MTH5112 Linear Algebra I
 MID-TERM TEST

Date: 12 November 2010 Time: 11.00-11.40

FB328	Surnames A to C
Octagon	Surnames D to Z

Complete the following information:

Name
 Student Number
 (9 digit code)

The duration of the test is $\mathbf{4 0}$ minutes. Answer all questions in the spaces provided. Write the final answer clearly. Calculators are not allowed.
Total Marks $\quad \square$

Nothing on this page will be marked!

1. Determine the solution set of the following system of linear equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}-3 x_{3}+x_{4}=1 \\
-x_{1}-x_{2}+4 x_{3}-x_{4}=6 \\
-2 x_{1}-4 x_{2}+7 x_{3}-x_{4}=1
\end{array}
$$

2. Find the inverse of the following matrix using Gauss-Jordan inversion:

$$
A=\left(\begin{array}{ccc}
1 & 4 & 3 \\
-1 & -2 & 0 \\
2 & 2 & 3
\end{array}\right)
$$

3. Let A be an $n \times n$ matrix and let $A_{i j}$ denote the (i, j)-minor of A for $i, j=1,2, \ldots, n$. Define the adjugate, $\operatorname{adj} A$, of A. Given

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & 3 & 1 & 1 \\
0 & 0 & 2 & 2 \\
-1 & -1 & -1 & 0
\end{array}\right)
$$

Compute the determinant $\operatorname{det} A$ and the product

$$
A(\operatorname{adj} A) .
$$

4. Let V be a real vector space. Explain what is meant by a subspace of V.

Let A and B be subspaces of V. Show that the sum

$$
A+B=\{a+b: a \in A, b \in B\}
$$

is a subspace of V.

Let $\mathbb{R}^{1 \times 4}=\{(x, y, z, w): x, y, z, w \in \mathbb{R}\}$ which is a real vector space.
Determine, with a reason, if the subset

$$
W=\{(x, y, z, 1): x, y, z \in \mathbb{R}\}
$$

is a subspace of $\mathbb{R}^{1 \times 4}$.

