the leading variables form a basis for
col(A).

Example 0.4.7. Let

A =

1 −1 3 2 1
1 0 1 4 1
2 −1 4 7 4

 .

Then the row echelon form of A is1 −1 3 2 1
0 1 −2 2 0
0 0 0 1 2

 .

The leading variables are in columns 1,2, and 4. Thus a basis for col(A) is
given by 

1
1
2

 ,

−1
0
−1

 ,

2
4
7

 .

It turns out that the rank of a matrix A is intimately connected with the
dimension of its nullspace N(A). Before formulating this relation, we require
some more terminology:

Definition 0.4.8. If A ∈ Rm×n, then dimN(A) is called the nullity of A,
and is denoted by nulA.

Example 0.4.9. Find the nullity of the matrix

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

Solution. Reduce A to row echelon form U and then using back substitution
to solve Ux = 0, giving

N(A) = {αx1 + βx2 + γx3 | α, β, γ ∈ R } ,
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where

x1 =


2
1
0
0
0

 , x2 =


1
0
−2
1
0

 , x3 =


−3
0
2
0
1

 .

It is not difficult to see that x1,x2,x3 are linearly independent, so {x1,x2,x3}
is a basis for N(A). Thus, nulA = 3.

Note that in the above example the nullity of A is equal to
the number of free variables of the system Ax = 0. This is no
coincidence, but true always!

The connection between the rank and nullity of a matrix, alluded to
above, is the content of the following beautiful theorem.

Theorem 0.4.10 (Rank-Nullity Theorem). If A ∈ Rm×n, then

rankA+ nulA = n .

Proof. Bring A to row echelon form U . Write r = rankA. Now observe
that U has r non-zero rows, hence Ux = 0 has n − r free variables, so
nulA = n− r.


